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PROBLEMS

1. WHOLE RATIONAL EXPRESSIONS

The problems presented in this section are mainly on the
identity transformations of whole rational expressions.
These are the elementary operations we have to use here:
addition, multiplication, division and subtraction of mono-
mials and polynomials, as well as raising them to various
powers and resolving them into factors. As regards trigono-
metric problems, we take as known the definition of trigonec-
metric functions, principal relationships between these
functions, all thz properties connected with their periodi-
city, and all corollaries of the addition theorem.

Attention should be drawn only to the formulas which
enable us to transform a product of trigonometric functions
into a sum or a difference of these functions. Namely:

cosAcosB:-;—[cos (A+ B)+cos (A— B)],
sin A cos B = - [sin (4 + B) +sin (A— B)],
sin 4 sin B = -—;— [cos (A — B) —cos (4 + B)].
1. Prove the identity
(@® + b%) (2* + y?) = (az — by)® + (bz + ay)*.
2. Show that
(@ + b2+ c® + d?) (22 + y2 + 22 + 1) =
= (ax — by — cz — dt)> 4 (bx + ay — dz + ct)® +
+ (ex + dy + az — bt)® + (dz — cy + bz + at)?.
3. Prove that from the equalities
ax — by —cz —dt =0, br+ay —dz -+ ct =0,
cx+dy +az—bt =0, dr—cy+ bz+at=0,
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follows eithera =b=c=d=0,orz =y =2=1¢t=0.
4, Show that the following identity takes place

(a® + b + ¢%) (22 + y® + 2}) — (az + by + ¢2)® =
= (bx — ay)?® + (cy — b2)? + (az — cx)%
5. Show that the preceding identity can be generalized in
the following way
(@ +ai+...+ap) B 4b+...4 b)) =
= (a1by + azby + . . . + a,b,)? + (a1by — azby)® +
+ (a1b3 — azby)? + . . . + (ap-1b, — a,b, )2
6. Let
n@+b+2+...4+0B=
=(@a+b+c+...+10?2

where n is the number of the quantities a, b, ¢, .. ., L
Prove that then
a=b=c=...=1

7. Prove that from the equalities
ad+a+...+a=1 bi+b+...+0=1

follows
———1<a1b1—l—a2b2—l— o« 0. +anbn<+1.

8. Prove that from the equality
=2+ @ —2°+ @ — 9=
=Wy +z—20°+(z+z—2y)+ (zx +y— 22)°

follows
=y =2z

9. Prove the following identities
(a® — b%)?® + (2ab)® = (a® + b?)?,
(6a® — 4ab + 4b%)3® = (3a® + Sab — 5b%)® +
+ (4a? — 4ab + 6b% + (5a® — Sab — 3b%)°.
10. Show that
(P* — * + (2pg + ¢))* + (2pg + P?)* = 2 (P*+pg+4°)*.
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11. Prove the identity
X2+ XY +Y2=23

X=¢+3p —p* Y = —3pg(p + 9,
Z = p*+ pq + ¢

if

12. Prove that
(3a + 3b)* + (2a + 4b)* + a* + b* =
= (3a + 4b)* + (a -+ 3b)* + (2a + b)*
at k=1, 2, 3.
13. 1° Show that if x +y + z = 0, then
(iz — ky)™ + (iy — kz)* + (iz — ka)* =
= (iy — k2)" + (iz — ky)" + (ix — kz)"
atn =20, 1, 2, 4.
2° Prove that

B+ (@ +3)"+(x+5"+ (x+6)" + (z+ 9" +
+ (z +10)" + (z + 12)" + (z + 15)" =
=@+1)"+@@+2)"+@@+4)"+ @+ 7"+
+ @+ 8"+ (x +1)" + (z + 13)" + (z + 14)"
at n =20, 1, 2, 3.
14. Prove the identities
1°@+ b+ c+d?2+(a+b—c—d?+
+a+c—b—d?+(a+d—b—¢)? =
=4 (a® + b + ¢ + d?;
2° (a® — b%® + ¢ — d®)? 4 2 (ab — bc + dc + ad)? =
= (a® + b2 + ¢® + d®)? — 2 (ab — ad + bc + dc)%
3° (a® — ¢® + 2bd)? + (d* — b% + 2ac)? =
= (a® — b + ¢* — d¥?% + 2 (ab — bc -+ dc + ad)?.
15. Prove the identity
@+d+o+@0G+c—at+(c+a—0b*+
+@+b—ct =4+ b+ ¢ +
+ 24 (b%? + c2a® + a?b?).
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16. Let s=a + b + c.
Prove that

s(s—2b) (s —2¢) +s(s — 2¢) (s — 2a) +
+ s (s — 2a) (s — 2b) = (s — 2a) (s — 2b) (s — 2¢)--8abc.
17. Prove that if a + b + ¢ = 25, then
a(s—a?+b(s—0b*+c(s—c)l¥+2(s—a) X
X (s — b) (s — ¢) = abe.
18. Put
2s=a 4+ b-+ec; 20%=a%+ b2+ i
Show that
(0* — a®) (0® — b%) + (0® — b?) (0® — ¢%) +
+ (02 — ¢?) (02 — a®) = 4s(s — a) (s — b) (s — ¢).
19. Factor the following expression
(z+y+2—2 -y -2
20. Factor the following expression
2+ y® + 2 — 3zyz.
21. Simplify the expression
@+b4+cP—(@a+bd—c—(b+c—aP—
— (¢ + a — b)d.
22. Factor the following expression
(b —0°+ (c—a)+ (a — b
23. Show that if a + b4 ¢ = 0, then
a® 4+ b® + ¢ = 3abe.
24. Prove that if a + b+ ¢ = 0, then
(a2 4+ b% 4 ¢¥? = 2 (a* + b* + cY).
25. Show that
[a— B + (b — 0 + (c — @) =
=2l — b+ (b — ) + (c — a)tl.
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26. Let a + b+ ¢ = 0, prove that

1° 2 (a® + b® 4 % = Sabc (a® + b* 4 c?);

2° 5 (a® 4+ b® + ¢3) (a® + b® 4+ c?) = 6 (a® + b® + c%);
3°10 (a” 4 b" 4 ¢") = 7 (a® + b* + c?) (a® + b® + cP).

27. Given 2n numbers: a4, a,, . . ., a,; by, bs, . . ., b,. Put

b1+b2+...—|—bn=8n.
Prove that
atby + azby + . . .+ a,b, = (a1 — ag) s + (a2 — a3) s+
o+ (@noy — ay) Spot + ags,.
28. Put

S.

@G+ a4 ...+ a, =

I

Prove that
(s—a) 4+ (s—a))’+ oo. + (s—a,)? =
=al+ a4+ ...+ an
29. Given a trinomial A% 4 2Bzy 4+ Cy2.
Put
r=oazr + By, y=vz"+ 8.
Then the given trinomial becomes
A’z + 2B'x"y" + C'y'2
Prove that
B'* — A'C" = (B* — AC) (ad — fvy).
30. Let
p;i+qg=1 (i=1,2,...,0n)
and

p= P1+P2+n-~+Pn . q=

Prove that

P1q1+ P2q2+ - - - + Pngn=npg —(py— p)*—
—(p2—p)?— ... —(pn—Dp)%.

qGt+aq+..-.+qn
n
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31. Prove that
1 1

T"zn—1+T’2n—3 +- +2n—1 T=
1 1
(e g

32. Let sn=1—l——%--|—%+- +-—1—

Show that
o 1 2 n—1
1 Sn:n—(~—2~—|—?+...+ " ),
—1 1
2 msp=nt (S5 gty )
33. Prove the identity
1 1 1 1 1 1 1
—rt Tt tmom T wr et et
1
+2n
34. Prove
1 1 1
(145=) (1 -5 ) (1 + 5 ) X - X
1 1
X(1+ 2n—1)a—1 )(1—2na—-1)=
(n+1)a (n+2)a (n+n)a
ntha—1 '~ F+2a—1 " (ntn)a—1

35. Let [a] denote the whole number nearest to o which
is less than or equal to it. Thus, [a] < a < [a] 4 1.
Prove that there exists the identity

[x]+[x+%]+[x+—i—]+ +[
36. Prove that

cos (@ 4+ b) cos (a — b) = cos? a — sin? b.
37. Show that
b

(cos a + cos b)? + (sin a + sin b)? =4 cos? a; s

n;—i} = [nz].

(cos a— cos b)? -+ (sin @ — sin b)? = 4 sin? 2~ a—b
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38. Given
(1 4+ sina) (1 4 sinb) (1 4 sinc¢) = cos a cos b cosc.
Simplify
(1 —sina) (1 — sin b) (1 — sin¢).
39. Given

(1 4+ cosa) (1 + cosfP) (1 + cosy) =
= (1 —cosa) (1 —cosf) (1 — cosy).
Show that one of the values of each member of this equal-
ity is
sina sin P sin y.
40. Show that
cos (@ + P) sin (@ — B) + cos (B + y) sin (B —y) +
+ cos (y + 8) sin (y —98) + cos (8 + @) sin (§ — a) = 0.
41. Prove that
sin (a + b) sin (¢ — b) sin (¢ + d) sin (¢ — d) +
+ sin (¢ 4+ b) sin (¢ — b) sin (d + a) sin (d — a) +
+ sin (d + b) sin (d — b) sin (a + ¢) sin (a — ¢) = 0.
42, Check the identities:
1° cos (B + y — @) - cos (y+ & — B) +
+cos(e+ P —1vy) + cos(a+ P + y) = 4cos acos P cosy;
2°sin(@ 4+ B+ y) + sin(p+ y— ) -+ sin (y+a—f)—
— sin (@ + B — y) = 4 cos & cos P sin y.

43. Reduce the following cxpression to a form convenient
for taking logarithms

sin (A4 -+ +sin (B 4-) +sin (C+5)+

o4 o (52 5) 044
it A4+ B+ C=nm
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44. Reduce the following expression to a form convenient
for taking logarithms

. A . B . C A B C
sm-z-—l—smT-l—sm-[;——|—cosT—|—cosT+cosT

if A4+ B+ C=n.
45. Simplify the product

cos a cos 2a cos 4a . . . cos 2" 1q.
46. Show that

% cos 22 cos % cos 4% cos 2% cos ST cos 1% = (1)
C0S 15~ C0S &~ 15 15 008 5 C0S7x OSE"(z) .

47. Given sin B=—¢sin (24  B).
Prove that
tan (4 + B) :-%tan A.

48. Let A and B be acute positive angles satisfying the
equalities

3sin?4 4 2sin?B =1,
3 sin 24 — 2 sin 2B=0.
Prove that 4 4 2B = g
49. Show that the magnitude of the expression

cos® ¢ + cos? (a + @) — 2 cos a cos @ cos (a + @)

is independent of ¢.

50. Let

a = cos ¢ cos + sin ¢ sin P cos §,

a’ = cos @ sin{p — sin ¢ cosP cos 6, a” = sin @ sin §;

b = sin ¢ cosp — cos ¢ sin P cos §,

b’ = sin ¢ sin{ -+ cos ¢ cos P cos §, b” = —cos ¢ sin §;
¢ = —sinysind, ¢ = cosyPsind, ¢” = cosd.
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Prove that
a4+ a*+a”=1, b 4+ 024+ 5" =1,
24’24 ¢ =1,
ab+ a'b’ 4+ a"b" =0, ac+ a'c’ + a"c" =0,
be + b'¢’ + b"¢" = 0.

2. RATIONAL FRACTIONS

Transformations of fractional rational expressions to be
considered in this section are based on standard rules of
operations with algebraic fractions.

Let us draw our attention only to one point which we have
to use (see Problems 15, 16, 17). If we have a first-degree
binomial in z

Az + B

and if we know that it vanishes at two different values of x
(say, at £ = a and = = b), then we may state that the
coefficients A and B are equal to zero. Indeed, from the
equalities
Aa+ B =0, Ab+ B =0 (*)
we get
Aa—0b =0

and since ¢ — b 5= 0, then A = 0. Substituting this value
into one of the equalities (+), we find B = 0. Similarly,
we may assert that if a second-degree trinomial in x

Axz* + Bx + C
vanishes at three distinct values of z (say, atz = a, z = b

and r ==c¢), then A =B =C = 0.
Indeed, we then have

Aa®+ Ba+ C =0, Ab¥®*+ Bb+ C =0,
Ac* + Be 4+ C = 0.
Subtracting term by term, we Hhave
A@—b)+ B(a—b) =0, A (a® — c® + B (a — ¢)=0.
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Since a — b%0, a —cs%0, we have
A@+bd+B=0, A(@+c¢)+ B=0.

Hence A = 0 (since b — ¢ 5= 0), and then we find B = 0
and C = 0.

Analogously, we can show that if a third-degree poly-
nomial

Ax® + Bx* + Cx+ D
vanishes at four different values of z, then
A=B=C=D =0,

and, in general, if an nth-degree polynomial vanishes at
n + 1 different. values of z, then its coefficients are equal
to zero (see Sec. 6).

Finally, considered in this section are a number of pro-
blems pertaining finite continued fractions. We take as
known the information on these fractions contained usually
in elementary textbooks.

The principal trigonometric relations used in solving
triangles are also taken here as known.

1. Prove the identity

s, PP—2¢%\3 28 —¢%\3 | 3
P=(p p3+q3) +(q BT )"+
2. Simplify the following expression

(p—li—q)“(—;_s"'_?i?)“l_ (qu)4 (_;74_%) T (p—ltiq)" (%_*_%)'
3. Simplify

(1741—11)3 (%—qi_‘) + (qu)‘ (7-%_7113_)_*'

2 1 1
+ (p+49) (72__717)'
4. Let

Prove that
A+2)(1+y(I+2)=(1—2)(1—y) (1 —2).



2. Rational Fractions 17

5. Show that from the equality
(@a+b+tc+d)y(@a—b—c+d)=(@—-btc—d)(a+b—c—d)

follows
b

a
c  d°

6. Simplify the expression

az2 -+ by? -+ cz2
be (y —2)%+-ca (z—x)2+ab (z—y)?

if
ax 4 by +cz=0.
7. Prove that the following equality is true

22y222 (e2—a?) (y2—a?) (2—a?) | (22—02) (y2—b2) (22— b2) _
a2b2 a2 (a2 — b2) + b2 (b2 — a2) =

= 2 -{—yz-{——z"’—a"—b"".

8. Put
ah 0 bk + ck
(a—b) (a—c) T (b—a)(b—) (c—a) (c—b)
Prove that
Se=8;=0, S,=1, S3=a+4b+c,
Sy=ab+ac+ bc 4 a®+b* -+,
S5 =ad+ b® + c3+4-a*b+b*a-}c?a +- a’c + b + ¢*b + abe.

=8,

9. Let
ak bk
(a—0b) (a—c) (a—ad) + (b—a) (b—c) (b—4d) +
+ (c—a) (c—b) (c—d) + d—a)(d—b)(d—c) °k
Show that
S():S‘:Sz:O, S3:1, S4=a+b+c+d.
10. Put
Gm=am(a+b) (a+'—‘)_|_bm(b+c) (b a) m(c+a)(c+bd)

(a—1b) (a—c) (b—c) (b—-a)+c (c—a)(c—b)*
Compute 0y, 0,, 03 and o4
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11. Prove the identity

(a—a)(@a—P) (a—1y)
be @—b)a—0) +ca

(b—a)(b—B)(b—V) |
(b—a)(b—c) T

(c—a)(c—PB)(c—v) __
+ab —a e—b) = abc —afy.

12. Show that
a2b2¢2 a2b2d?
(a—d) (b—d) (c—a) + (a—c)(b—c) (d—c) +
a2c2d2 b2c2d2
+ (@a—b) (c—b) (d—b) T b—a)(c—a)(d—a)
= abc + abd + acd + bed.

13. Simplify the following expressions

o 1 1 1
1 a(a—b)(a—c) + b(b—a)(b—c) + c(c—a)(c—b)’
° 1 1 1

2 a2 (a—b) (a—c)+ b2(b—a) (b—c) t (c—ay(c—b)

14. Simplify the following expression
ak. bk
@he—ae—a T t—at—ae=8 T

ck

+ (c—a)(c—=b)(x—c) ’

where k=1, 2.
15. Show that
b-+c+4d c+d+a
oo —0@—aG—a T c-hHE@—h@e—v@E—h T
d+a+b + a+b+4c _
) (a—d) (b—d) (c—d) (z—d)

+ (d—e)y(a—c)(b—c) (z—c

. r—a—b—c—d
T (z—a)(z—=b)(x—c)(z—d) *

16. Prove the identity
(x—c) (x—a) (x—a)(z—0b)
—at—a " T acn — %

(r—b) @ —0)
e he—o TV

17. Prove the identity

c)(x—a) | (z—a)(z—0D)
@5 @—0) + =1

¢)(b—a) ' (c—a)(c—b)
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18. Show that if a+b--¢c=0, then

a—b b—c c—a c a b
( c + a + b )(a—-b+b—c+c—-a)=9'
19. Simplify the following expression
— (a—b) (b—c)(c—a)
at+b + b+t-c + c+a + (a--b) (b+c)(c+a)
20. Prove that
b—c¢c c—a a—b
@ he—o T t=o6—a T =0 (c*b)
2 2
—b + b—c + c—a

21. Simplify the following expression

2 —ac c2—ab
e AR Ea Tk
22. Prove that
dm (a—b) (b—c)+-bm (a—d) (c—d) _ b—d
cm(a—b) (a—d)t+am(b—c)(c—d)  a—c
at m=1, 2.
23. Prove that

{1—f oo  se—ade—a)

AyAg A 03

+(__1)n_.‘l:(-‘ll-—(l‘) (z—ag) ... (r—an_1) } <

AgX20%3 -+ - Qp

x {1 +Z+2Eta) (e ap (s o) ——

[e21e ) Aqal3

+ z(zta)(@tas) .- (@tany) | _

A3 -+ Op
. z2 z2 (22 —a})
B B = R
22 (22—a}) ... (22—al_)
+(—1)n 2ol o2
faf ... al
24. Given
b2 42— a2 2} a2 —p2 a2 4 b2 c2 {

2bc 2ac 2ab
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Prove that two of the three fractions must be equal
to 41, and the third to —1.
25. Show that from the equality

1 .01 1 1
Tty o= 2] blec

follows
1 1 1 1
T T T e
if n is odd.
26. Show that from the equalities

bz--cy _ cx<4az _ ay - bz
z(—azxt+bytcz) = ylax—bytcz) z(ax+by—cz)

follows

z . y N z
a(b24-c2—a2) ~ b (a2-4-c2—b2) ~  c(a24b2—c2) °

27. Given

a+p+v=0,
at+b+t+c=0,
FHerT-o
Prove that
aa® -+ Bb% +yc?=0.
28, If

@8+ b5 46 = (b+¢) (a+) (@+b)
and
B*+ct=—a)yr=(P+a*—b) y=(a®+b*—c?)z,
then
B4y 42 =(z+y) (z+2) (y+2).

29. Consider the finite continued fraction

1
@+ - +L
ag + -, 1
.

ap



2. Rational Fractions 21

Put
Py=ay, Qo=1, Pi=au+1, Qi=a
and in general
Pyyy=api1Pyp+ Py,
Qr+1=ar41Qr + Qr-1-

Then, as is known,

P, 1
=t o , (1=0,1,2,3 ).
gyt

Prove the following identities
o Pnisg Pn_y —_ Qn+2 _ QOn-1 .
1 ( Pn —1)(1—Pn+i)_( Qn —1)(1 Qn+l )’
o Pn P __ 1 (=11,
2w et e

3° PrypQno— P 5Qni2 = (@n+2an418n + ansg+ an) (— 1)11;

P 1
4° L
Ppy nt an-q + -

1
'+_1

On___

Qn-1 an+ an—y + - 1
e —.
1
30. Put for brevity
1
ao+';"+ . 1 = (g, @y, ..., An)=—F— Qn
. _+a_n_

and let the fraction be symmetric, i.e.
ay=0an, @A1=0an-4, .- -

Prove that
Pn—l=0n-
31. Suppose we have a fraction
1
B ¢ +'"+ 1

o
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Prove that
P3:+P121+1=Pn—1pn+l+PnPn+2-
32. Let
1
r = —— 1
e+, - o
Tt
R
R
P, P,y .
and let =™ and be, respectively, the last and

Qn Qn-i .
but one convergents of the fraction

T rL
b+ -, 1
. +T .
Prove that
= Pr:Qn+PnPn—l .
Q-?,‘*‘Pnon—i
33. Consider the continued fraction

a
+-L  a
bo -4 b1+_2‘ .
by + -, an,
el
bn

Py=b,, Qo=1, Py=bbi+a, OQi=b, ...
and in general
Py =brys P+ apisPry,
Qr+1 = bp4sQn + ap41Qr-1-
Prove that

—P-l_-___‘ -‘i
Qn b0+b1 +—b2;+.

last
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34. Prove that

r pnti__p
T —— =T
r+1 T
r+1 —-, r
T

(the number of links in the
to n).

35. Prove that
1 1 1
u_“+u_2 “I— PR +u—n:
1 u
ug4 uy

— ul

36. Prove the equalily

€144

ﬂ Qg
by +E+ .
) bn

where ¢,, ¢, ..

Ug+uz —

T by +

continued fraction is equal

u?

n—-1
Up_y+un
C1Coly
coby  + -, C+ Cn_1Cnln

cnbn

., ¢, are arbitrary nonzero quanlilies.

37. Prove the following identities

sin(n4+1)z

sin nx -

10

=2Cc0ST—

(a total of n links);

2° 14 by+bybs+ . .. +bobs . ..

1

_ b
T — 2

b2+1 -

2c05z—2———-cosx — 1
T 2cos z
bn=
b
by +1 —-, b

b
b +1 °
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38. Prove that
1° sina—+sinb+sinc—sin(a4+b+c)=

. . a4db . adc . b4
= 4sin 35— Sin—— sin 5

2° cosa-+4cosb+cosc+cos(a+b+c)=

_ a<b b+c¢ atc
=4cos 5— 008 —5— €08 —— .

39. Show that

sin (a4-b4c¢)
tan a4 tanb 4 tan C— cosacoshoosc — tanatan b tanc.

40. Prove that if A+ B+4C =mn, then we have the fol-
lowing relationships

o ot : oo A B C.
1 smA-{-smB—l—smC—l;cosTcosTCos7,

2° cosA+cosB+cosC=1+4sin%sin-—lzisin%;
3° tan A4-tan B 4 tan C = lan .1 lanBtanC’;

>, A. B A, C B, C _ .,
4 tan - tan - 4- tan - tan o+ tanTtanT_i,

9° sin2A4 4 sin 2B 4-sin 2C = 4 sin A sin Bsin C.

41. Find the algebraic relations between the quanti-
ties a, b and ¢ which satisfy the following trigonometric

equalities
1° cosa+4cosb4cosc= 1+4sin—%—sinfsini;
2° tana+ tan b+ tan c=tan a tan b tan.c;
3° cos?a+4cos?b+cosc-—2cosacosbcose=1.
42. Show that

T y z_ 4xyz
1—22 +1—y2+1——z2— (1—z2)(1—y2)(1—122)

if
zy+zxz+yz=1,
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43. Show that the sum of the three fractions
b—ec c—a a—b
14+bc ° 14+ac ' 1+ab

is equal to their product.
44. Prove that

tan 3 = tan @ tan (—’;-—l—a) tan (%——a)

45. Prove that from the equality

sind costo 1

a + b  a+tb
follows_the relationship
sin8 o cosba 1
a3 b3 (a4b)p

46. Suppose we have
ayCOS 0+ Ay C080s+ ... 4aycosa,=0,
ay cos (4 +0) -+ azcos (ap+0)+ . .. +ancos(an+0)=0
(0 5~ k).
Prove that for any A
a, cos (g -+ A) +ascos (az+A)+ ... +ancos(a, +A)=0.
47. Prove the identity
sin (B—+) + sin (y—a) T sin (@ —p) -0

cosBcosy ' cosycosa ' cosacosP

48. Let in a triangle the sides be equal to a, b and ¢,
and let

s s oo s

r=—=, Te=7—5> V=75 TeT 5%

where s is the area of the triangle and 2p=a-4b+c.
Prove the following relationships

b

o 2 b2 2

1 raa—r + rpy—r + T(:c—‘r =2(ra+rh+re);

o a?r, b2ry c2r, _pr
2 (a—b)(a—c) +(b—c) (b—a) +(c—a)(c—h) — 7
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go _atbte (i.,..,’;__{__%) — 4

retrotre \Ta
¥ et to—ao—a

+ T =T T

+ (b—c)(fz—a) raa T (c~a>(ccz—b) rarb :%;
5 a=he=at (b—cb)rfb%) SRT= e

S T e

(@+dre _p
+ (c——a)(c—c—b) T

49. Prove the identily

sin (@ —c¢) sin (@ —d)

sin(a+b—c—d)= S D) +
sin (h—¢) sin (b—d)
+ sin (b—a)
950. Given
0= a b ¢
CosS b = e’ COS(P——‘m, COS’I.I)— a+b

(0, ¢ and ¢ lie between 0 and m).

Knowing that a, b and ¢ are the sides of a triangle
whose angles are 4, B and C, correspondingly, prove
that

1° tan?® —g--}— tan? —(% 4+ tan? % =1;

2° tan‘—z)tan —g-tan —“2’—=tan %tan —g tan —-.
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51. Prove that

1 1
sin (@ —b) sin (e —c) + sin (b—a) sin (b—c) +
1
+ sin (c—a) sin (c—b) =
. 1
- 9 a—b a—c b—c
€08 —5— C0S —5— €08 —
52, Prove the identities
o sina sin b
sin (a—b) sin (@ —c) + sin (b—a) sin (b—c) +
sinc .
+ sin (c—a) sin (¢ —b) =0;
° cosa 5 cos b
2 sin (a—b) sin (e —¢) + sin (b— a) sin (b—¢) +
cos ¢
+ sin (c—a)sin (c—b) =0.

53. Prove the identities
1° sina sin (b—-c)cos (b+c—a)+
+sinbsin (c—a)cos(c+a—b)+
+sincsin(@—bd)cos(a+b—c)=0;
2° cosasin (b—c)sin(b+c—a)+
~+cos b sin (¢ —a) sin (c+a—b) +
+coscsin(a— b)sin(a+b—c)=0;
3° sinasin (b—¢)sin (b+c—a)+
~+sin bsin (c—a) sin (c+a—>b) +
+sincsin(@a—bd)sin(@a+b—c) =
= 2 sin (b —¢) sin (¢ — a) sin (a —b);
4° cosasin (b—c)cos (b+c—a)+
+cosbsin(c—a)cos(c+a— b)+
+coscsin(a —b)cos(a+ b—c)==
= 2 sin (b—c) sin (c —a) sin (a —b).
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54. Prove that
1° sin® A cos (B —C) —+ sin® Bcos (C— A) -
+sin® C cos (A — B) =3 sin 4 sin B sin C;
2° sin® 4 sin (B — C) + sin® B sin (C — 4) +
+ sin®Csin(4 —B) =0

if A+B+ C =n.
55. Prove the identities

1° sin 34 sin® (B — C) + sin 3B sin® (C — A) +
+ sin 3C sin® (A — B) = 0;
2° sin 34 cos® (B — C) + sin 3B cos® (C — A) +
-+ sin 3C cos® (A — B) = sin 34 sin 3B sin 3C
if A4+ B+ C =nmn.

3. RADICALS. INVERSE

TRIGONOMETRIC FUNCTIONS.
LOGARITHMS

The symbol /' A4 is understood here (if n is odd) as the
only real number whose nth power is equal to A. In this
case A can be either less or greater than zero. If n is even,
then the symbol VA is understood as the only positive
number the nth power of which is equal to 4. Here, neces-
sarily, 4 > 0.

Under these conditions, for instance,

VA =4 if A>0,
VA=—4 if A<O0.

All the rest of the standard rules and laws governing the
operations involving radicals, fractional and negative
exponents are considered here to be known. Let us also
remind of two formulas which sometimes turn out to be
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rather useful in performing various transformations, namely:
= A+ V428 A— VA28
VATVE=) ALVEZE L)/ A-VE-B
—= A+ VA2—B A—VA—B
VA—VB-) AVEZE )/ AV

As far as trigonometric functions are concerned, let us
first of all consider the reduction formulas:

1° The functions sin x and cos x are characterized by the
period 2m, whereas tan z and col xz by the period n so that
we may write the following equalities

sin (z + 2kn)=sin z, cos (z 4 2kn)=cos x,

tan (z + kn)=tan z, cot (x 4- km) = cot z,
where k is any whole number (positive, negative or zero).
2° For the functions sin z and cos z the quantily n isthe
half-period, i.e. the rejection of the quantity -=n in the

argument results in a change in the sign of a function.
Consequently,

sin (z + kn) =(—1)* sinz, cos (x + kn) = (—1)* cos z,
where & is any whole number (positive, negative or zero).

3° The functions sin z, tan z and cot = are odd functions,
and cos x is an even function. Therefore

sin (—z) = —sin z, tan (—z) = —tan x,
cot (—z) = —cot z, cos (—zx) = cos z.
4° If z and y are two quantities entering the relationship

x+y=—g—,

then
cosz = siny, sinzx = cosy,
tan x = cot y, cotx = tan y.

Using these remarks, we can always reduce sine or cosine
of any argument to sine or cosine of an argument lying

in the interval between O and -’—Z— The same can be said
about tangent and cotangent.
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Indeed, any argument a can be written in the following
form

n
=S 7—+

where s is an integer, and 0 << a, << —2—, wherefrom follows
the stated proposition. Let us also mention the following
formulas (k an integer):
sinkn =0, tankn =0, coskn = (—1)%,
kn

sm—z——-O if k is even,
Rt
sm— (—1) 2 if k is odd,
k L3
cos —g=(——1)2 if k is even,
cos 2 =0 if k is odd.

Further, we use the symbol arcsin z to denote an arc
whose sine is equal to x and which lies in the interval

between —% and +%.
Thus, in all cases
——g—garcsin r<g +_nz_ .
Similarly
———;—< arclan x < +% ,
O0<<arccos z<m,
0 < arccot z < m.

In this section we also give several problems on trans-
forming expressions containing logarithms.
1. Prove that

2+V3 2—V3 2
EveeE t v )
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2. Show that

o 3 3 3 %
vV =V o=V 5V 5
2 VY5 —Vh=5 (/2 4+ 20— %)
3° VY B—2 =4 (/98— 2B~1);

1
4o (3+2%/3)”: V5+1
3—2Y5 V5—1'

1

5 r 5 3 5 5 /7 5 :

o 32 27 _I/T I/? I/T

D (l/:—l/;) VstV Vs
1

VTV T
5 5 5
- VE Ve VeV

b ¢ d
Prove that
V Aa+V Bv+4-V Ce +V Dd=

:V(a+b+c+d)(/l+B—|—C+D).
4. Show that

V ax2+by2+cz2=%—|—‘3/_—;—'3/?
if
3 — 3 _— 3 1 1 1_
ar® =by® =cz® and —;—{—;4—?_1.

9. Put
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Show that
Amin = Am@p — '5,:" ’
bmin = ambn + b'" —
6. Let

Un = 15 [( 1+V5 )"_(_1:[,_)] .

at

2

(n=0,1,2,3,...).

Prove the following relationships

10
20
30

Uppt=Un+Un_y;
Un-| = Uplln_p -} Up-1Un-n-1}

2 2 .
Ugn-y =Un +Un-1;

o 3 3 3 .
4° ugn=un+-Unp1—Un_1;

o 4 .
9° Un—Un_pln_1Unsslinge = 1;

o n,
6° Unpilnia— Unlingy = (—1D%

70
7.

,10

20

8.

UnUpyq— Un-glln-y = Ugn-1.
Prove the following identities

L L 4
) T _pIV2

b} =
:a+b—(a2—|—b2)_‘1?(a >0, b>
{31(a® +b3)';'—a] [(a® -I-b“)'_j‘ — b]}_f‘_=
=(a—|—b);Z -(a®—ab+ b?)
Compute the expression

{2[a®+ %) % —a] [(a® +D%)

1 1
(1—az)(1+azx)* (14 bx)Z (1—bx) 2

L
2

r=a"t (2%—1) (0< a<<b< 2a).

0);

L
3,
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9. Simplify the expression

n3—3n+4(n2—1) YV n2—4-—2
n3—3n+4(n2—1) Vr2—4+2

10. Simplify the expression

Vita —a
l'V1»}-a—+V1—a + V1—1a2—1+a ]X

x[]/ %—1——}] 0<a<1).

11. Prove that for z>1
Vx+2l/x——1 +V1—2Vx—1

is equal to 2 if <2, and to 2 xz—1 if z > 2.
12. Compute

Va+b+c+2 V ac + be —|—Va+b-|—c—-—2 V ac+ be
(@20, b>=0, c>0).

13. Prove that the trinomial %+ px + ¢ vanishes at

! 3
_ q ]/qz P ]/ q ]/ ¢ P
=V =tV 7tgt+tV =V T+
14. Express z in terms of a new variable so that }/ z+a

and V xz-+-b become rational.
15. Rationalize the denominator of the fraction

1
Va+ Vo+Ve+Va + Vo + Ve
if
a b ¢
W T Y T ¢

16. Prove that /"2 cannot be represented in the form

p+Vq, where p and ¢ are rational (g>0 and is not
a perfect square).
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17. Prove the following identities
tan (3—g—a) cos (%——a)
cos (21 —a)

10

+ cos (a—% sin (n—a)+4
~+cos (4 ) 8in (a—-—g—) =0);
2° 1 —sin (3n—a)-+ cos 3 Fa)] X

X [1—sin (3—2n——oc) -+ cos (5—2“-—01)] + sin 2a = 0;
3° [1—sin (m+4 ) 4 cos (w4 )2 -
+ [1——-5111 (%{C—J—a) +
-+ cos (%—a)]2=4—2 sin 2a.

18. Let a =2kn +ay, where 0<Coay < 2.
Prove that there exists the following equality

G O ok 1—cosa
sin — =(—1) V ———-

Let us assume then that o=2kn4 o, where —n<C
Ko < .
Show that then
o k 1+cosa
COos ‘—2—' = ( -_ 1) —-—2—'—-— .
19. If a whole number a is divisible by n leaving no
remainder, we shall write this in the following way

a = 0 (mod n)

which is read: a is comparable with zero by the modulus n.
What remainders can a whole number leave when being
divided by the whole number n?

It is obvious, that being divided by n, any whole number
can leave the following remainders

0,1,2,3, ..., n—1.
If as a result of dividing a by n we obtain a remainder £,
then we shall write
a =k (mod n),
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since in this case
a — k=0 (mod n).

Thus, when dividing a by 2 only two cases are possible:
either q is divisible exactly, or leaves a remainder equal to1.

In the first case we write a = 0 (mod 2), in the second
a =1 (mod 2).

The division by 3 can also yield a remainder (0, 1, 2),
and, consequently, only three cases are possible: a =0
(mod 3), a=1 (mod 3), a =2 (mod 3) and so on.

Consider the following problem.

We have

A=1.

Ay =cos nx.

Ajz==2cos (%nn——i% n)

A,=2cos (—%—nn—-%n).

5= 2 COS (—‘::;—nn—%—n)—l—Zcos%nn.

Ag=2cos (%rm——%n).

A,=2005(%nn—T54- )~1—2003(§ n—-%n)—}-

- 2cos($nn—} -7

Ag=2cos (% n—:—ﬁn)—|-2003 (%nn———i%n).

2003(% n—-—14 )—i—2cos(4nn —%n)—{-

-+2cos (%nn—{-%n).

Ajp=2cos (i

3 3
5 nn—-gn) -+ 2 cos = ni.

5
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Au=2cos(—ﬁ-nn—%n)+2cos('1—41-nn—%n)+
+ 2008 (a2 ) 12008 (B ) +
Jrzczos(%’-nnT > n)

A =2cos (gnv——z 1) +2cos (g rm-t =5 )

Ay =2 cos (nm o %) +2cos (g nn—z ) +

3
+2005(%nn—%n)—l—.?cos(%nn—l—%n) 4
+2cos 12 nn--2 cos (%nnqtf—?)n).
Ay =2cos (—;—nn—%n) ]~2cos(3nn 134 )+

S 3
1 9cos [= -
{Hcos(ﬂm 14 n).

A15—200@(15 )4—2(*,05,(14r —%n)-,{-
—|—2cos(185 10 n)—{—-2cos(;[§nn% ! n).

A= 2cos (%nn—l— T )+2c05(3nn -+ 3; n) -+

+ 2 cos (§nn+§n) +2cos(%nn—|—%n).

—|—2cos(%nn rn)—{Zgos —_—
s (o) 2o n )
+2°°S(:§ 11_7”)+2cos(17”“+17 )

Ag=2cos (%nn—l—ﬁ n) -+2cos (%nn—% n) -+

—|—2cos(-;—nn-+—_227n).
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Prove that
As; =0 if
A; =0 if
Ay =0 if
Ay =0 if
A3 =0 if
Ay, =0 if
A =0 if
Ay =0 if

=1, 2 (mod 5),
n=1, 3, 4 (mod 7),
n=1, 2 (mod 5),
n=1, 2, 3, 5, 7 (mod 11),
n=2,3,5, 7,9, 10 (mod 13),
n=1, 3, 4 (mod 7),
n=0 (mod 2),
n=1, 3, 4, 6, 7, 9, 13, 14 (mod 17),

and that Az, A3, AI‘, Aﬁ, Ag, Ag, A127 x‘115 and A18 never
vanish for any whole »n (S. Ramanujan. Asymptotic formulae
in combinatory analysis).

20. Let

p(n)=A{n+-3)*4 B4 C(—1)"+ D cos —21;& (n an integer).
Prove that there exists the following relationship

pm)—pr—1)—pkr—2)+phr—4+

+p(n—5)—p(@—6)=0.

21. Show that

1° sin 15° =

2° sin 18° =
22. Show that

sin 6° =

cos 6° =

Ve~ 1/2, cos 19° — VH Ve,

b

;1%1&, cos18°-_V1o+2V5

V'30—61/5 —]/ 6+2V5

V18+6 V5 +V1o_21/5
)

23. Show that
cos (arcsin z) =)/ 1—z2, sin (arccos z) =} 1—z2.

tan (arccot z) = % , cot(arctanz)= e

1
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1 . T
cos (arctan r) = ————, Sin(arctanz) = ————.
( ) Vi + z2 ( ) Vi -+ z2
z . 1
cos (arccot ) = —————, sin(arccot ) =——=— .
( ) VIita? ( ) Vitat
24, Prove that
arctan z -}- arccot r = z , arcsinx - arccosx = I,
2 2

25. Prove the equality

z,
arctan x4 arctan y = arctan 1_I—Iyy

+ em,
where e =0 if ay <1,
e=—1 if ay>1 and 20,
e=+1 if zy>1 and z>0.
26. Show that 4 arctan —;——arctau %:% .
27. Show that arctan —%— - arctan %4— arctan %+

1 7
- arctan =%

28. Show that 2arctan x4 arcsin 1—%%—2— =n (x>1).
29. Prove that

arctan z -+ arctan % = —g- if >0,

arctan x+arctan-:7= -% if z<<0.

30. Prove that

arcsin z - aresin y=narcsin (z )/ 1—y*+y )V 1—2% +en,

where n=1, e=0 if zy<0 or 224 y2<1,
n=—1, e=—1 if #4+p*>1, z2<0,y<0,
n=—1, e=41 if 24y2>1, z2>0, y>0.
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31. Check the equality
arccos z + arccos ( % + % V3= 33;2) ="
if
1
-—2~<I< 1.
32. 1f

!
A= arctan% and B =arctan T

then prove that cos 24 =sin 4B.
33. Let a*4+b%2=Tab.

Prove that
log a;b =—;—(loga—{—logb).
34. Prove that -T(%iim%— =1+ log, m.

35. Prove that from the equalities

z(ytz—z) _ y(ztz—y) z(z+y—12)
log z logy - log z

z

follows aV.y*=2zY.y* =a".2%.
36. 1° Prove that log,a-log,b=1.
2° Simplify the expression

log(log a)
a loga

(logarithms are taken to one and the same base).
1 1
37. Given: y=101-logx  z=101-lcev (logarithms are
taken to the base 10).
Prove that

1
x=101-logz

38. Given.
ad 4+ b= 2.
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Prove that
logyica +loge_a=2log.y,alog., a.
39. Let >0, ¢ >0, b=}ac, a, ¢ and acs=1, N > 0.
Prove that
log, N log, N--logy, N
loge N logy N —logc N °
40. Prove that

1 I = 1
08a,a,...a, L= 1 1 1

+ o+
B log(,nz

log, = T log,, =
41. Given a geometric and an arithmetic progression
with positive terms
@, Ay, Ay « o oy Ay, -« o o)
b, by, by ...y by, o
The ratio of the geomelric progression and the common

difference of the arithmetic progression are positive. Prove
that there always exists a system of logarithms for which

log a, — b, = loga — b (for any n).
Find the base ﬁ‘of this system.

4. EQUATIONS AND SYSTEMS
OF EQUATIONS
OF THE FIRST DEGREE

The general form of a first-degree equation in one un-

known is
Az + B =0,

where A and B are independent of z. To solve the first-
degree equation means to reduce it to this form, since then
the expression for the root becomes explicit

5
-

T = —
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Therefore the problem of solving the first-degree equation
is one of transforming the given expression to the form
Az + B = 0. In doing so great attention should be paid
to make sure that all the equations involved are equivalent.
The problem of solving a system of equations also consists
to a considerable extent in transforming a system into
an equivalent one.

This section deals not only with equations of the first
degree in the unknown z, but also with the equations which
can be reduced to them by means of appropriate transforma-
tions (such are equations involving radicals, trigonometric
equations and ones involving exponential and logarithmic
functions). Here and in the following section we consider
a trigonometric equation solved if we find the value of one
of the trigonometric functions of an expression lincar in z.

Indeed, if it is known that

tan (mx + n) = A,
then we find
mx -+ n == arctan A -}- km,

where k& is any integer.
Consequently, all the required values of z are given by
formula
arctan A—n - kn
m :

Likewise, if it is found that
cot (mx+n)= A4,
then

mz 4 n =arccot A -+kn and xzw .

m

But if it is known that
sin (mz + n) = A4,

then all the values of z satisfying the last equation are
found by the formula

mz 4+ n = (—1)* arcsin 4 + k=,

where k, as before, is any integer.
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Analogously, from the equation
cos (mx + n) = A
follows
mx 4- n = +-arccos 4 + 2km.

When solving exponential equations one should remembe
that the equation

a =1 (a>0 and is nol equal to 1)
has the only solution z = 0.

1. Solve the equation

xr—ab r—ac

a-t+b + a- ¢

+ ‘T[;"CC =a-+tb+ec.

2. Solve the equation

x—a+1~—b+1—c=2(%+

he ac ab

+7)

G'I»-s

3. Solve the equation

6x+ 2a+43b ¢ _ 2r406atb+3c
6z+-2a—3b—c - 2z-4-6a—b—3c”

4. Solve the equation
at+b—z

4

atc—x b4c—=x dr
+ b + a + at-b+tc =1.

b. Solve the equation
Y Y
b + z =" a
/ 6. Solve the equations
i 1° Vatti+Vz—1=1
Va+l=Va—1=1
7. Solve the equation '

VatVe+V a—Vz=b.
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>< 8. Solve the equation
Vl—]/ H—2t=z—1.

9. Solve the equation

V’Eﬂ/m_‘/g

Vat+Vz—a

10. Solve the equation

VimtVis g a0,

Vatz—Va—z
11. Solve the system
z+y+z=a
z+y+v=>
x+z4+v=c
y+2z+v=d.

12. Solve the system
z 4 xp + z3 + 2, = 2a4
T+ xy — 23 — x4 = 2a,
T — xy + T3 — x, = 2a;3
Iy — Ty — x3 + 2, = 2a,.
13. Solve the system
ax+m{y+z+v)==k
by+m@Ex+z+v)=1
cz+m(x+y+v)=p
dv+m(x+y+12) =q.
14. Solve the system
3 —ay _ Ta—ag Tp—ap
my mg T my

x1+$z+ .o .+.'L'p=a.
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15. Solve the system
1 1 1
Trytz=e
1,1
7+?_‘—7 =b
1 1 1
CRErRriak
1 1 1
7+7+7:d-
16. Solve the system
ay + bx = ¢
cx + az = b
bz + cy = a.
17. Solve the system
cy -+ bz = 2dyz
az + cx = 2d'zx
bx + ay = 2d"zy.
18. Solve the system
Ty . Xz . .
iz O aatex ' ity ¥
19. Solve the system
ytz—az="5
z+x—y=%
r+y—z= % .
20. Solve the system

if

b+e)ly+2 —ax=>b—c
c+a)(z+2)—by=c—a
a+b(z+y)—cz=a—0>

a+ b+ c50.
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21

if

22

23

24

25

26

. Solve

the system

c+ay+@+bdz—(b+c)z =23
(@a+b)z+(b+¢c)x —(c+ a)y = 2V°
b4de+(C+ay—(atb)z=2

. Solve

. Solve

. Solve

. Solve

. Solve

b4¢#£0, at+c#0, at+b%0
the system

x y z
at+A + b--A + c+A =1
z y_ .,z
T
x Yy K4 .
a—{-v+b+v+c—|—v =1
the system

z-ay+atr+a® =0
z24+by+ b2+ 00 =0
z+cy+cix 42 =0.
the system
z24+ay+a’z-+adt+at=0
z24+by -+ b2z b3 +b2=0
z24cy+-ctxt+cdt+ct=0
z2-+dy--d*x+dt+d*=0.
the system
r4+y+z4u=m
ar+by+cz-+du =n
atx LWyt diu =k
adx+ by +cz+ddu=1.
the system
z,+ 22,4+ 325+ ... +nz, =ay
Zo+2x3+3x,+ ... Ry =a»

Tn+ 22+ 32+ ... +nra=a,.
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27. Solve the system

Ty—xy — Tz3— ... —ITpn=2a

— x4+ 3ry— 23— ... —Z,=4a

— &y — To+Tr3— ... —rn=2=8a
—r— Zp— Zz— ... +(2"—1)z,=2"a.

28. Solve the system
R N N I
L +x3t oo Xy =2
i+ 2o+ T+ oo Tn =

T+ 2o+ .. - Tpg=n.
29. Show that for the equations
ar + b =14, az+ b =0.
to be compatible it is necessary and sufficient that
ab’ —a'b = 0.
30. Show that the systems
ar + by +c¢c=0
adzx+by+c =0
and
lax+by+c)+ 1 (a'x +by +¢)=0
~m(ax+by+c)+m' (ax+b'y+c')=0
are equivalent if
Im' —1U'ms=0.
31. Prove that the system
ax+by 4+¢ =0
az+by+c =0
has one and only one solution if
ab’' —a’'b 0.
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32. Prove that from the equations
ax-+by =0
a'z+b'y=0,
if ab’—a'bs%0, follows
z=y=0.
33. Show thal the following three equalions are compatible
ar+by +c¢ =0,
ac+by+c =0,
a'rz - by4c'=—=
if a” (bc’" — b'¢c) + b" (ca’ — c'a) + ¢” (ab’ — a’b) = 0.

34. Let a, b, ¢ be distinct numbers. Prove that from
the equations:

z -+ ay + a%* = 0,
z - by + b%z = 0,
z+cy 4 %2 =0
follows
z=y=12=0.
35. Prove that from the equations
Az+ By +Cz =0,
Az 4By +Ciz=0
follows

T y z

Ci;B—CB;  CA;—C,A = AB,—A;B

if not all of the denominators are equal to zero.
36. Provethat the elimination of z, y, z from the equations

ar + cy + bz =0,
cx - by + az = 0,
bx +ay +cz =0

yields
a’ -+ v+ ¢ — 3abe = 0.
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37. Given the system

Tri=h(14g)
F-i-3(1-9)
Sri=e(1-4)
oot

Prove that the equations are compatible and determine z,
y and z.

38. Determine whether the cquations of the system

(@a+b)r 4 (ap bg) y = ap®+ bg?
(ap~+b) &+ (ap*-+bg*) y=ap®-- bg*

(aph_]_ + bqﬂ—l) x _’“ ((,l[)h 7‘_ bqh) y =a])k+l __*__ bqh+l

are compatible.
39. Solve the system
T+ 2 =ay
Tyt a3 =a
Ly b o, =ag

Tnoy |- &n=dany

In+ Ty =an

40. Solve the system
r+y+2z2=0

ar by | %
a—d + b—d 1 c—d =0

b
af'fd 4 b_”d +-—Z=d(a—0b) (b—c) (c—a).
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41. Solve the system

t+a+)=@@—nl-10
W+bd@E+m=0-0)(m—c¢
(z+e)(@+n =(—m)(n—a).
42. Determine k for the system
z+ A +ky=0
A—kzxz+ky=1+k%
A+RHz+A2—Ky=—1+k
to be compatible.
43. Solve the system
z sin a + y sin 2a + 2 sin 3a = sin 4a
zsin b + y sin 2b + z sin 3b = sin 4b
z sin ¢ + y sin 2¢ + z sin 3¢ = sin 4c.

44. Show that from the equalities

a b c

sind _sinB _ sinC ' A+B+C=n
follows
a=bcosC + c cos B,
b=ccosAdA + acos C,

¢c =acosB 4+ bcos A.

45. Show that from the given data
a =bcosC + c cos B,
b=ccosA + acos C,
¢c =acosB -+ bcos A,

0<A<n, 0<B<n O0<C<na a>0,

b>0, ¢>0,
follows
a b 4

= and A+4+B+4C=nm.

<ind _sinB_ sinC
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46. Given

a =bcosC -+ ccosB a® = b% + ¢ — 2bc cos.A

b=ccosAd +acos C (1) b2 = a® -+ ¢ — 2ac cos B (2)

¢ =acosB + bcos A 2 =a%+ b — 2abeosC.

Show that systems (1) and (2) are equivalent, i.e. from
equations (1) follow equations (2) and, conversely, from

equations (2) follow equations (1).
47. Given

cosa = cos bcosc -+ sin bsinc cos 4,
cos b = cos a cos ¢ -+ sin a sin ¢ cos B, ()
cos ¢ = cos a cos b 4 sin a sin b cos C,

where a, b, ¢ and 4, B, C are between 0 and =.
Prove that
sinA  sinB sin C
sine  sinb _ sinc °

48. Prove that from the conditions of tne preceding
problem follows

1° cos A = —cos B cos C - sin B sin C cos a,
cos B = —cos A cos C - sin 4 sin C cos b,
cos C = —cos A cos B + sin A sin B cos c;

2° tanie~]/tan—1itan P—% tan p_bltan P—c

5 2 2 2 2

if e=A+B+C—mnand 2p =a--b + c.
49, Solve the equation
(b — o) tan (r + @) + (¢ — a) tan (z + B) +
+ (@ — b) tan (x + v) = 0.

50. Prove that sin z and cos z are rational if and only if

tan% is rational.

51. Solve the equation
sint z 4- cos*z = a.
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52. Solve the following equations
1° sin z + sin 2z + sin 3z = 0;
2° cosnz + cos (n — 2) £ — cos z = 0.
53. Solve the equation
1° m sin (@ — z) = n sin (b — z);
2° sin (z + 3a) = 3 sin (@ — 2).
94. Solve the equation
sin 5z = 16 sin® z.

55. Solve the equation

sin z 4+ 2 sin z cos (a — z) = sin a.
56. Solve the equation

sin z sin (y — z) = a.

57. Solve the equation

sin (@ + z) + sin @ sin z tan (@ + z) = m cos a cos z.

58. Solve the equation

cos?® a + cos® z + cos? (@ + z) = 1 + 2 cos a cos (a-+z)

59. Solve the equation

(1 —tanz) (1 + sin 2z) =1 + tan z.
60. Show that if

tan z + tan 2z + tan 3z + tan 4z = 0,

then either 5z = kx, or 8 cos 2z =1 + V' 17.
61. Given the expression

ax?® + 2bzxy + cy?.
Make the substitution

z = X cos 6 — Y sin 0,
y = X sin 6 4+ Y cos 0.
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It is required to choose the angle 0 so that to ensure the
identity
ax® + 2bxy + cy® = AX? 4 BY?.
62. Show that from the equalities
x 4

_ Y
tan (0+ o) ~ tan(04-B) ~ tan (0-+7)

follows

S sin? (@ — )+ L2 sin? (B —v) + 2
63. Solve the systems
1° sinz _ siny _ sinz

a b ¢

: sin?(y—a)=0.

Trytz=m
90 tanz  tany  tang
a T b T ¢
z+y-+z=m.
64. Solve the system

tanrtany=a
z+y=2b.
65. Solve the equation
1

PP B P
66. Find the positive solutions of the equation
¥ =1,
67. Solve the system
a*b=m
z+y=n(@>0,b>0).
68. Solve the system
¥ =y*
a*="b".
69. Solve the system
( ax)log ° — (by)°e
blog x alog v,
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70. Solve the system
2=y
" =y".

5. EQUATIONS AND SYSTEMS
OF EQUATIONS OF THE SECOND DEGREE

The present section contains mainly problems on solving
quadratic equations and using the properties of the second-
degree trinomial.

It should be remembered that if the roots of the trinomial
ax® + bx + c¢* are imaginary, then this trinomial retains
its sign at any real values of x. As is easily seen in this
case the sign of the trinomial coincides with that of the
constant term (i.e. with the sign of ¢). Thus, if ¢ > 0 and
the roots of the trinomial azx® + bz - ¢ are imaginary, then

ax! +bx+c¢c>0

for any real z.

When solving systems of equations the following proposi-
tion should be taken into account. Lel a system of m equa-
tions in m unknowns be under consideration, the degrees
of these equations being, respectively,

T T

Then our system, generally speakmg, allowsforkik,. . . k,,
solution sets. To be more precise, the product of the degrees
of the equations is the maximal number of solutions.
Sometimes this limit is reached (see Problem 23), but some-
times it is not. Nevertheless, this proposition is of impor-
tance, since it prevents the loss of solutions.

1. Solve the equation

b b b b
22 ((zi;))((;j-_g +p? tbtgéb—{_z) e (C+2§z +b) = (b+c)2.

* In this section the letters a, b, ¢, p, ¢ and other constants in
the equations denote real numbers.
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2. Solve the equation
ad(b—c)(x—b)(x—c)+ b (c—a)(z—c)(x—a)+
+c(a—b)(z—a)(z--b)=0

and show that if the roots of this equation are equal, then
exists one of the following equalities

1 1 1

+ e — =0,
Va ™ Vb~ Ve
3. Solve the equation
(a—zx) '[/a—:t——(b—x) Vz=b
—= =a—b.
'[/a—.z-[—'[/z——b

4. Solve the equation

Via+b—5z+Vib+a—5z—3 V)V a+b—2z=0.

5. Prove that the roots of the equation

G—a@—+re—b@—d =0
are real forany A if a<<b<<c<d.

6. Show that the roots of the equation
z—a)z—b+@x—a)(z—c)+(@—>b(x—c) =0
are always real.

7. Prove that at least one of the equations

z» + pz +4¢q =0,
z? + pix+q =0
has real roots if p;p = 2 (¢4 + ¢).
8. Prove that the roots of the equation
alz—b@x—c)+bxz—a)(z—c)+
+c(xz—a)(x—b=0

are always real.
9. Find the values of p and ¢ for which the roots of the

equation
z? + pzr+q=0

are equal to p and g.

10. Prove that for any real z, y and z there exists the
following inequality

24+ Yy 4+ 22—y —az— yz >0.
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11. Let

r+y+z=a.
Show that then

2y >y
12. Prove the inequality
z+y+1<V 3@+ P+ ).
13. Let @ and P be the roots of the quadratic equation

z* + pz + ¢ = 0.
Put a* + B* = s,.

Express s, in terms of p and ¢q at k = +1, +2, +3, +4,
+5.

14. Let a and P be the roots of the quadratic equation
224+ pr+qg=0 (>0, p=>0).

Express 3/ a3/ P interms of the coefficients of the equation.
15. Show that if the two equations

A2 +Bx +C =0, A'2>+ B’z +C"' =0
have a common root, then
(AC' — CA'? = (AB' — BA') (BC' — CB’).
16. Solve the system
z(x+y+2) =a
y@+y+z2 =20
z2(x +y + 2 =ct
17. Solve the system
z@+y+iz=a—yz
y+y+2=>b—a
z2z+y+2 =c—ay.

18. Solve the system
y+2z+z=a(y+ 2)(z+ )
z+2y+z=0b0+y (@=+y
z+224+y=c(y+ 32 (x+ 2).
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19. Solve the system
y+z+tyz=a
r+z+axz=0
z+y+ay=c
20. Solve the system
Yz = ax
zx=by (a>0,b>0, ¢c>0).
zy = cz
21. Solve the system
22 4 y? = crys
2 4 2 = bayz
Yy + z* =axysz.
22, Solve the system
z(y +2) =d
y( +12) =0
z(x+y) =
23. Solve the system
2% = ax + by
y® = bz + ay.
24, Solve the system
22 =a+ (y — 2)?
y'=b+ (z —2)?
2= ¢+ (x — y)%
25. Solve the system

b(x+y) + c(z- z)
z+4y-+cxy
c(y+32) afzty)
y+z+tayz + z+ytezy
a@+s) | _by+3)
z+z4+bzz ' y+atays

z+2 baz = ¢

=C.
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26. Solve the system
2 —yz=a
y:—2a2z2=5>
22 —zy =c.
27. Solve the system
yP+2—@W+az
2422 —(x+2)y
24+ yy—@+yz=c
28. Solve the system
2+ 4 2y =
22 + 2 4+ 2z = b?
¥+ 22+ yz = a.
29. Solve the system
B4+ D=
2t + y? + 22 = a?
x4y +2 =a.
30. Solve the system
oyt 2t ut =t
2+ +2+u=a
2 4y + 22 + u? = a?
z +y +2 +u =a.

31. Prove that systems of equalities (1) and (2) are equi-
valent, i.e. from existence of (1) follows the existence of (2)
and conversely.

a® +b% 4¢c* =1, aa’ +bb +cc’ =0,
a?+b24-c"?=1, a'a" bV +c'c"=0, (1)
a?+b"?4c" =1, aa" + bb"+cc” =0;
a®* +a'?*+a"=1, ab+a'd’' +a"d" =0,
b b2 40" =1, be4-b'c’ +b¢" =0, 2)
¢d 4+t 4" =1, ca+c'a’ +c"a" =0,

l
8

Il
o
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32. Eliminate z, y and z {rom the equalities

22(y+z)=a®, YP+2z)=b, 2@ty =c, zyz=abec.

33. Given
z z x x 1/
l—-—-:a’ -——-——Zb, ——"'L:C.
z y T z y z

Eliminate z, y and z.
34. Eliminate z, y, z from the system

Y2+ 22 — 2ayz =0
22+ 22 — 2bxz = 0
2?2 4+ y* — 2cay = 0.

35. Show that the elimination of z, y and z from the system
V¥ +yz+ 2 =a
22 + xz + 2% — b?
z? +zy + 4 = c?
2y +yz 4+ 22 =0
yields
@+b+c)b+c—a)la+c—0>b)(a+ b—c)=0.

36. Eliminate x and y from the equations
22+ yt=0b, 22+ yt=c

X "{— Yy =a,
37. Eliminate a, b, ¢ from the system
z Yy 2
2T b ¢
a®+ b2+ c2=1
a+b+c=1.
38. Given
z y z
7+7+7—-a
z y z
—+;+7—ﬁ
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Eliminate z, y and z.
39. Prove that if

z+y+z+w=0
ar + by +cz+dw =20
(@a—ad)? (b—¢) (aw + y2) + (b — d)* (c — a)® (yw + 27) |
+ (¢ — d)*(a — b)*(z2w + zy) =0,
then

z _ y _
(@—b)(@d—c)(b—c)  (d—c)(d—a)(c—a)

z w

T d—a)(d—b)(a—b) (b—c)(c—a)(a—b)

40. 1° Let
I<a<n, 0<B<n

and

cos o+ cos ff —cos (a—|—B):=—2—.

Prove that
a=p0= —g—
2° Let
I<a<n, O0<L<B<n
and
cosa cos fcos (o +B) = —%.
Prove that
a=pf= —g—
41. Let

cos 0 + cos ¢ = a, sin 0 + sin ¢ = b.
Compute

cos (0 + ¢) and sin (0 + @).

42. Given that o and P are different solutions of the
equation

acosxz + bsinz = c.
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Prove that
2 & — B c2
cos’ —— =
43. Let
sin(0—a) a cs0—a) ¢
sin(@—p) b ' Tcos(0—P)
Prove that
ac- bd
cO0S (a—ﬂ):m.
44. Given
e2—1 . 1+2ecosb+el
1} 2ecosaie2 e2—1
Prove that
1° e2—1 _etcosp  sinB  d4-ecosB
142ecosa+te2 ~ efcosa — sine  14ecosa’
o ﬂ 1+e
2 tan—z— tan 5 = + -—— T—e"

45. Prove that if

€08 z —COS o, sin? a cos f
cosz—cosp  sin2Bcosa’

then one of the values of tan% is tan —g—--tan %
46. Let
cos a = cos P cos ¢ = cos y cos 0, sina=2sin—g-)-sin%.
Prove that
2% __gone B o0 ¥
tan 3 = tan ) tan 3

47. Show that if

(x—a)cos 0+ y8in@ = (z—a)cos B+ ysinO,=a
and

tan—g———tan-—-__Zl

then
Yy =2azx— (1—12) 22.
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48. Prove that from the equalities

zcos0+ysinO=zcos -} ysing=_2a

and
.0 .9
2sin 5 sin 5= 1
follows
Y =4a(a—2).
49. Let
cos 0 = cos a cos f.
Prove that
0 + o 0—a — 9 E
tan ) .tan 5 = tan >

50. Show that if

cosz _ cos(x40)  cos(x420) _ cos(z+430)
b - - d

a c ’

then
atc btd
b ~ ¢
51. Let
29 S08Q cos? @ = 2B tan® _ tana
cos”0= cosf ’ 05" 9= cosP ' tang tany’
Prove that
2 @ o2V 2 B
tan® - tan 2—tan ok

52. Prove that if

0
cosB=cosacosﬁ, cosw:cosalcosb, tanftan %=tan

then

Sinzﬁ=(co;a _1) (G:_a:_1)'
53. Let

£ ¢os (a + P) + cos (@ — B) = zcos (B +7) -+ cos (B—7v) =

-_-)‘v

=2z cos (y -+ &) 4 cos (y — ).
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Prove that
tan o _ tan f - tany

tan —i—(ﬁ-&- V) tan-%— (47 tan % (x+p)

5%. Prove that if
sin (B —f) cos

cog(n+Q)sinfl

sin (@ —a)cos + cos (p—B)sina
and
tanBtana | cog(a—f)
tan@tanf + o TR
then

tanf)-—-—%—(tanﬁ—l—cota), tancp:—;—(tana—cotﬁ).

55. Given

n? sin® (o + P) = sin® o 4 sin? f — 2 sin o sin P cos (o — P).
Prove that

1+n
tana -= ;= tan f.

56. Eliminate 6 from the equations

cos (@ — 38) = m cos® B, sin (@ — 30) =m sin® 0.
57. Eliminate 0 from the equations

(a—0b)sin (0 + ) =(a-+ &) sin (0—q),

0 ?
atan 7—b tan 5 =C.

58. Show that the result of elimination of 0 and ¢ from
the equations
siny

sin B oS ¢ s
sine ? SO= 5

cos 0= cos (B—q)=sinPsiny
is
tan® @ = tan® f 4+ tan?y.
59. Eliminate 6 and ¢ from the equations
asin?® 4+ bcos®0 = acos® ¢ + bsin? ¢ =1,

atan 6 = b tan .
60. Prove that if

cos (0 —a) =a, sin (6 —f) = b,
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then
a® — 2ab sin (@ — B) + b = cos? (@ — B).
61. Solve the equation
cos 3z cos® £ + sin 3z sin® z = 0.
62. Solve the equation
sin 2xr + cos 2x + sinx + cosx 4+ 1 = 0.
63. Solve the equation

1—cosz

tan’ 2 = —o0uw——.
{—sinz

64. Solve the equation
32 cos® x — cos 6z = 1.
65. Solve and analyze the equation
sin 3z + sin 2z = m sin z.

66. Solve the equation
cos z cos (2z — o

. )
(14 k)= T —— 14 kcos2zx.
67. Solve the equation
sin*x + cos*x —2 sin 2x+% sin? 2z =0.
68. Solve the equation
2 log, a + log.x a + 3 logee, a = 0.

69. Find the positive solutions of the system
xx+y — ya, yx+y — .2'46 (a > O).

70. Find the positive values of the unknowns z, y, u and

v satisfying the system
uPri=a®, uwh’=a¥, uvY=>b, uw*=c

(a, b, ¢ >0 and p*—g*s£0).
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6. COMPLEX NUMBERS AND
POLYNOMIALS

We proceed here from the assumption that the principal
operations with complex numbers (i.e. addition, multipli-
cation, division and evolution) are already known to the
reader. Likewise, we take as known Lhe trigonomeltric form
of a complex number and de Moivre’s formula. In factoring
polynomials and solving certain higher-degree equations an
important role is played by the so-called remainder theorcin
(stated by the French mathematician Bézout), usually
considered in textbooks of elementary algebra. Let us
recall it: if f (z) is a polynomial in z and if f (a) = O, then
f (x) is exactly divisible by x — a. Hence (assuming that
the polynomial has one root) follows the possibility of
resolving an nth-degree polynomial into r, equal or unequal,
linear factors as well as the following proposition used here
repeatedly: if it is known that a certain nth-degree polyno-
mial in z vanishes at n 4+ 1 different values of z, then such
a polynomial identically equals zero. Consequently, if two
polynomials of the nth degree ni z attain equal values at n4-1
different values of z, then such polynomials are identically
equal to each other, that is, the coefficients of equal powers
of = coincide. Finally, let us mention the relationship bet-
ween the roots of an nth-degree equation and its coeffi-
cients. Let the polynomial

2k pa - pyr™ L pagtpa

have the roots z,, z,, . . ., x,, so that there exists the facto-
rization !

I+ p "t ppx - L pa= (=) (2 —Tp) . . . (T — Zn).
We then have the relations:
o+ 2+ ... +2, = —py,
2%y + 223 + ... F iz, 2z + ...+ 2,42, = pa
T omxexs + ...+ xn-ﬂn-@n = —P3
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1. Let x and y be two complex numbers.
Prove that

lz+ylP+ lz—yP=2{lz"+ [y}

The symbol | a| denotes the modulus of the complex num-
ber a.

2. Find all the complex numbers satisfying the following
condition

1° z = a?;

2° z = a3,

The symbol z denotes the number conjugate of z.
3. Prove that

Via+a+ .. Fa+ 0o+ ... +0aP<Val+bi+
+Va&+h+ ... +V a0,

where a; and b; are any real numbers (i =1, 2, 3, ..., n).
4. Show that

(@+b+c)(a+ be + ce?) (a + be? + ce) =
=a® + b® + ¢ — 3abe

e24+e4+1=0.

if
5. Prove that

(@® + b® + ¢* — ab — ac — bc) X
X (x4 y? + 22 —ay — 2z — yz2) =
=X*+Y2 42722 XY —XZ—-Y2Z

if
X = ax + cy + bz,
Y = cx + by + az,
Z = bx + ay + cz.
6. Given

z+y +z =A4,
x+ye +ze*=RB,
r+ye*+ze =C.
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Here and in the next problem e is determined by the equa
lity
e24+¢e+1=0.
1° Express z, ¥, z in terms of A, B, and C.
2° Prove that

AP+ IBPE+H1CP=3{lxP+ |yl*+ |z}

7. Let
A=z+ty+sz A=2+y+2, Ad'=2"+y47,
B=x-tye +z2e* B =z’ +y'e +12'¢?, BB =a"+y'e 42",
C=z-t+ye?+2e, C'=x2"+4ye’+z'e, CC' =a"+y"e?42"%.

Express 2", y” and z” in terms of z, y, z and 2’, y’, 2'.
8. Prove the identity

(ax — by — ¢z — dt)® + (bx + ay — dz + ct)®> +
+ (cx + dy + az — bt)2 4 (dx — cy + bz + af)? =
@B d) (g2,

9. Prove the following cqualities

1o LM% _. 1—(;)tanch-i—(Z)tan“(p—...—l—A,

cos™ @

where
n

A::(—l)2 tan"¢@ if n is even,

n—1
—-— [ n
A=(—1)* (n—l ) tan" 1 if n is odd;

2° Sin"q)——-( )tan(p ( )tan (p—}—(g)tan-”(p—{—...+A,

cos™ ¢

where )
n—2

-5 n
A=(—1) 2 (71_1) tan"t¢q if n is even,

n—1
_(—1) tan™ if n is odd.
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Here and in the following problems

ny ok __ n(n—=1). .(n——k+1)
(k)—c - 1.2-3..

10. Prove the following equalities
h=m-1

2
1° 2°™ cos®™ 1 = Z 2 m) cos2(m —k)z+ (2m);
o k m

h=m-1
2
2° 2MsinMr= ) (—1)"”"2( m)cosZ(m——k)x—l—
R=0 k
2m
+()
m
h=m
2m+1
3° 2*Mcos™™M g = | ( mt )cos(2m——2k +1) z;
k=0 k

1
4° 2¥™ gin MM g = Z( "”"( mk—i— ) sin(2m—2k+-1) z.

11. Let
Un=cosa-+rcos (o~ 0)+r2cos(ox+20)+ ... +
+r"cos (a + nb),
Up=sina+rsin(a+0)4risin(a+20)4 ...+
~+r" sin (a -+ nf).
Show that
U COSQ—rcCos (e —0)—rn*1 cos [(n+1) 04 ]+ 1r"*2 cos (n0 4 o)
n 1 —2rcos 04 r2 ’
__sina  rsin(a—0)—r"*! sin [(n +1) 04 o] 4 rt2 sm(nﬂ-}—a)
Up =
1—2rcosO+r2

12. Simplify the fo]lowmo sums
1° 8 =1+ neosd + U

cos29+...=

h=n
= D) Crcoskd, (Ch=1);
h=0



68 Problems

k=n
, . nn—1) . . R .
2° S =nsin 0+ '('1_2 ) sin204 ... = z C, sin k0.
h=0
13. Prove the identity
sin® a -+ sin®® 2a -+ sin®* 3ot + ... +-sin*? not =
1,435 (2p—1)
=3T3 Z% o

if oc:.-;n— and p < 2n (pa positive integer).

14. Prove that

1° The polynomial z (z*' — ra™™!) + a" (n — 1) is divi-
sible by (z — a)2.

2° The polynomial (1 — z™ (1 4+ z) — 2r2" (1 — z) —
— n%" (1 — z)? is divisible by (1 — z)3.

15. Prove that

1° (x + y)" — 2™ — y™ is divisible by zy (z + y) X
X (2* 4+ zy + y?) if n is an odd number not divisible by 3.

2° (x 4+ y)" — 2™ — y* is divisible by =zy (z + y) X
X (22 + xy + y?)? if n, when divided by 6, yields unity
as a remainder, i.e. if n = 1 (mod 6).

16. Show that the following identities are true

1° (@ + y)° — 2 — y* =3ay (& + y);
2 (e +y)° —2® —y° =52y (z + y) (@ + 2y + ¥);
F ety —2"—y =Tay (z +y) @+ zy + )
17. Show that the expression
z+y+2)" —a™ —y" —z" (modd)
is divisible by
z+y+23—a®—y — 2.

18. Find the condition necessary and sufficient for x#* -+
+ y® + 2® 4 kxyz to be divisible by z + y + z.

19. Deduce the conditon at which 2" — a" is divisible
by ¥ — a” (n and p positive integers).

20. Find out whether the polynomial z** 4 2%
+ 2%t L 2% (a, b, ¢, d positive inlegers) is divisible by

2+ 224+ 1.
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21. Find out at what n the polynomial 1 + z% + z* -+
4. ..+ 22 is divisible by the polynomial 1 4z + z* +
4+ ... 42"

22. Prove that

1° The polynomial (cos ¢ + z sin ¢)" — cos np —
— z sin ng is divisible by 2% + 1.

2° The polynomial 2" sin ¢ — p"' z sin ne +
+ p"sin (n — 1) ¢ is divisible by 22 — 2px cos ¢ + p2.

23. Find out at what values of p and g the binomial
z* + 1 is divisible by 2% 4 pz + q.

24. Single out the real and imaginary parts in the expres-
sion V' a + bi, i.e. represent this expression in the form
z + yi, where z and y are real.

25. Find all the roots of the equation

" = 1.
26. Find the sum of the pth powers of the roots of the
equation
2" =1 (p a positive integer).
27. Let
€= CO0S zTn—i—isin%— (na positive integer)
and let
Ay =z +ye* +2e® + ... 4 we™ P E
k=0,1,2,...,n—1),
where z, y, z, . . ., u, w are n arbitrary complex numbers.
Prove that
h=n—1
al < b D) 2
2 AP =n{lzP+lyPtlzP+ ... 4w
(see Problem 6).

28. Prove the identities
R=n—1

1° 2" —1{ = (22— 1) 2 (x2—2xcos—knl—l—1);
h=1

h=n

o .2n 2k

2° P —1=(z—1)[] (xZ—ZxCOST_:Tﬂ-i);
h=1
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h=n
F A=+ ]] (x2—|—2xcos-2ii_:f1——|—1);
h=1
R=n—-1
4 2" +1= [ (x2—2xcos (2k+1)n +1)
k=0

29. Prove the identities

o 2n e Vn .
1° sin = 2 sin G ¢ S =t
7L
o, .. 2m 47t S 2nm (—1)
2” cos 2n 1 cos 2n4+1 "7 2nf1 - T 2n

if n is even.

30. Lel the equation " =1 have theroots 1, a, B, v, ...

Show that
1—a)@d =P —9y)...(1 —A) =n.
31. Let

Tyy Loy o o oy Ty

be the roots of the equation
a2t 4+ x4+ 1=0.

Compute the expression

1

n—1 "

1 1
11-—1 —i—_ 1'2—1 + ..'_{‘

32. Without solving the equations
x y2 z2
‘MTJT‘ p2—b2 + p2—c? =1,

2 2

z2 y z
W—*— 'vz__bz + V2. — = 1’

PZ _} bz + ——02 = 1’
find
2t 4+ y? + 2%

A.
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33. Prove that if cos & + i sin @ is the solution of the
equation
" + pa™t+ ...+ p, =0,

then p; sin a+p, sin 2a+. . .4-p, sin na =0 (py, ps, - . . ,
pn are real).
34. If a, b, c, ..., k are the roots of the equation

2"+ p"t Fpr™ ..+ ppax +pn =0
(p1» p2s - - ., pn are real), then prove that
1T+a)A+08)...(1+Fk) =
=00 —=ps+pi—.. 0+ @1 —ps+ps—..)>%
35. Show that if the equations
z* + pr+q =0
2 +px+qg =0
have a common root, then
(" —ap") (0 — P')* = (2 — ).
36. Prove the following identities

8 27 i/ 4n -‘i/ 8n
o —
1 ]/cos -+ cos —— + €os —— =
3

|
o] =
—
3
|
w
W
3
gl

2° ]/cos —+]/cos——+]/cos ]/; (3 ‘V_9—6).

37. Let a-+b+c=0.
Put
ab 4 b* +ch=s,.

Prove the following relations (see Problems 23, 24, 26
of Sec. 1)

2s, = 83, Bs5 = 55,83,
637 = 73334, 1037 = 73285,
258783 =21s},  50s2=49s,s.,

1
Sn+3 = abesn + 5 $25n11.
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38. 1° Given

z +y = u-+v,
2? 4 y? = u? + v
Prove that
xn _l_ yn j— un __l_ v"l
for any n.
2° Given

zt+y+z=ut+v+t,
2? 4 y? 4 2 = ud + o + 22,
2+ P+ 2=+ A
Prove that
2yt b gt = Ut vt gt
for any n. )

39. Let
A =22y + x,8 + 238%, B = z; + z,8* + x3¢,
where .
e2+e+1=0,
and z;, x,, x3 are the roots of the cubic equation
z® + px + q = 0.

Prove that A® and B2 are the roots of the quadratic equa-
tion

22 4 27qz — 27p® = 0.
40. Solve the equation
+aE+bd@++d=m

a+b=c+d
41. Solve the equation
(z+ a4+ (z + b =c.
42. Solve the equation
@+b+eo(@+tato)(z+at+d(@+b+e)—

— abex = 0.

if
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43. Solve the equation
2® + 3az? 4+ 3 (a® — be) x + a® + b® + & — 3abe = 0.
44. Solve the equation
axt + bx® +cx* +dx +e =0
if
at+b=b+c+d=d+e
45. Solve the equation
(@ + b+ 2 — 4 (a® + b + 2% — 12abz = 0.
46. Solve the equation
———==m (a and m >0).

Deduce the condition under which all the roots are real,
and determine the number of positive and negative roots.
47. Solve the equation

(528 + 1022+ 1) (508 +10a2 4+ 1)
@I F 10221 1) @+ 10a2 1 5)

48. Solve the equation

ay as azr>
1+ T —ay T (z—ay) (z—ay) + (—ay) (z—ay) (z—ag) et
aypzim-1 . 2pzm — p2
(t—ay) (x—ag) ... (x—agy)  (z—ay) (x—ag) ... (x—agm)

-+

49. 1° Solve the equation

2+ pr> +qx+r =0
if 2 = ;.
2° Solve the equation
24+ pe2tqgr+r=0 if xy =2, + z3

50. 1° Solve the system
¥+ 22 + a® = 3ayz
2+ 22 + b® = 3bzx
2 4+ y? + & = 3exy.
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2° Solve the system
—a=yt—b=2"—c=ut—d = zyu

ifa+b+c+d=0.

51. In the expansion 1 + (1 4+ ) + ...+ (1 + 2)" in
powers of z find the term containing z*.

52. Prove that the coefficient of -2° in the expansion in
powers of z of the expression {(s — 2) 2?2 + nz — s} (z+1)"
is equal to

nCi 2.

53. Prove that for t >1 p29—qz> — p +q¢ >0 (p, g
positive integers and ¢ > p).

54. Let x and a be positive numbers. Determine the
greatest term in the expansion of (z + a)".

55. Prove that

o m—i -y D gy (—h)am 0

if i >m.

m (m—1)

T3 (m—2)"+ ...+
+(—1)™"1m=m!

2° m™—m (m—1)"+

(i and m positive integers).
56. Prove the identity
(2t a®)" ={z"— Ciz a4 Chyvtad — .. J+

+{Chz"ta—Cla™%ad + .. )2
57. Determine the coefficient of 2! (1=0,1, ..., 2n) in
the following products

1°{I+z+22+ ...+ {14+z+2*+ ... + 2"}
2 {I+z+224 .. LY {l—z422—28+ ... 4
+(—1)" 2"}
3 {(1+224322+ ...+ (n+1) "} {14+22+322+ ... +
+((n+1) 2™}
4° {(1+22432>+ ... +(n+1)2"} (1 —22 +322— ... +
(1) (1) 27).
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58. Prove that
1° 44+ Ch+Crt ... =Co+-Cot ... =2"T,
2° Con+Cont ... +Co =22"2 if n is even;

34 +Cont . +Co =22 2 §f n is odd.
59. Prove the identities

1°Ccl+ci+ci+ ... %—(2“—|—2cos nn)
o] al 1 2
2 Cipctiycl4 ... §(2 +2cosL_—3)—”);
3L ... %(Z"—}~2cos(n——;—)1).
60. Prove thal

'n
o 1
1 C?,+C,.—|-Cu+...:7( -1y 92 cos%),
2° c}.+c§.+c§’,+...:%(2"-1+2§sm—”41);
3 Circiycelty .. %(Z" 19 cos n4—n),
4 C?.-I—C,.—I—C“—|—...:%(21‘1—2251n—n41).

61. Prove the equality
124224 4 =Co +2(CE4Coi+ ...+ CY).

62. If ay, as, a3 and q, are four successive coefficients in
the expansion of (1+z)" in powers of z, then

ay a3 2ay
aq+ag + a3+a, ~ aytag
63. Prove the identity
1 1 2n-1

1(n—-1l+3'( )'+5'(n 5)1+ +(n——1)!1!= nl

(n even).
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64. Find the magnitude of the sum
s=Ch—3C3 43203 —33¢L+ ....

65. Find the magnitudes of the following sums
o=1—C:+Ch—C+ ...,
o' =Ch—Cl+Ch—Cht....

66. Prove the identities

1° Ca+2C0+3Ci+4Ch+ ... +(n+ 1) Crh=(n+2) 2"

20 CL—2C%1-3C3+ ... +(—1)"nCy=0.

67. Prove that

1 4 1 2, 1 43 (=1t n
'Q‘Cn—?"cn'*'z‘cn‘l et nt1 an nt1”
68. Prove that )
° 11,12 1 n__ 2ntl—1
1 1‘*‘707;"“3‘07;'}‘ ""+' n+1 Cn: n+1 ’
22ct  23¢2  24c3 2n+1CT Fntt_ 1
o 0 n n n noo__
2 22nt——t gttt = T

69. Prove the identity
Ch—g Citg O+ Ot it
70. Prove that
1° Ch +Chp1 +Crpa+ ... +Crpn= Zié-u;
2° Ca—Cal-Cat ... H(— ) Cr=(—1)"Cny.
71. Show that the following equalities exist
12 COCE +-ChCPt 4 L. 4 CC = Chin;

2° CYCh+CLCH . CrTCn = 2nl

72. Prove the following identities
1° (Ca)* + (Cn)+ (C2P + ...+ (CR)* = Chu;
2° (Con) = (Cn)* + (Con)*— . . . +(Com)? = (— 1)" Chn;
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3° (an+1)2 — (Cén+i)2 -+ (C§n+i)2— e —(C%Ziif:o;

) 20— 1))
B2 (O =

73. Let f (z) be a polynomial leaving the remainder A4
when divided by z — a and the remainder B when divided
by £ — b (a 5= b). Find the remainder left by this polyno-
mial when divided by (z— a) (z — bd).

74. Let f () be a polynomial leaving the remainder A4
when divided by 2 — a, the remainder B when divided by
2 — b and the remainder C when divided by # — ¢. Find
the remainder left by this polynomial when divided by
(x —a) (x — b) (z —¢) if a, b and ¢ are not equal to one
another.

75. Find the polynomlal in z of degree (m — 1) which
at m different values of z, 24, z,, . . ., 2,, attains respecti-
vely the values yy, Y2, - - +» Ym

76. Let f (z) be a polynomlal leaving the remainder A4,
when divided by z — a,, the remainder A, when divided
by £ — a,, . . ., and, finally, the remainder 4,, when divi-
ded by 2 — a,,. Find the remainder left by the polynomial,
when divided by (x — ay) (x — ay) . . . (x — ay).

77. Prove that if z,, x5, . . ., z,, are m different arbitrary
quantities, f (z) is a polynomial of degree less than m,
then there exists the identity

f(.'l')= (-7"1) (z1—$2)(‘z_'z3) (z—zm) +

Z9) (24— 23) ... (Z4—Zm)
(z—=zy) (z—2x3) ... (T—2p)
+1 (@) (h-—zi) (5‘2—5‘3) <o (Z2—2m) Tt
—xy) (z—2p) . (-”"—‘-Tm-l)
+1 (xm) (-77 —-’51) (xm—xz) - (Zm—2m-y)

78. Prove that if f () is a polynomial whose degree is
less than, or equal to, m — 2 and xy, 25, ..., T, aTe m
arbitrary unequal quantities, then there exists the identity

f (z4) + f (x2)
(x4 —Z9) (24— 23) -.. (24— Zm) ' (F2— 1) (T3—7T3) ... (T2—Tm)
U f(zm) =__0

Em—21) (T —22) ... (Tm—Tm-1)
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79. Put
s — z + zf
n (r1—2x9) (T4 —3) .. . (T3 — ) (g —x4) (ra—3). . . (Lo — Zpy)
Zh
LR iy P Y pyy F——
(4, 3y ..., Zm are m arbitrary unequal quantities). Show

that s, =0 if 0<<n<<m—1, and s,y =1, and compute
sp if n>m.
80. Compute the following

_ zi‘n z;n
Son= (%4 —Zg) (T4 —23) ... (z,—zm)+(xz——.z,) (zg—z3). . -($2+$m)+
foop .
T +(Zm—11) (Zm—22) .+ . (Tm—Tm-1) (r=1,2,3, ...).

81. Show that if f (z) is a polynomial whose degrec is
less than m, then the fraction

f (x)
(z—2z9) (z—x3) ... (T— 1)

(x4, xo, . . ., x, are arbitrary quantities not equal to each
other) can be represented as a sum of m partial fractions
A‘ A2 Am
z—xy + z— g + .t z—xm

where A, A,, ..., A, are independent of x.

82. Solve the system of equations

o R R T A2 |

ay—by al——bg a‘——-bn
4 T2 Tn
llz-—b’ + ao—hg + ) +(12—b,—1
Ty Ty Tn =1
ap—by + ap—by + - + ap—bp

83. Prove that the following identity is true
n! cy, 205

@+ (F2)y... (r+n)  z+1 z+2

3c3 Ch
tory +(—1)"+l-zﬁﬂ- .
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In particular,

1 CcL . .
n-{—1_—2——_c +4C3 Cn+'

84. Prove the identity

gy M02...0n  (@3—by) (@ —by) ... (an—by)

O PN S M Py (o s (o m
(a1—bg) (ag—b) ... (an —b2)
Tttty by T T

(ay—by) ... (an bn) . n
+bn(bn'—bi)'-- (bn—‘bn-l)_(—'l) )

85. Prove the identity

(x+B) ... (x-+nP)

(x—B) ... (.'1:—71[3)—_-1 =

LS gy i (1) (22 (212
=2 (=1 (2 ‘z—rp

86. Given a series of numbers Cos €15 Cay + vy Chy Chtty - oo
Put Acy = ¢p41 — ¢, so that using the given series we can
form a new one

Acy, Acy, Acsy, . . .

We then put
Azch = AC;H_‘ —_ ACk
so as to get one more series: A%y, A%y, A%,, ... and so
forth.

Prove the following formulas

1° ck+n—-ck+_Ac —i-MAgch—l-

Ly L N

n n(n—1
20 A"ck=0k+,,———1-ck+n_l+ (1'2 )Ck+,1_2+...+(—1)"ck.
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87. Show that if f (z) is any polynomial of nth degree
in z, then there exists the following identity

1 @)= (0)+ = a7 (0) +ZE=1 aey(0) +
+x(z—1) ..r;!(x—n—}—i) A™f (0),

where Af (0), A% (0), ..., A"f (0) are obtained, proceeding
from the basic series: f (0), f (1), f(2), ... .
88. Show that if

2= Ay @)+ G (e —1) (2 —2) + ...+
2o (z—1)(z—2)... (z—n),

then Ay=(s+1)"—Cs"+C3(s—1)"+ ... +(—1)°Ces-1".
89. Prove the identity

nl 1 1
z(z+1)...(z—{-n){—;+z+1+"'+z—|—n}=
1 Ch 7 n_ 1
=Z= e eyt otV e SR
90. Let

op()=x(x—1)(x—2) ... (x—Ek+1).
Prove that the following identity exists

Pn (Z+Y) =@n (%) + Cr0n-1 (2) 1 (¥) + CrPna (2) P2 (¥) + ... +
-+ C7'@1 (%) Pr-s (¥) + Pn (y)-

91. Prove the following identities

1° & fyt=p"— 1 p" 2q+"(" D prsgp— L
vwa(pn—r—1)(n—r—2) ... (n—2 1 n rr
+(—1) 2 ~ r’_! 2 ... (n=2rt 1) uy 7+ .
° n+i__ yn+i -
2 = z—z =p"—CLp" g+ Chp" g — ...+

+(—=1)"Cp" "+ ...,
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where
p=z+y, q=ay.
92. Let z-+y=1.
Prove that
A+ Y+ + o HCIY" ) +
+y (1+C§nx+ C Gl ) =1,
93. Prove that the following identity is true
1

Cin
(z—a)m(z——b)m= (@a—bym {(x——a +(z—a)m‘1(b—a)+
C%h}l lm—
temarre—ar T T Ema e—apt }+
+(b—a)m {(z_.b)m,-l— =i (a—b) 4+ ...+
eyt
+(x—b) ia:b)m—i}'

94. Show that constants A4,, 4,, A3 can always be chosen
so that the following identity takes place

(z+y)"=2"+y" + Ay (2" +y" ) +
+ A2 (2" Y+ L

Determine these constants.
95. Solve the system

Zi+x, =ay
Z1Y1+ Zalf2 =ay
Zy: + xys = a3
Ty + Ty = ay.
Show how the general system is solved

i+ Ty -+ 23+ ... FTpF =0y (1)
TiY1+ ZoYo+ oo 1+ Taln =ay (2)
XY+ Ty + ... 4 Taln=as (3)

................
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96. Solve the system
z+y+ztutv=2
prtqy-+rzd-suttv=3
P2z 4 ¢y +r2z + stu+ v =16
pPx+ @3y +riz 4 sfu -+ 3w =31
pir+ gty +riz 4+ stu + 1% == 103
P’z - @°y + r3z+ sdu -+ t%v = 235
pbz + gy + rbz 4 sfu + v = 674
px+qy+riz4+su+t'v=1669
pir 4+ qfy 4+ riz 4 su + 18 = 4 526
© pPx 4%y + 1z +s%u % = 11 595.
97. Let m and p be positive integers (u<{m). Put
(d—zm) (1 —zm-1) ... (1 — ™ Bl =(m, w.
A—(l—22) ... (1—aM

Prove that
1° (m, ) =(m, m—p);
2° (m, p-1) = (m—1, p 1) 4 an+ 1 (m—1, p;
F(mp+)=@ wWt+a@+tpw+22@w+2,p+... +
+amr=t (m—1, p);
4° (m, p) is a polynomial in z;
51— (m, 1)+ (m, 2)—(m, 3)+ ... is equal to
(I—z)(1—2* ...(1—2™?) if m is even,
0 if m is odd.

(Gauss, Summatio quarumdam serierum
Werke, Bd. II).

98. Prove that
1° (1+zz) (1 +2%) ... (14 a"2) =

singularium,

R=n (1 ) (1 ‘) 1 kot R(R+1)
- X —z) (1 —an 1) ... (1 —azn-k+) 2 k.
1+§1 A—z)(I—22)...(1—zr) = z5
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2° M+zz) (1 +2%2) ... (14 22"12) =

h=n
(1 —z2m) (1— x2n-2) ,,, (1— xZn—2k+2)
=1+ 21 ‘ fi—zz) A—2% ... 1—a2") ",
R=

99. Let
p=1—2)(1—2% ... (1—2").

Prove that
1 z z3 zn(;ljgi)
e T Eee
100. Determine the coefficients Cy, Cy, Cs, ..., C,, in the
following identity
(14 22) (1 4+ xz72) (1 4 232) (14 2327) ... X
X (1+2™ ) (142212 =Co+Cy (z2+27Y) +

+Co (B2 ... +Cp (2" +27).

101. Let
sin2nzsin(2n—1)z ... sin(2n—k+41) z
Up = < T T .
sinzsin2z ... sin kzx

Prove that

1° 1—uyFug—uz+ ...+ =
=2".(1—cosz)(1—cos3x)...[1—cos(2n—1)z];

2 {—ultui—ul+t ... +up=

—q) sin(2n+2) zsin(2n4-4) z ... sin 4nz
( sin 2z sin4z ... sin 2nz :

7. PROGRESSIONS AND SUMS

Solution of problems regarding the arithmetic and geo-
metric progressions treated in the present section requires
only knowledge of elementary algebra. As far as the summing
of finite series is concerned, it is performed using the method
of finite differences. Let it be required to find the sum
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fA)+f@) +...4f(n). Find the function F (k) which
would satisfy the relationship

Fk+1)—F k) = fF).

Then it is obvious that

FA) +f@ 4. .+ =1F@ —Fm)l+
+FQ@) —F@l+...4+[F(n+1)—F (n)] =

=F@mn+1)—F1).

1. Let a2, b2, c?® form an arithmetic progression. Prove

that the quantities ! !

1 .
5o’ oFa’ a1 also form an arith-

metic progression.
2. Prove that if a, b and ¢ are respectively the pth, gth
and rth terms of an arithmetic progression, then

@—nNae+(@T—pb+p@E—qc=0.

3. Let in an arithmetic progression a, =gq; ag = p
(a, is the nth term of the progression). Find a,,.

4. In an arithmetic progression S, =¢q; S, =p (S,
is the sum of the first n terms of the progression). Find S,4,.

5. Let in an arithmetic progression S, = §,;. Prove
that Sp.|.q = 0.

Sm m2

6. Given in an arithmetic progression = Prove
n
am _ 2m—1
that apn  2n—1 °

7. Show that any power n* (k > 2 an integer) can be
represented in the form of a sum of n successive odd num-
bers.

8. Let the sequence ay, a3, . . ., a, form an arithmetic
progression and a; = 0. Simplify the expression

_ % an
S=24obt

an

—az(—l—--l-'—1—+...—|- ! )

ag az an-2

9. Prove that in any arithmetic progression

Ay, Aoy A3y « « .
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we have

1 1
St
Ve Va  Vatrva Tt
+ 1 _ n—1 )
Vari+ Ve  Va+Va,

10. Show that in any arithmetic progression

Ay, A3, A3, . . .
we have

k
2 2 2 2 p
S:az_’az‘}‘az—‘h"‘_ s +a2h—1_a2k:2k_1(ai_a:h)'

11. Let S (n) be the sum of the first n terms of an arithme-
tic progression.
Prove that

1°S(n+3) —3S(n+2)+3S(n+1) — S, =0.

2° 8@3n) =3 {S(2n) — S(n)}.

12. Let the sequence ay, ay, ..., a,, @41, ... be an
arithmetic progression.

Prove that the sequence Sy, S5, S3, ..., where
Si=a+ay,+ ...+ a,,
S2———a,,+,—|—...—i-a2n, S3:a2n+1+...+a3n,...,
is an arithmetic progression as well whose common diffe-
rence is n? times greater than the common difference of the
given progression.

13. Prove that if a, b, ¢ are respectively the pth, gth and

rth terms both of an arithmetic and a geometric progres-
sions simultaneously, then

ab-c Boe. Ca—b =1.

14. Prove that

A+zt+a®+ ... +a2")y2—a"=
=(1+az+22+ ... +2" YU+t + ... 2™,

15. Let S, be the sum of the first » terms of a geometric
progression.

Prove that Sn (S3n —_ Szn) = (Szn — Sn)z.

16. Let the numbers ay, a,, a3, . .. form a geometric
progression.
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Knowing the sums

S=at+at+az+...4+a,, S =—4-—+. +_,
find the product P =aa, ...a,.

17. If a4, as, ..., a, are real, then the equality
(@ +aj+...4+ar)(@+ai+ ... +a)=
= (@182 + a2a34- . . . + an_1an)*
is possible if and only if ay, ay, ..., a, form a geometric
progression. Prove this.
18. Let a4, a,, ..., a, be a geometric progression with

ratio ¢ and let S,, = ay + ... + an.
Find simpler expressions for the following sums

1° S,+S,+ +Sn;

o 1

¥ ettt

o 1 1 1
e aey oA T

b

19. Prove that in any arithmetic progression, whose
common difference is not equal to zero. the product of two
terms equidistant from the extreme terms is the greater
the closer these terms are to the middle term.

20. An arithmetic and a geometric progression with
positive terms have the same number of terms and equal
extreme terms. For which of them is the sum of terms grea-
ter?

21. The first two terms of an arithmetic and a geometric
progression with positive terms are equal. Prove that all
other terms of the arithmetic progression are not greater
than the corresponding terms of the geometric progression.

22. Find the sum of n terms of the series

S, =1z + 2224+ 32>+ ... 4+ na"

23. Let a4, ay, ..., a, form an arithmetic progression
and uy, ug, ..., u, a geometric one. Find the expression
for the sum

S = aquy + Aolly + B a,up,.
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24. Find the sum
1\2 1 \2 n 1 \2
25. Let
Sp=1"12F 1L 35 .. +nt.
Prove that

n(n+1) _ n(n4-1)(2n41) __ n?(n4-1)2
Si=—gg—> Si=———Fp——, Si=—7—

26. Prove the following general formula

k k(k—
(k-t-1) S+ S+ EEDE=D S04+

+ (k4 1)Sy4 So= (n+ 1)**1—1

27. Put
1F 2k 4 L nf =Sy (n).

Prove the formula

nSy(n) =Sk (n) +Sp(n—1)+ S (n—2)+ ... 4
+ 8, (2) + Sk (1)-

28. 1° Prove that

1R 20 4 3R L nP=Ant 4 BrP 4 Cn* 1 4 ...+ Ln,
i.e. that the sum S, (n) can be represented as a polynomial

of the (K + 1)th degree in n with coefficients independent
of n and without a constant term.

o 1 1
2° Show that 4 e and B=—2—.

29. Show that the following formulas take place
n(n--1)( 2n—|—1)(3n24—3n—1)

Su= 30

S, — n2 (n+41)2 (2n2—!—2n—1)
5 12

Se— n7—§—21n“+21n5—7n3+n_
6 42 -

_ n(n+41)(2n+1)[3n2(n+1)2— (3024 3n— 1)]
42
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_ 3n84-12n74 14n8 —Tnt4 202
= o —
_ n2(n4+12[3n2 (n+1)2—2(2n24 2n—1)]
= A .
30. Prove that the following relations take place
S;=28}, 48}=28;+38;, 285+ 8;=3S8;, S;+8,=28;.
31. Consider the numbers B, By, By, B3, B,, . . . deter-
mined by the symbolic equality
(B + 1)1 — B* =k 41 k=0,1,2,3,..)
and the initial value By, = 1. Expanding the left member
of this equality according to the binomial formula, we have
to replace the exponents by subscripts everywhere. Thus,
the above symbolic equality is identical to the following
common equality
Byt + Chs1Br+ Chi1Broyt . . .+ Chi1Bi+ Bo— Bry =k+1.
1° Compute By, By, By, ..., By with the aid of this
equality.
2° Show that the following formula takes place

1% -2k -3k .. nf=
:ﬁ{nk-t ! +C’1¢+1Blnk ‘1‘CI2¢'+1B2nh_1 + ...+ Cﬁ+1Bhn}.

8

32. Let zy, x5, ..., 2, form an arithmetic progression.
It is known that

T+ ot .. A Ton=a, z+T34 ...425=0%
Determine this progression.
33. Determine the sums of the following series
1° 14+ 4+ 92+ ... +n2a™ Y
2° 13 4282 433224 ... F-n3x™ L,
34. Determine the sums of the following series
(LR R AR R Y

° noy 2n—1
2 1—-5--1—2-———8-4—...—!—(—1) 1 ol




7. Progressions and Sums 89

35. Determine the sums of the following series
1°1—2L3—4+ ...+ (—=D"'n
201222 1. 32— .. (=D ind
3243452724 ... —(4n—1)%
4° 2.124-3.22 4 ...+ (n4- 1) n%
36. Find the sum of n numbers of the form 1, 11, 111,
MEi’»;: P.’i'(')vé the identity
x4n+2+y4n+2:
— {x2n+l__ 2x2n—1y2+2x2n—3y4_ . _+_ (__ 1)"1 2l.y2n}2_|_
={y2“+1—2y2"'1x2+2y2"_3x4— (=) 2yx2n}2.
38. Find the sum of products of the numbers 1, a,

a?, ..., a"!, taken pairwise.
39. Prove the identity

(=" mm) +2 (e ) + ot =) (2 ) =
1 zn—1\2
:?n—_l('m) )
40. Prove the identity

1 .
ﬁ+ﬁ+3_4+ "'+n(n+1):1m n+1"’

1
237234 T RGIDmTYy
Y 1 .
=z (z—mrners)
1 2 n
T351t357 " "'+(2n~—1)(2n—{—1)(2n+3):
n(n+41)

30

41. Compute the sum

nt

S=rztgstsst -+ @n—1)@nt1)
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42. Let ay, ay, ..., ap, be an arithmetic progression
Prove the identity

1 2 1 1 1
aian+a2an, + - +ana‘_a‘+an (E+7;;++Zz:)

43. Prove that

n+41 n+p N 1 .
r (n+1)'+<n+2>! te et e W T wr T
o 1 1

et et e <

1 1 1 -
<7[n_!_ (ntpt 1) J
(n and p any positive integers).
44. Simplify the following expression

z+1+xz+1 +x4+1+"'+x2"41 :
45. Let Sp=1f 345+ .. +=.

Prove that
ntptd g n—p 4L _n—p—1 1 e
n—p+1 Ln(p+1) " (n——1)(p+2)+"'+ n(pq1 }—S" S
46. Let

=1*—‘;“|"‘;—4_ "'+_:-'

s n41 1 2 n—2
Sn=—3 _{n(n—1)+(n—1)(n—2)+ AR 3

Prove that S;,=S..

47. Let Sy be the sum of the first k¥ terms of an arithme-
tic progression. What must this progression be for the
th

to be independent of z?

ratio

X
48. Given that ay, ay, ..., a, form an arithmetic pro-
gression. Find the following sum:

i=
S = Z 2iGi+1%i42

a; JF“HE
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49. Find the sum

1 1
cos & cos (o + P) + oo (+B) cos(a+2B)+ e

+

1
cos[a+ (n—1) B] cos (et -+ nf)

50. Show that

1 o 1 o 1 o
tan o+ tan 5 4 tan o+ . .. + o= tan o =

=72n-1—_1—cot %O—i,——-hzot 2a..
51. Prove the following formulas
1° sina+sin(a+h)+ ... +sin[a4+ (n—1) k] =
sin n—zh-sin (aﬁ-nglh)
7 )
2

sin
2° cosa—+cos(a+h)+ ...+cos[a+ (n—1)h]=

sin -nll—cos(a—}—n”1 h)

’

2 2
== - h .
sin —2-
52. Find the following sums
S:Sil’l%—{—sin_zr?__*_ R _|_Sin (n—l)J'[

n

' ) 27 (n—1)=n
S =08 — 408 —+ ... +cos———.

53. Show that
sinag+sin3a+... +sin(2n—1) o

CoS o1 €083+ ... Jcos(2n—1)a tan no.
54. Compute the sums
S,=cos?z 4 cos?2z -} ...+ cos?2nz,

Sp=sin?z |-sin?2z |- ... 4 sin? 2n.r.



92 Problems

55. Prove that

_lﬂ if m+n is divisible

_ by 2(p+1);
‘o . mui . nui ptd if m —n is divisible
Z sin —— sin ——— = 2
+et by 2(p+1);
0 if ms£n
and if m+n and m—n are
not divisible by 2(p +1).

i=1

56. Find the sum

x x
arctan m -} arctan m 4+ ... +

-+ arctan m (JC > O)
57. Find the sum

-
arctan ——— !— arctan ————

T aa -+ arctan

r
1+aa L 1+apanyy

if ay, ap, ... form an arithmetic progression with a common
difference r (a; >0, r > 0).
98. Compute the sum

Z arctan -——-r 2—|—k2+k4 .
59. Solve the system
xisin%+xzsin2%+
. n . n
+z351n37+ co o F Zpogsin(n—1) —=ay,
:clsinZTn—]— xzsin23n”—+

. 2n :
+38in3=—+ ...+ Zn_ssin (n——i)-zTn-za?_,
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. . 3
x1s1nSTn -+ x5 sin 2—;——1—

—}—x3sin337n+ ...+ Znysin (n—1‘)§n-r-t—=a3,

n+xzsin2(—"—'—#+x3sin3(n—_—1)—n+...—|—

n

+ Zpog sin (n—1) (—n:n—lﬂ =an_y.

8. INEQUALITIES

Let us recall the basic properties of inequalities.

1° If a> b and b > ¢, then a >c.

2°1f a> b, then a +m>b 4+ m.

3° If a > b, then am > bm for m > 0 and am << bm for

m << 0, i.e., when multiplying both members of the inequa-

lity by a negative number, the sign of the inequality is
reversed .

4° If a > b >0, then a* > b* if 2 > 0.

This last inequality is readily proved for a rational z.
Indeed, let us first assume that £ = m is a whole positive
number. Then

a”—b"=(a—>b)(a™ 14 am 2+ ... +bm).

But either of the bracketed expressions on the right
exceeds zero, therefore a™—?b™ >0 and a™ >b™. We now

put x:-’:—L. Then a* —b*=7%"a—%/b.
We have

(a—b)=(Va=yb) (V@ + ... 477,

Hence, actually, it follows that

YA E>0, ie Was YT
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Let, finally, x=§. We have

P P
a*—b*=a9 —b9 = aP — Y bP.
But a? > bP (as has been proved), consequently, “V a® >
> {V bP. To prove this inequality for an irrational 2 we may
consider z as a limit of a sequence of rational numbers and
pass to the limit.

5 If a>1 and >y >0, then a* > a¥; but if 0 <
<a<1 and z>y >0, then a* <<a¥. The proof is
basically reduced to that of a* >1 if « >0 and a > 1
and can be obtained from 4°.

6° log, z >log, y if 2>y and a>1; and log, z <<
<log,yifz>yand0<a<l1.

Out of the problems considered in this section, utmost
interest undoubtedly lies with Problem 30 both with
respect to the methods of its solution and to the number
of corollaries. Problem 50 should also be mentioned with
its inequalities useful in many cases.

1. Show that

1 1 1 1 ey .
m-[-m—i— .. .+2~n > 5 (n, a posilive integer).

2. Let n and p be positive integers and n > 1, p > 1.
Prove that

1 1
n+1" napHi

1 1 1
St term T tareE <

t 1
<% wrr

3. Prove that the sum of any number of fractions taken

1 1 .
from among the sequence o5, =5, 45, ... is always less
g 27 32 52

than unity.
4. Prove that

Y/ n=Vn.
5. Show thai if a is a defective value of J/4 to within
unity (a<)/ 4 <a+1), then
1

A—a? - A—a2
et ggr <VA<etpr+imry -
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6. Prove that
1
— . -2V n41-2.
+5t V3 == V Vnt+d
7. Prove that
1 1 1
?_‘/_;<'4TCZS < _——Vm .
8. Prove that
cota>1+4coth (0<B< ).

9. Show that if A+ B+C==a(4, B,C>0) and the
angle C is obtuse, then

tan 4 tan B << 1.
10. Let tan O = ntang¢ (n > 0).

Prove that

tan? (0 — ) <UL

11. Show that if

1
cos a cos P +tanc tanp=tany, then cos2y<0.

12. Let us have rn fractions

a a a .
—b%’—b%""’ ﬁ,bi>0 (i=1,2,...,n).
ay4-as+ ... +ap
Prove that the fraction B et b, is contained bet-

ween the greatest and the least of these fractions.

13. Prove that ™*"*---*} b1 is contained between
the greatest and the least one of the quantities

ma YE .., YL
14. Suppose 0<<a <P <Y< ...<)»<—T2[-

Prove that

sino--sin f+siny+4 ... 4sini
tan o < cosa+cosP-}-cosy+ ... +cosA <tanA.
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15. Let 22 = y?2 + 2* (z, y, z > 0).
Prove that

>y 4 2+ if A > 2,
<<y 4+ 2 if A< 2.
16. Prove that if
a® 4+ b =1, m?+ n?=1,
then|am 4+ bn| < 1.
17. Let a, b, cand a +b —c¢, a+c— b, b +c—a

be positive.
Prove that

abc}(a—l—b—c)‘(a—l—c—b)(b—l—c——-a).

18. Let

A+ B+ C=nm.
Prove that

tan? —+tan —Ltan %21

19. Let
A+ B+ C=m=n(4,B,C=>0).
Prove that

-

sin ¢ <
—2'\

mla

in-%sin -2
Sll'lz lIl2

20. Given
A+ B4 C=mn(4,B,C>0).

Prove that
1° cos 4 + cos B+ cos ng;
31/3

A B
2° €OS 5~ €OS 5~ C0S << <

21. Prove that
Vie+e)b+d)=Vab+Vecd (a, b, cand d>0).
22. Prove that

L= (4) @>0,6>0).
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23. Prove that
) b 7
1° 22 >Vab (@ b>0);

R CaLip LS 7 P L P )

24. Prove that
SHEC >/ de (a, b, ¢ >0).
25, Prove that

—_— P —
V aay+V aw+ ~--+Van-1an~€1—2—(a1+ g+ ...+ an)

(ai>0; i=—1,2, ...,n).
26. Let a; >0 (i =1,2,...,n) and a1a,...a, = 1.
Prove that

MT+a) +a)...(1+a)=2"
27. Prove that
1° (a+b)(a+c) (b+c)>=8abc (a, b, c>0):

PO b c 3
2 b+c + a-t-c + at-b 27

28. Prove that

Y@+ k) @+ e+ m)>y abe+ Y kim
(a, b, ¢, k, I, m>0).

29. Prove that
1 1
5t

1 9
a c

=i (a, b, ¢ > 0).
30. Prove that
Wtnt e I (@0 i=1,2, ..., n),

the equality being obtained only in the case
Ly =Tyg= ...=Tp.

31. Let ay, a3, ..., an form an arithmetic progression
((1,‘>O).
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Prove that Valan g’Valaz. an < 5
In particular

32. Lel a, b, and c be positive integers.

c

Prove that giTI7e. b7 O >4 (a4 b o).

33. Prove thatl if a, b, ¢ are positlive, rational and such
that the sum of every 1two numbers exceeds a third one, then

— —b
N R
34. Let a, b, ¢, ..., | be n positive numbers and
s=a-t+btc+ ...+ 1L
s n?
Prove that b SRR Sy 2 e B

35. Prove the inequality
(asbs+ agby | ... +anbn)*<<(ai+ a3 | ... 4 an) X
X (B2 B2 ... BE).
36. Prove the inequality
a4t . A<V (@t gt . i a)).
37. Prove that

1 1

il b)) (—+— i .. 4 —)=n%

(z1 -2y n)( }‘ = i 8 x") n
38. Let

2424 . an=p,

iyt Tyxz+ o+ TZn - ToX3 4 .. A TpogTp=4q.
Prove that
p , n—1 l/ 9 2n >x.>_}1_n—1 2 2n
7L-+ n pP=—rmi=ti=zy n pPr—r—q
39. Let a, b, ¢, ..., 1 be n real positive numbers and

let p and ¢ be also two real numbers.
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Prove that if p and ¢ are of the same sign, then

n(aP* - bR 1P > (aP £ BP 4 .. IP) X
% (a4 b1 ... 19).

And if p and ¢ have different signs, then

n(aP* P4 I (@ P+ IR X
X (@424 ...+ 19).
40. Prove that

1° 1 + a)» > 1 + ah (o is any positive number; A > 1
is rational).

1+t <
tive, ad << 1).
n
. Lelu, = (1+%) , n is a positive integer.
1° Prove that

1_:0» (@ >0 real, A rational and posi-

Upt1 = Uy.

2° Prove that u, is a bounded quantity, i.e. there exists

a constant (independent of n) such that u, is less than this
constant for any n.

42. Prove that
V2> V3>y 4>y 5508 >... >0 n>
S nr1> ..
43. Prove that

2> V3>YA>Y 5> .. .>" Y n>Y it > ...
44, Let us have

anx; + ayors + . . . + apx, =Yy
A%y + AaaZe + . . .+ ATy = Y2
Apn 12y +an2x2 + LR + annxn = yny

where a;; > 0 and rational, z;; > 0.
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Furthermore, it is given that

apy + ape + ...+ ap, =1,

Gp+aoy + ... ftan=1 (k=1,2,..., n).
Prove that

Y1Yz - - - Yo = TaZa . . - Ty
45. Let
a;>0,0,>0 (i=1,2,...,n).

Prove that

V(@ Fb0)(az 1 bg) - (an | bn)>=y aay - .. a,--

+v/ by - - b

46. Prove that
(x1—|»12+.-.—| zn)k< 1’1‘+x’2‘++xk
~

n n

n and k are positive intlegers, x; > 0.
47. Let the function ¢ (¢) defined in a certain interval
possess the following property
t+ &y @ ()1 @ ()
"’( 2 ) <

n

for any two t, and f, not equal to each other.
Then

(P(trL t2+---+tn) <(P(t1)+(P(t2)+---4 ¢ (tn) ’

n n

where ¢y, ¢, . . ., t, are n arbitrary values from the given
interval not equal to one another.
48. Find the greatest value of the sum

§ =sinay; + sinay + ... 4 sin g,
if
a;>0and ay +as+ ...+ a, = m.

49. Let z, p and g be positive, p and ¢ being integers.
Prove that
xP —1 rq—1

>

p q
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ifp>gq(x+1).
50. Let £ > 0 and not equal to 1, m rational.
Prove that

mi"tl(z—1)>a"—1>m(@x—1)
if m does not lie between 0 and 1.
But if 0 < m << 1, then
memlz -1 <a™—1<<m(x—1).
91. Prove that
A +2" =14+ ma
if m does not lie in the interval between 0 and 1;
1+2)"<1+ mzx

if 0 < m << 1 (m rational, z > —1).
52. Prove that

1 1

( o A S S 1 )?<( 2t 2d+4 ... 42T )7

n n

g = p, both ¢ and p being positive integers.
53. Find the value of x at which the expression

@—z)+@—z)+ ... +@—2z)

takes on the least value.

S4. Let ¢y + 2z, + ... -+ 2, = C (C constant). At what
Zy, Zg, . . ., &, does the expression z} + i + ... 4 27
attain the least value?

55. Let z;, >0 (i=1,2,...,n) and =z + z,+

+...+z,=C.
At what values of the variables zy, z,, . . ., , does the
expression .

A A A
E2 O I o 2

(A rational) attain the least value? -

56. Given z; >0 (i =1,2,...,n) and the sum =z, +
+z;+ ...+ z, = C = const. Prove that the product
TiZy . . . Ty 1'9302198 the greatest value when z; = z; =

=...=$n=—n-.
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., n) and the product

57. Given z; >0 (i =1, 2,.
T4 Zsx3 . . . Z, is constant, i.e., zyzy . .. 2, = C.
Prove that the sum z; 4+ z, + ... + z, attains the

least value when
Ty=Zy=...=2,=/C.

58. Let z; >0 (i =1,2,.. .., n) and the sum z; +

4+ x5+ ...+ z, = C = const.
Show that

A
takes on the greatest value when
ot WL S =2n _. ¢
T pe prtpeteHpn ]

31 e
>0 (=12, ..
59. Let
ai>0v Z; >O

and
a,xy -+ AsX o 4+ ... -+ a,xr, = C.
z, attains the greatest

., n) and rational.

(i=1,2,...,n)

Prove that the product zz, . .

value when
ATy = QoZy— ... = Apkp = n

60. Given
a; > 07

(A; >0 and rational).
Prove that

A
z;>0 and @'+ aad?+ ... + a2y =

Mxh? ... e

takes on the greatest value when
Malxq‘ Lzazxa‘z }»nanxﬁ”

B ope T Bn
61. Let z}z}? ... 22" =C = const.

Show that
azht + apzh? + . . . +anzh”®
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attains the least value if

agpy agps anpin
(a;, z; > 0; A; and p; > 0 are rational).
62. Find at what values of z, y, 2z, . . ., ¢ the sum
22+ P44 ...+ 8
takes on the least value if
ar +by+...+kt=A (a,b,..., k and 4 constant).
63. At what values of z, y does the expression
u = (ax + by + ¢1)® + (az + by +¢3)* + ... +
+ (anz + by + cn)?

take on the least value?
64. Let zg, z4, . . ., x, be integers and let us assume

Ty < Ty < Ty < oo . < Xy

Prove that any polynomial of nth degree z" + a;z"™! +
+...+4a, attains at points x,, 4, ..., z, the values at

least one of which exceeds or equals g—n .

65. Let 0o << % At what value of x does the product

sin z cos x reach the greatest value?
66. Let
14

n n n
rt+yti=5; 0<zrz<5, OSY<+, 0<z<5 -

At what values of z, y and z does the product tan z tan y x
X tan z attain the greatest value?
67. Prove that

1 1 1
it tE > !

(n a positive integer).
68. Let a > 1 and n be a positive integer.
Prove that
n+i n-—-1
a"—1>n@? —a ).



104 Problems

69. Prove that
L e R
2 2 3 crr b oan1
(r a positive integer).
70. Prove that
1 1 1
1 1 + 1 1 < 1 +
Tty TtT oaw

(a, b, ¢, d>0).

_1_
+

9. MATHEMATICAL INDUCTION

This section contains problems which are mainly solved
using the method of mathematical induction. A certain
amount of problems is dedicated to combinatorics.

1. Given

Untt = Uy — 2054

and
vo = 2, v = 3.
Prove that
v, = 2" + 1.
2. Let
Up+1 = 3un - 2un-—l
and
ug =0, uy =1.
Prove that

=2 — 1,
n
3. Let a and A > 0 be arbitrary given numbers and let

a,:%(a—}—;:—), az=§—(a,—|—%) y ey Qp=

Prove that

an—VA_ (a,_vz )z"-l
an+V4A \ay+V4
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for any whole n.
4. The series of numbers

Qp, A4, A3, . . .

is formed according to the following law. The first two
numbers ay and a, are given, each subsequent number being
equal to the half-sum of two previous ones. Express a, in
terms of ay, a, and n.

9. The terms of the series

al’ a27 a37 .
are determined as follows
ay =2 and a, = 3a,_; + 1.

Find the sum
ay +a,+ ...+ a,.

6. The terms of the series
Agy Aoy « .

are connected by the relation
a, =ka,_1 +1l(n=2,3,...).

Express a, in terms of a4, k, l and n.
7. The sequence ay, a,, . . . satisfies the relation a,+y —

—2a, +a,4 =1
Express a, in terms of ay, a, and n.
8. The tern.. of the series

ai; Az, A3, . .

are related in the following way a,.3— 3an+9+3a,+1—a, = 1.
Express a, in terms of a;, as, az and n.
9. Let the pairs of numbers

(a1 b) (ah b‘) (az, bz) . e
be obtained according to the following law

)y s o

b ay+b a;+b
a+t by = 1-2i- , = Hz'i

as+b
==z by S22
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Prove that
2 1
a,,‘—(l"g‘(b a)(1_4rt)’

2 1
bn:a+_3—(b—a)(1’} m)~
10. The terms of the series

Zoy Yor L1y Y1, L2, Y2, - - -

are determined by the relations
Ty = Zp_y + 2y, sin?a, y, = y,_1 | 22, cos? a.
Besides, it is known that z, = 0, y, = cos a.
Express z, and y, in terms of a.
11. The numbers
Loy L1y Ly « o o Yoy Y1, yvz, PR
are related as follows
Ty = Ay 4 + ﬁyn—lw
(b — By # 0).
Yn = YTp 1 + 6!/11 -1
Express z, and y, in terms of x4, y, and n.
12. The terms of the series
Loy L1y L2y « -+ -

are determined by the relation

T, = oy + Pz, _s.

Express z, in terms of z,, z; and n.
13. The terms of the series z,, r;, . . . are connected by
the relation

— Prn—y + qZn—9
p+q

Express z, in terms of z,, z; and n.

14. The terms xy, x4, 23, . . . are determined by the equa-
lity

Ln

zp =2t B
YZn-1+8
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Express z, in terms of z, and n.
Consider the particular cases

= Ot o Zaoatl
T 2zpg 41 " Zpog+3°

15. The numbers:

Ao, Ay, A3y « « .,

bO’ biv be .
are determined by the following law
an+bn 2anbp
Anyt = 5 y  ban= @, b,

a, and b, are given, and ay> b, >0. Express a, and b,
in terms of a,, by and n.
16. Prove the identity

n 1 1 1 1 1
274‘-?""2’3_—'2'"*" e +(2n)3—2n:nr—|—1 +n+2+ R 2n °

17. Simplify the expression
11— —2%...01 ~—x")—|—x(1 —z) (1 — 2.
X (1—=2M4+221—2%) ... (1—2™+ ..
k(=2 —.z")+ + zn” 1( — ™+ 2"
18. Prove the identity

n
z 1 r—z2

1,:,2 +1_x.2$4 +1_f4xs + o
19. Check the identity
A+z)(1+2)(A+2%) ... (14 22" =
=14zt+x2+ a3+ ... 4 22"
20. Prove the validity of the identity
1+1 +a+1+(a+1)(b+1)+ et

abe
+(a+1)<b+1) L) (k) @) 1) L (k1) (1)
abe ... skl abe ... ki '

1—g2" =2 2

-1
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21. Prove the identity
btetdt .. fhtl 4 c T
a@tbtet . TETD a@ib  @irh@rora
d
Tt rbrera oo T
!
LR e y P Sr—n

22. Let
1_16( 1_q_zqz(1—z)(1—qz)+---+
trEm(l—2)(1—g) ... (1—¢"2) =Fn(2).
Prove the identity

14+F,(2)—F,(q2)=(1—qz) (1 —q%2) ... (1 —q"2).

23. Prove that
h=n

(1 —an) (1 —an-1) ... (1 —an-kt1)
> ). =n.
h=1
24, Compute the sum
a(a— a(@a—1)(a—2) a(a—1)... (a—n-+1)
=% +b(b 1)+ =1 (6—2) Jr1;(17—1) NCETEY
(b is not equal to 0, 1, 2, ..., n—1).

25. Let
Sn=a;+(a;+1)as+ (a1 4+ 1) (@a+1)as+ ... +
+(ar+1)(ag+1) ... (@n-1+1) an
Prove that
Sp=(a;+ 1) (az+1) ... (@an+1)—1.
26. Prove the following identities:

xX=n
10 Y a@+1) ... (@+q=—nn+1) ... (n+g+1);
::; 1 1 1
° I —
2 xg z(@+1) ... (z+9 ¢ { g (1) (n+2)... (n+q)}'



9. Mathematical Induction 109

27. Prove the identity

()
28. Let us have a sequence of numbers (Fibonacci’s series)
0, 1,1, 2,3, 5, 8, 13, 21, ....
This sequence is determined by the following conditions
Unyy==Un+ Un_y
and uy=0, u;=1.
Show that there exist the following relations
1° Unpp=tpFur4Us+ ... +ua +1;
2° Ugnyp=uUr+ Uz +Us+ . ..+ Usnss
3% Ugny =1+ ugtu+ ... +Usp;
4° —ugng+1=uj—us+us+ ...+ Ugn1— Usn:
9° Upna+1=ui—uUst+us—u,+ ... +Uan-y;
6° Unlnyr=1uj+uz+ ...+ un;
T° ug, = Uslly + Ugla+ . . . + Ugn_1Uan;
8° Unsilhnsz — Unlnyz=(— 1"
9° qu — Upyqlhyog = (— 1)"”?
10° ud — up_gUp-1lUnsilhniz = 1.

29. Compute the sum

1 2 Un+2
Tz T T T e

Un+1ln+3
30. Prove the relations
1° Untp-1= Un_1Up-1 + Unlp;
2 gy = Ul Ul

[e]
3° Ugn-1=Unlp41— Un-glin_y-
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‘ 3 3
31. Prove that u} +u),, —uj_, =us,.
n—1
w251

32. Prove that u,= 2 Cﬁ B-1-
k=0

33. Find the number of whole positive solutions of the
equation zy+z, + ... + z, =m (m a positive integer).
34. Prove that the total number of whole nonnegative
solutions of the equations
z+2y=mn, 224+3y=n—1,.. ,nz+mn+1)y=1,
n+haz+(n+2)y=0
is equal to n 4 1.

35. Show that the total number of whole nonnegative
solutlions of the equations
z+ 4y = 3n — 1, 4x + 9y = 5n — 4, 9z 4 16y =

=Tn—9,...,n24+n+D2y=nn+1)
is equal Lo n.

36. There are n white and r black balls marked 1, 2, 3, ...,
n. In how many ways can the balls be arranged in a row
so that all neighbouring balls were of different colour?

37. In how many ways is it possible to distribute kn
distinct objects inlo k& groups, each consisting of n elements?

38. Ilow many permutations can be made up of n ele-
ments in which the two elements ¢ and b never stand side
by side?

39. Find the number of permutations of n elements in
which nonec of the elements occupies the original position.

40. In how many ways can n distinct letters be arranged
in r squares (first, second, ..., rth square) so that each
square contains at least one letter (the order of the letters
inside the squares is disregarded)?

10. LIMITS

We take as known the concept of a variable and its limit,
as well as the basic theorems on limits which are usually
treated in elementary textbooks of algebra (the limit of a
sum, product and quotient). Let us here remind the reader
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of one of the indications for a limit to exist: if a variable
increases but remains smaller than a certain constant, then
such a variable has a limit (likewise, a variable which,
when decreasing, remains greater than a certain constant
also has a limit). When dealing with an infinitely decreasing
geometric progression and, in general, with simple infinite
series, one should bear in mind that the symbolic notation

wy +us F+us+ ... 4u, +...

denotes none other than lim (uy + wy + ... + u,) if

n-—»00

such a limit exists. If there is no limit, then the series
uy +uy +us+ ... fu, + ...

is said to be divergent, and it is useless to speak of its nume-
rical value.
1. Let z, = a" and | a| <<1. Prove that lim =z, = 0.

n—»o00
2. Prove that
lim Z—T:———O
n—-+oo *
for any real a.
3. Find
lim aonh—{-aink‘i—-]—...-}—ah
n oo DoRP-FbinATL L 4-bp
(aO;&O, bo#: O)
4. Let
p Bt B n8—1
LI Ty IR E I A
Prove that lim Pn:—g— .
n->oo
5. Prove that
L C
11!2 e = FT1 (k a positive integer).
6. Prove that
. thp 2k 4 4nk n 1
hm{ nh - k+1}"2

n-— o0
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(k a positive integer).
7. Let us have a sequence of numbers z, determined by
the equality

Z, = In—t‘zi’zn—2
and the values z, and ;.
Prove that
lim:c,,::—m’t’zxi .

n +oo

8. Let N >0. Let us take an arbitrary positive num-
ber z, and form the following sequence

1 N
1'1:7(330‘}'?0‘);

1 N
Ty =5 (x‘+z_,)’

1 N
xp—T(xp—l",“ Ip 1 )7

Prove that limz, = ]/N.

n-—»oo
9. Generalize the result of the preceding problem for the
extracting a root of any index from a positive number.
Prove that if

m—1 N
n=-—u o+ mzp1?
m—1 N
xz'_ m xl +_ mx;"'l 1)
m—1 N
X, = -
r m %r 1+ mapst’
then
m/ x5
lim z,, = ,/N.
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10. Prove that
n 1

lim — =0.
N 00 nl
11. Let
R=mn T
k=1
Find
lim §,,.

12. Let the variable z, be determined by the following
law of formation

xo:ﬁv
xl:l/ a+ﬂ1

Find

13. Prove that the variable

1 1 1
1n=1+—v—§+%+--- +_ﬁ_2ﬁ

has a limit as n — oo.
14. Let us be given two sequences

Zoy Tq, 1‘2, o e ey
Yo» Y1, Y2, + - -« (1’0 > Yo >0)7

where each subsequent term is formed from the preceding
ones in the following manner

Tn-1-+Yn-
"'l'lTn—i" Yn = " Zn-1Yn-1-

Iy =
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Prove that z,, and y, have limits which are equal to each

other.
15. Let

Si=1+q+F+... lgl<t,
S=14+0+0+... |Ql<
Find
1+ 90 + ¢*Q* +
16. Let s be the sum of terms of an infinite geometric

progression, o2 the sum of squares of the terms. Show that
the sum of n terms of this progression is equal to

s{t-[o5e]}
17. Prove that

1° lim n*z"=0 if |z1<1 and k {is a positive integer;

Nn— oo

2° limy/ n=1.

n->oo

18. Find the sums of the following series

° { .
1 12+25 u4+ +n(n—1—1)+""
o 1 1
2 1-2-3+2.3-4+ R By oy vy s MR
19. Prove that the series
1 1 1 1
(+5+5+71+- +—+ ..
is a divergent one.
20. Prove that the series
1 1 1 1
1+2—a+§;+—43+...+7+...

n

is a convergent one if o > 1.
21. Find the sums of the following series

1° 1422 -+32%+ ... a4 0L
2° 1 4-bax 4922+ ...+ n2a 1 L
428043+ 0S4 (2| < ).
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22. 1° Prove that the variable 1411:(1 | —:L—)n (n=1, 2,
3, ...) has a limit. .
2° Denoting the limit u, by e so that lim (1 + = ) =e,

n-oo
prove that
A 1 0
e=1+4 }—1—2+T2—§+ et 1.2.3...k +1.2‘3...k-k
o<e<.
23. Let 0<a< 5.
sin z

Knowing that lim

x-0

=1, prove that

z—sin xg—é— z8.

24. 1° Prove that the series

+ 102 + 5 103 + ..+ 10n + .. (Ogai <\9)

is a convergent one.

2° Prove that for any real number o (0 < o <1) it is
always possible to find, and in the unique way, a; (0 < a; <
< 9; a; being integers), such that

+102+1O3+ +10"+"'

(i.e. to expand the real number in decimal fractions).
3° Show that if a decimal fraction

d1 ag a
To+102+10 ' +10n+'"

is finive or periodic (i.e., for instance, a,+y = a1, @pts =
= Qg, ..., A3, = Qp, ..., 50 that the period contains n
digits: a4, a,, . . ., a,), then ® is a rational number.

25. Prove that the numbers determined by the following
series are irrational ones

N 1 1 1 1 1
1 ('):T—I"T—'}—l—g-l—-l—m—-‘— P +7[-2——|—,
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where [ is any positive integer.
o 1 1 1 1
2 w=T+ 12 + 123 + 1234 +

1 . sl
+ .. —}-m—}— ..., where [ is any positive integer.

26. Prove that e is an irrational number (see Problem 22).
27. Let
1 1

1 1
=Tt T T, o T

where 1<<l;<ll, << l3... and [/; are integers. Prove that
o s rational only when [, (beginning with a certain k)
are all equal to one another.

28. Prove that the variable

1 1
un:1+7+?+ ...-{—%——logn

has a limit.
29. Prove the following formula:

1
VEVES T VSV T

n_
> =




SOLUTIONS

SOLUTIONS TO SECTION 1

1. Proved immediately by a check.

2. If we remove the brackets from the right member
and apply the formula for a square of a polynomial, then
it is easily seen that all the doubled products are cancelled
out, and we get the required identity.

3. If the identity of the preceding problem is used, then
from the condition of our problem it follows that

@+ 8+ + )@y + 2 ) =0,

whence either a® + b2 + ¢®* 4 d? = 0, or 2% + y? + 2% +
+ 2 = 0.

But the sum of the squares of real numbers equals zero
only when each of the numbers is equal to zero. Therefore,
from the equality a® + 0> + ¢® + d> =0, we get a = b =
=c¢ =d = 0, and from the equality 2% + y® + 22 ¢ =
=0wehavex =y =2 =1t =0.

Hence follows the required result.

4. This identity can be checked directly, and also can
be obtained from identity (2) if we put in it d =¢ =0
and replace y by —y and z by —z.

5. If we expand the right member of the equality, then
all doubled products are cancelled out and the validity of the
identity becomes obvious.

6. Put in identity (5) a; =ay = a3 =... =a, =1,
b1=a,b2=b,...,bn_1=k, bn:l'
We then get

n@+®+c+...+ k4083 =
—(@ b ) (b — )
Fle—a?+...4 (k— I
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But since by hypothesis
n(@+R®+ .. R+ B =@+b+...+k+ D2
we have
b—a?+c—a?+...4+Ek—=0*=0.
Hence a =b=c=...=k=1
7. Make use of identity (5). By hypothesis
ai+a;+ ... +ar=1, bi+bj+...+b=1.
Therefore we have
(a1by + asby + . . . + a,b,)? =
=1 — (a1by — ash)® — (a1bs — azh)* — . .. —
— (an_1b, — a,b, 4%
Whence

0 < (a1by + aghy + .. . + a,b,)? < 1.
Thus,

=1 < aby + agby + . ..+ ayb, < 1.
8. We have
W+tz—20—@y—2+@C+z—2°"— (z—2)?+

+ (& + y — 22)® — (z—y)*=0.
But

(y+z2—20?—(y—2>=4(y—2) (z— 2

(using the formula for a difference of squares).
Likewise we find

z+z—2y—(z—2?=4(z—y (@—y),
@+y—22P—(—p*=4(@—12) (y—2.
Consequently,
by—a)z—2)+4@E—y (—y +
+4(@—2)(y—2 =0

Removing the brackets, we get

222 + 2y + 222 — 222 — 2yz — 22y =0
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or

@ —y?*+(—2*+ (y —2)* =0,

x=y=12=0.

whence

9. The first identity is obvious. Let us rewrite the second
one in the following way
(6a® — 4ab + 4b%)3 — (4a® — 4ab + 6b%)° =
= (3a® + 5ab — 5b2)3 + (5a® — Sab — 3b?)3.
Applying the formula for a difference of cubes to the left
member and the formula for a sum of cubes to the right
member, we find that it suffices to prove the following iden-
tity
(3a® — 2ab + 2% 4 (3a® — 2ab + 20b%) (2a® — 2ab +3b%) +
+ (2a* — 2ab + 3b%)% = (ha? — Sab — 3b?)* —
— (5a® — 5ab — 3b?) (3a® + Sab — 5b%) +
+ (3a® + 5ab — 5b%)2.
This identity is proved by directly removing the brackets.

10. To see whether the identity under consideration is
valid, we may rewrite it as

(P* — ) = (p* + pg+ ¢** — (2pg +¢*)* +
+ (p* + pg + ¢»* — (2pg + p?)*.
It remains to simplify the right member and to show that
it is equal to the left one.
Using the formula A* — B* = (4 + B) (A — B) (A*+B?),
we get the following expression for the right member
(p® + 3pq + 26 (p* — pg) [(p® + pg + ¢*)* +
+ 2pg + ¢ + 2p* + 3pg + ¢*) (¢* — pg) X
X [(p® + pq + ¢*)? + (2pg + p*?l = (p + 29) X
X p (p? — ¢® [(p* 4+ pg + ¢»* + (2pg + ¢%)*1 +
+ @2p + ) g (¢ — p») [(pP® + pg + ¢®) +
+ @2pg + p??l = (p* — ¢ {(P* + pg + ¢°)* X
X [p? + 2pg®— 2pq — ¢*1 + (p® + 2pq) (¢*> + 2pq) X
X [2pq + ¢*— 2pg — p*1} = (p* — ¢*)* {(p® + pg+q*)* —
— (p® + 2pq) (¢* + 2pq)} = (p* — O™
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11. Check by direct substitution.

12. Check by substitution.

13. 1° The cases n = 0, 1, 2 are readily checked directly.
At n = 4 let us rewrite the identity in the following way

(ix — ky)* — (ix — kz)* + (iy — k2)* —
— (ly — kx)* + (iz — kx)* —
— (iz — ky)* = 0.
Transform the first two terms
(iz — ky)* — (ix — k2)* = [(ix — ky)* +
+ (ix — k2)?] Qix — ky —k2)k (z —y). (1)

By virtue of the equality x + y + z = 0, we get
2ix — ky — kz = (2i + k) «.
The expression in square brackets can be rewritten as follows
(2% 4 2ik) x® + k? (y* + 2%).
Thus, we have
(iz — ky)* — (ix — k2)* =
=k (2i + k) (y* — 2% [(2i® 4+ 2ik) 2 + Kk® (y* + z%)]. (1)
It remains to transform the following expressions

(iy — k2)* — (iy — kx)*, (2)
(iz — kx)* — (iz — ky)* 3)

But it is easily seen that expression (2) is obtained from the
first one, already considered, by means of a circular permu-
tation of the letters z, y and z, i.e. when z is replaced by
Y, y by 2z, and z by z. Expression (3) is obtained from (2)
also through such a permutation. Therefore, there is no
need to repeat computations for simplifying expressions (2)
and (3); it is sufficient only to apply appropriate permuta-
tions to the result obtained. We then have

(iy — k2)* — (iy — kx)* =
=k (2i + k) (22 — z? [(2i® + 2ik) y* +
+ k% (22 + 2?)], (2')
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(iz — kx)* — (iz — ky)* =
=k (2i + k) (2 — y?) [(2i% + 2ik) 2 +
+ k2 (22 + )L 3
And adding expressions (1’), (2") and (3"), we get
k(2i + k) {(2i® + 2ik) [(y® — 2?) 2® + (2* — %) y® +
+ (@ —y?) 2’1 +
+ B (y* — 2t + 2t — 2t -
+at —y9} =0.

2° At n = 0 the relation is obvious. Let us denote, for
brevity, the sum in the left member of the equality by

2 (z+ k)"

and the sum in the right member by

2 (x + )™

At n = 1 we have to prove that
8z + Mk =8z + N1,

i.e. we have to prove that

Dk = DL
Finally, we have to check that
Mk =Dl

But
Dk=3+54+6494+10 4+ 12 + 15 = 60,
Nl =14+2+4+7+8+11 + 13 -+ 14 = 60.
At n = 2 we have to prove that
2@k =2 (= + D
i.e. that
822 + 220k + D k® = 822 + 2201 + D 12

And so, it remains to prove that

2"2 = zlzv
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which is easily checked directly.
Likewise, to prove the last case (n = 3) we have only to

show that
S-S,
14. The first idenlity is proved in the following way

(@+b4+c+d?+@+b—c—ad?+

+@t+ece—b—d*+(@+d—>b—c)P=

=[a+b + €+ PP+ (@ +b) —(c+d)P?+

+la—b +(—dP+[(a—0b) — (c —dI* =

2@ B4 2(c AP 4+2(— b 42 —d —
=2[(a + b)?+ (¢ — b)?l + 2 [(c + d)? +
+ (c — d)?l = 4 (a® + b + ¢ + d?).

The second and third identities are also proved by a direcl
check with some preliminary transformations.
15. Rewrite our equality as follows

[@a+b+o)t —(a*+ 4+ H +[(b+c—a)t —
— (@t b )] et — )t —
— @+ b0+ +la+b—o)t—
— (a* + b* 4 Y] = 24 (a®b? + a*c® + bicY).
Consider the first term.
We have
(@® 4 V® 4 ¢® 4~ 20b + 2ac + 2bc)® — at — VP — ¢t =
= 6a®? + 6a%? - 6b%® + 4ac (a® + ¢?) +
+ 4ab (a® + b + 4bc (b% + ¢?) - 12a%bc +
+ 12b%ac + 12c%ab.

The remaining terms are obtained from the first one by
means of successive substitutions: —a for a, —b for b,
—c for ¢. Adding the terms, we make sure that our identity
is valid.
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16. We have
s(s— 2b) (s — 2¢) + s (s — 2¢) (s — 2a) +
+ s(s — 2a) (s — 2b) = (s — 2a) (s — 2b) (s — 2¢) +
+ 2a (s — 2b) (s — 2¢) + s (s — 2a) (2s — 2¢ — 2b) =
= (s — 2a) (s — 2b) (s — 2¢) + 2a (s — 2b) (s — 2¢) +
+ s (s — 2a) 2a.
Transform the sum
2a (s — 2b) (s — 2¢) + s (s — 2a) 2a =
= 2al(s —2b) (s — 2¢) + s (s — 2a)] =
= 2a [(s — 2b) (s — 2¢) + (s — 2a) (s — 2b) -+
+ 2b (s — 2a)] = 2a [(s — 2b) (2s — 2¢ — 2a) +
+ 2b (s — 2a)] = 2a [(s — 2b) 2b + 2b (s — 2a)] =
= 2a-2b [s — 2b — 2a] = 4ab-2¢ = 8abc.

17. Expanding the expression in the left member in
powers of s, we get

@+ b+¢)s—2s(@®+ b+ ¢+ a®+ b+ ¢ +
+ 28 — 2% (a+ b+ ¢) +
+ 2s (ab + ac + be) — 2abe.

Since a + b + ¢ = 2s, we have
2% — 2s (a* 4 % 4+ ¢¥ + a® + b® + & + 288 — 48 -
+2s (ab + ac + bc) — 2abe = —2s (a® + V® + ¢?) +
+a* + b+ ¢ 4+ 2s (ab + ac + be) — 2abe =
=a + b +c+ (a4 b+ ¢ (ab+ ac + be —
— a® — b? — ¢?) — 2abe.
Directly transforming the last expression, we make sure

that it is equal to abc (see also Problem 20).
18. We have

(20% — 2a2) (20° — 2b%) = (a® + ¢ — ) (B + ¢® — a?) =

= ¢t — (a® — b?)2,
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Using a circular permutation, we obtain
(20% — 2b?) (20% — 2¢?) = a* — (b — c?)?,
(20% — 2¢%) (20 — 2a%) = b* — (@ — a?)>.
Hence
4 [(0® — a?) (6% — b%) + (0% — b?) (0% — ¢?) +
+(0® — ¢?) (0% — a®)] = a* + bt + ¢t — (a® — b?)2—
— (B — ®)? — (2 — a¥)? = —a® — bt — ct +
+ 2a2b% + 2a%? + 2b%® = —[at — 2 (b% + c¥a? +
+ (b — )2 = —[at — 2 (b® — ¢?) a® +
+ (b — ®)? — 4a?c?] = 4a’c® — (a® — b + c?)? =
= (2ac + a* — b%* + ¢%) (2ac — a® + b* — %) =
=@a+b+c)at+ec=06bB—a+c)(b+ta—oc).
But
a+b+c=2s, a+b—c=2(s—¢),

a+c—b=2(s—-0b), b+c—a=2(s—a)

and we see that the identity is valid.
19. We have:
(z+y+2P=2+y + 2+ 322 (y + 2 +
+ 3y (x + 2) + 32% (x + y) + baya.
Hence
(r+y+2°—2—y—2=3{2% + 2% +yz + ¥’z +
+ 2%z + 2%y + 2ayz} = 3 {z (2 + y* + 2zy) +
+2@+yY+wy@+y}=3@+y{fz@+y +
+24ay}=3@@+y) @=+2H+2.
Thus,
(x+y+22—2—yP —2=3@+y @+2 ¥+ 2.
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20. We have
@+y+2P=2+pP+2+3ay@+y+2+
+3xz(z+y+2+3yz(x+y+2)—
— 3aya.
Consequently
B4+ PP+ -3zyz=(@@+y+2°2—3@+y+2 X
X (zy + 2z + y2) = (x + y +9) X
X (2 + y? + 22 — zy — 2z — y2).
2. Putat+b—c=2z, b+c—a=y, c+a—>b=
= z. It is readily seen that + +y + 2 =a 4+ b + ¢ and,
hence, we have to simplify the following expression
+y+2—2—y -2
On the basis of Problem 19 we have
E+y+2P -2 —yP -2 =3@@+y@+2y+2
But z + y = 2b, x 4+ 2z = 2a, y + 2z = 2¢, therefore,
(a@a+b+cP—(@+b—¢c —(b+c—a)P—
— (¢ + a — b)® = 24abec.
22. On the basis of Problem 19 we have
?+P+2=+y+2)-3@+y @+2FH+2.

Putting here t = b —¢, y =c¢c—a, 2 =a — b, we find
z+y+2z2=0, z4+y=>bb—a,
r+z=a—c¢ y-+2z2=c—5b.
Hence
(b—0 4 (c — @) + (a — b)® =
=3 (a — b) (@ — ¢) (c — b).

23. Readily obtained from Problem 20. But it is possible
to use the following method

(a4 b+c)(a®+ b2+ c®) =0.
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since
a+b-+c¢c=0.
Hence,
A+ +E+aba+ b +ac(a+c) +be(d+c) =0.
But
a+b=—c,a+c=—b, b+ c¢c= —a.

Now the required identity is obvious.
24. We have

(a+ b+ 0% =0,
a® + b + ¢ = —2 (ab + ac + be).
Squaring both members of the latter equality, we get
(@® + b® + ¢»? = 4 [a®b® + a’c® + b + 2a%be +
-+ 2b%ac + 2c%ab] = 4 [a®b® + a%? + b%c? +
+ 2abe (@ + b + ¢)] = 4 [a®b® + a2c® + b2c?).

On the other hand,
(a® + b% 4 )2 = a* + b* + c* + 2 (a®V? + a®?® + b%?).
Hence
4 (a®b® + a%® + b%?) = 2 (a® + b% + ¢?)? —
— 2 (a* 4 b* + 9.
Comparing it with the equality
4 (a2b2 _l_ ach + b2c2) —_— (aZ + b2 + 02)2’

we get the required result.
25. Since

(@a—b) 4+ (b—c¢c)+ (c—a) =0,

the result follows immediately from Problem 24.
26. 1° We have (see Problem 23)

a® + b* + ¢ = 3abe.
Whence

(a® + b® + ¢ (a® + b® + ¢ = = 3abc (a® + b% + c?).



Solutions to Sec. 1 127

Then, transforming the left member, we obtain
a® + b® + ¢ + a?? (a + b) + a®c® (a -+ ¢) +
+ b%? (b 4+ ¢) = 3abe (a* + b? + ¢?)

or

a® 4 b® + ¢® — a’b% — a?c?h — L%*%a =3abe (a® + b + ¢?).
Hence

a® + b + ¢ — abe (ab + ac + be) = 3abe (a® + b2 + c?).

But
—2 (ab + ac + be) = a® + b% + 2.

Hence follows the final result.
2° The answer follows immediately from Problem 23 and 1°.
3° Let us write the relations

2 (a* + b + ¢*) = (a® + b% + ¢?)? (Problem 24),
a® + b 4- ¢ = 3abc (Problem 23).
Multiplying these equalities, we find
20a + 0"+ " + a®b® (a + b) + a3 (a + ¢) +
+ b3 (b + ¢)] = 3abe (a® + b2-+ A2,
Hence
2[a” - b 4 ¢ — a®b’c — a*cPb — bicPal =
= 3abc (a® + b2} c?)?
or
2 (a® + b7 + ") — 2abc (a®h? + a?c® + bi?) =
= 3abe (a® + b + ¢%)2.
But
a?b? + a®c® | bi® = :—i(a2 4+ b% -+ ¢?)? (Problem 24).

Therefore
2(@ + b+ ) = 5 abe (a® + b* + )2

IO

Using the result of 1°, we [inally get the required relation
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27. For the sake of convenience let us introduce the sum-
mation symbol. And so, we put
h=n

a1+a2+...+an=h§1 oy.

Using this symbol, we can now write
R=n R=n

aby+asby+ . .. +anb, = Z apby = a1by |- hZZ ayby.

But it is obvious that

by =(by +bg+ ... Fbp) — D1+ by + ... F bpy)=
= Sp — Sp-1,
therefore our sum takes the following form

R=n—1 R=n

R=n
- LY
aby+ D) ap (Sh—Shet) = abi+ D) apsp— D ansuq+
h=2 h=2 h=3
h=n-—1

+ @nSp — Qo8 = (@1 — a3) §1+ AnSp + hz arSp —
=2

h=n—1 h=n—1
— D puse=(a;—ay) s+ kZZ (ar —ap41) Sk + ansSp =

R=2
(a1~ ag) s+ (az—az) s+ . . . + (@n-1 —an) Sn-1+ AnSn.

28. Readily proved if we remove the brackets in the

left member and use the relation
al+az+... +an:%'s.

29. Substituting into the given expression z’ and y’

for x and y, we find that
A" = Aa® + 2Bay + Cv?,
C' = AP® + 2BPS + C8?,
B' = Aap + B (ab + By) + Cys.
Making up the expression B'2 — A’C’, we easily check the
required identity. :
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30. We have

i=n

i=n i=n
2_17141—' .JP:('I_'P)—Z pi — 2p1~np—2pu

since
np=py+ps+ ...+ pp

Further '
Izpiqz =np— ét (pi—p+p)P=
=pn — g[(pz —p)*+2ppi—p’l=np ~1§ (pi— p)*—
—2p 2 pi+npP=np— En (pi— p)* —np*.
But

np — np® = np (1 «~ p) = npq.
Thus, we get

piq:s + p2q2 + . . . + pngn = npg — (py — p)® —

—(p2—p)— ... — (pn — D)
31. Indeed
1 1 1 1 .1 1
T 2n—1 73 =3 +"'T 2n—1 "1
1 @r—1)+1  (2n—3) 14@2n—1) \
_2—n{ 1-2n—1) 3(2n~— ‘|’ T =1 2n—1)-1 }'

=g {THort sttt 1) =
)
32. 1° It is obvious that
o=ttt b=
—nt[(@—+(5—1)+
+(-3—-1)-|-...+(% 1)]=
—.:n—( + -|—...+";1).

vof ~
oo
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h=en R=n

os,._z Fom=3 S s* (1)

Hence,

—1 —2 1
nsn=n+ (= + 5+ - = )-
33. Add to and subtract from the left member the follo-
wing expression
1 1 1 1
2(z+z st tw)
We get
1 1 1 1 1
l—zts—7t Tt~
1 1 1 1 1 1
=(1+—3‘+?+-~+"27:T)—(—+T+-~+z—n)
1
~(t+5+5+ - Fmog)+
1
2

1
+(—§-+%+---+2,¢) g+t )=
1

~1+ + + + +2n 1+2n_

1
*‘(1+7+?+---+7)2m+m+-“+27
34. We have

11)( 2—1)(1+3a—1)"'x
(1+m)(1_m1:1—):

_ aa—2)3a ... 2n—1) a (2na—2)
T (a—1)2a—1) Ba—1) ... Cra—1)
__tladada...2n—1)aR2a—2)(4x—2)... 2na—2)
 (e—1)2a—1). .. (na—D[(n+Na—1]l(n+2)a—1]. ..[(n+n)a—1]
_ tadadSa... 2n—a(a—1) Ca—1) ... \na—1) Lon
T et a—1] ... [(r+n)a—1] (a—1) (2a—1) ... (na—1) -
1.a-3-0-5-a ... (2n—1)-a
[(n+1a—1] ... [(n+ n)a—1]

(

X

2",
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But

n__ 1-2.3.4.5...2n p
1:3:5 ... (2 —1)-2"= 50 2o

1.2.3.4.5 ... 2
123 ... n 2 =41 (n+2) ... 2n

wherefrom we obtain the required identity.

35. Let a << x << a + 1, where a is an integer. Subdivide
the interval between a and @ + 1 into n parts. Then z will
lie in one of these subintervals, i.e. we can find a whole
number p (0 << p << n — 1) such that

1
a+-;—<x<a—}——g%——.

Therefore

at p-{—:——1< +nn1 <a+p-r{l—n
Hence
[x] [z—}—%]: =[x—}— n—f:_1] a
[+ ] = =[s+ 22 | =at1.
Consequently

et [+ |+ A [a 25 | =
=(n—p)a+p(a+1)=an+p-
On the other hand, from the inequality

a-+-— \x<a+ p+1
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we get

an + p<nzx<<an + p + 1,
hence,
[nz] = an + p,

and the formula is proved.
36. We have

cos (a + b) cos (a — b) =
= [cos a cos b — sin a sin b] X
X [cos a cos b + sin a sin b] = cos? a cos? b —
— sin? a sin®? b = cos? a (1 — sin? b) —
— (1 — cos? a) sin? b = cos? a — sin? b,
37. Expanding the bracketed expressions in the left

members, we easily prove the equalities.
38. We have

(1—sina) (1 —sin b) (1 —sinc) = .
(1 —sin%a) (1 —sin? b) (1 —sin2¢c)
~ (1-Fsina)(1+sinb) (1+sinc)

__cos?acos?bcos? ¢
cosacosbcosc

=cosa cosbcosc.

39. Multiplying both members of the given equality by
(1 4+ cos ) (1 4 cos B) (1 + cosy),

we get

[(1 + cos &) (1 + cos B) (1 + cos y)I? =

= sin® a sin® P sin? y.
40. Using the formula
sin z cos y = —;— [sin (z + y) + sin (z — y)],

we get
2 cos (@ + P) sin (& — B) = sin 2 — sin 2§,

2 cos (B + y) sin (B — y) = sin 2f — sin 2y
and so on. Hence follows the identity.
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41. Using the formula

sin z sin y ———%[cos (x — y) — cos (x + y),

we get the identity
(cos 2b — cos 2a) (cos 2d — cos 2¢) +
+ (cos 2b — cos 2¢) (cos 2a — cos 2d) +
+ (cos 2b — cos 2d) (cos 2¢ — cos 2a) = 0.

Let cos2b = a, cos2a = f, cos2d =y, cos2c = §,
then

(@—PB(y—98 +@—8 B —vy)+(@—1y) (O —p) =
=@—PHy—8 +t@—y+y—08B—y) +
+(@—v 6 —p) =(@—p)(y—290 +
+@—yYP—-—v+—98®B—y +

+ (@ —y) (6 —p) =0.

But (@ =B (y—8) +(y—8PB—9y) =@{—29 (a—1y)
and (@ —y) (B —7v) +(@—y)0 —p) =(@—y)0—1y);
hence the required sum is equal to (¢ — vy) (y — 8) +
o6 =y =0,
. 1° Summing the first two cosines, we get

2 cosycos (B — a); the sum of the second iwo cosines
yields 2 cos (@ + B) cos y. The further check is obvious.

2° Analogous to 1°.

43. We have

sin (A —l—-—?—) -+ cos (A —|—Tf) =sin (A_|_ %) +

%cos (-g——A —~%) .

With the aid of a circular permutation we obtain (denoting
the transformed sum by §)

-+ sin (-TZL—A —%) =2sin

—1‘/—:—- cos( A——)+cos(—2‘——~B———i—)+
-|-cos ——C——'Z—) 2cos(%—#—3'gc)x
A—

Xcos( 3 —|— B-gc ) -+sin (—2——{—04—%).
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Making use of the relation A4+ B-+C=mn, we can show
that

—an(F45+4)

44. Carrying out some transformations analogous to the
previous ones, we obtain the following result

. A . B . C A B C
sin —- + sin —— +-sin —— 4 cos -+ cos -+ cos 7 =
Y 7 C 7 B 1 A
:41/2005(?—!—?)COS(—8——F-—8—)COS(T+?)'
45. We have
sin 2a = 2 sin a cos a,

sin 4a = 2 sin 2a cos 2a,
sin 8a = 2 sin 4a cos 4a,
sin 2" @ = 2 sin 2" g cos 2""1a.

Multiplying term by term and dividing both members by
the product

sin 2a sin 4a . . . sin 2" g,
we get
sin 2" a = 2" sin a cos a cos 2a . . . cos 2""1ga,
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whence
cosacos2a ... cos 2"—1a=—;ln££la—
sina
46. We have
. 2n .om 1 . An 2= 27
smﬁ_2san5—cos—1?, san—Zsm 15 £0S -y
s—8— 9 i ﬂ_co—i_n . 16n_2.8n _8n_
in—z=2sin—zcos gz, sin—z =2sin -z cos 4.

Multiplying the equalities and noting that sin—1165n =

I 1 n
= —sin——, cos —coS——, we find

on
15’ 16

15
cho ch lmc LE |
08 75 ©08 15 08 15 C08 5 = o1 -
Further
cos S 4
ST =2
and
.n_ﬁ_n‘__z . 3 co 3n . 12n —9g 6n 6
S1 15 = smﬁ 8-1?’ Sin —— 15 = m 15 0S ——— 15
Hence
c 3n 6n 1
08 75 " CO0S 5" =37

The rest is obvious.
47. We have
tan (A+4-B) _ sin(A+4B)cosA sin(244-B)4-sinB 3
tan A ~Cos(Af B)ysind sin(24+B)—sinB 2 °

48. From the given relations we get
sin 2B = 5-sin 24,
3sin?A =1—2sin? B = cos 2B,

hence
cos (A 2B) =cos A cos 2B — sind sin 2B =

= C0S A-3sin2A——g— sin A sin 24 =0.
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49. We have
2 cos a cos @ = cos (a + @) + cos (a — ).
Consequently the expression under consideration is equal to
cos? ¢ + cos? (a + ¢) — [cos® (a + ¢) +
+-cos (a + @) cos (a — ¢)] = cos® ¢ —
— cos? a cos? ¢ + sin? a sin? ¢ = sin? a.
50. We have, for instance,
a* 4 a't 4+ a"® = cos® ¢ cos® P + sin? ¢ sin® P cos® § +
+ cos? ¢ sin® 1 + sin® ¢ cos? | cos® § 4 sin? ¢ sin? §

(the doubled products in the first two squares are cancelled
out). Hence

a® + a'* 4+ a" == (cos? ¢ cos*p + cos? ¢ sin® ) +
+ (sin? @ sin? ¢ cos® & + sin? ¢ cos® cos? 8) +
+ sin? ¢ sin? § = cos® ¢ +
-+ (sin® ¢ cos® § + sin® @ sin® §) = 1.

The remaining equalities are proved similarly.

SOLUTIONS TO SECTION 2

1. Rewrite the identity in the following way

3 (2p3—¢3)3 3__ 3 (p® —2¢3%)3

e A N PR
It is evident that the right member can be obtained from
the left one by permuting p and ¢. Let us reduce the left
member to such a form, wherefrom it would be seen that
after the permutation its value remains unchanged. Then
the validity 8f the identity will become clear.

We have

?+q

3 . 9p3g3
et (PP )P+ (2P — )%} = e (P + ¢ — POg).
(P34 ¢3) (P +93)
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2. We have

pP+¢ t 1 6pta) _
(p+9)% p3¢3 + p+q)4 ( + q2 )+ (p+q)5pq o
_ PP—pg—¢? 3 2y

T (p+9)?% P3¢ + (p+ )t ( p? + + )—

_ pP—pat¢® 3 1 1 2
EETETY T, ( T )

P
p2—pg -+ ¢* 3 1

ToT o AE VT T o 0 iR

X A{p*—pa+¢*+3pg}=—55 -

3. Grouping the last two terms of the sum, we get

2 q3—p3+ 2 9—p _
(p+9* p3¢ (P+q)* pq?

__2(g—p) } 2(g—p)
I VENLY=rS) (P*+¢*+2pg) = (p+9)2p3g®°
Adding now the first term, we find
1 q4—p4+ 2(g—p)  _ g—p

(p+9® pigt
4. We have to prove that

14z 14+y 142 -1
1—z 11—y 11—z

(p+9)2 p3¢3 — pigt

Replacing z by its expression, we find 1+I = %. Since

y and z are obtained from =z by means of a circular
permutation of the letters a, b, ¢, we have

1+y b
1—y ¢’
1+z ¢
1—z ~ a

Hence, the required identity is obvious.
5. We have

at+btct+d e—b4c—d
at+b—c—d  a—b—ctd "’
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e A _C A+B _C+D
But lff—j, then A8 ~ =D
there exists the second of these equalities, then the first
one exists as well. Reasoning in the same way (putting
A=a+b+c+d, B=a+b—c—d, C=a—b+t+c—d,
D=a—b—c¢+ d, we find

and conversely if

alt-b _ a—b or a-t-b — ct+d
c+d c—d a—b c—d
Hence
a c a b
T-ad T

6. The denominator has the form
bey? + bez® — 2beyz + acz® -+ acx® — 2acxz + abx® +
+ aby® — 2abzy = c (ax® + by®) + b (az® + cz®) +
+ a (cz® + by?) — 2bcyz — 2acxz — 2abxy =
= (a + b + ¢) (ax® + by?® + cz?) — c*2® — bPy? —
— a?x? — 2bcyz — 2acxz — 2abzy = (a + b + ¢) X
X (az® + by? + cz%) — (ax + by + c2).

Since, by hypothesis, ax + by + ¢z = 0, the denominator
turns out to be equal to

(@ + b+ o) (aa® + by? + cz2),
and our fraction is equal to
1
afbte ”

7. Reduce to a common denominator the expression on
the left. The numetator of the fraction obtained will be
equal to

z%y%2® (a® — b%) + b2 (2% — a?) (y® — a?) (22 — a?) —

— a® (2® — b (y* — b (2—DP).
It is obvious that

(a® — a?) (a® — y?) (a® — 2%) =
—_ aB — (x2 + y2 _'_ z2) a4 + (x2y2 + x2z2 + y2z2) a2 .
— 2%y,
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Hence
(82 = a?) (b — ) (b* — ) =
=00 — (& 4yt ) 0+
+ (22y? + 222 + yP2®) b® — a2y,
Substituting these expressions into the numerator and

performing all the necessary transformations, we obtain the
required value of the fraction.

1 1 1
8. So= (a—b)(a—c) + (b—a)\b—c) + (c—a)(c—b) ~

Reducing the fractions to a common denominator, we have
1

So= T a— =0 {b—c)—(@a—c)+ (a—b)} =0,
a b c
Si=Tmhe—a TToma0—g T Tmae—n
1
= GHE—9 0= {a(b—c)—b(a—c)+c(a—b)}=0,
a2 b2 c2

Sy =

(a—b)(a—c) + (b—a)(b—rc) + (c—a) (c—b)

(a—b)(aic)(b—-c) {@®(b—c)—b"(a—c)+ ¢ (a—b)}.

Consider the numerator.
We have
a?b—c)—b(a—c)+ct(a—0 =
=ab(a—b) —c(a®—b®) +c(a—0b) =
=(a—0b)(ab—ca—cb + ) =
=@—>bla®d—c —c—2o)l=
=(a—0 (b—c¢)(a—c),

wherefrom it follows that S, = 1. S;, S, and S; can be
computed analogously, but we shall proceed here in a some-
what different way.

It is easily seen that there exists the following identity

z—a)(z—>b(x—c)=2*—(a+ b +c)a? +
+ (ab 4+ ac + be) x — abe.
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Putting, = a, £ = b and = = ¢, in turn, we get the fol-
lowing equalities
a —(a+b+c)a®+ (ab + ac + be) a — abe = 0,
B —(a@a+b+c) b+ (ab + ac + be)b — abe = 0,
S —(@a+b-+c)c*+ (ab + ac + be) ¢ — abe = 0.

Further, divide the first of them by (a — b) (@ — ¢),
the second by (b — ¢) (b — a) and the third by (¢ — a) X
X (¢ — b), and add them term by term. Then

Sz —(a+b+¢) Sy + (ab + ac + bc) S — abe Sy, = 0.

But since it is known that S, = §; = 0, §, = 1, we have:
S3 =qa + b + C.

To compute S, let us take the preceding identity and
multiply its members by z. We obtain

z@x—a)(z—0b(x—c)=2*—(a+ b+c¢)2®+
-+ (ab + ac + bc) 2 — abex.
Proceeding analogously, we find:
S,—(@a+b+c¢)Ss+ (ab+ ac + be) Sy — abe §; = 0.
Hence
S,=(a+b+¢c)S;s—(ab+ ac + bc) S, =
=(a+b+¢)?—ab—ac— bc =
= a2 + b* 4+ ¢ + ab + ac + be.

Likewise, for computing S5 (multiplying the original iden-
tity by z?), we find

S;—(@+b+¢)S,+ (ab + ac + be) S3 — abe S, = 0.
Consequently
Ss=(a+bd+c)(a®+ b2+ c®+ ab + ac + be) —
— (ab 4+ ac + be) (a + b + ¢) + abec =
= (a+ b+ ) (a® + b+ c®) + abc =
= a3 + b® + ¢ + a?b + a% + b%a + bi +
+ c%a + ¢*b + abe.
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9. This problem is solved analogously to the preceding
one. Namely, the equalities So = S§; = 8§, =0, S3=-1
are established by a direct check; and to compute S, we
may resort to the following identity

@—a@—0b@x—c@x—d=
=zt —(a+ b+ c+d) 2+
+ (ab + ac + ad + bc + bd + de) 2 —
— (abe + abd + acd + bed) x + abed
Hence
S,=@+b+cldSs=a+b+c+d

10. Put as before

am bm cm
Sm=

T (a—b)(a—c) + (b—a) (b—rc) + (c—a)y(c—b) ~

Let us take the first term of our sum o, and transform it

m (@a+b)(a4c)  (a4b4c)am+ifam-L.abe
R s @—b)@—c)

Making use of a circular permutation, we get similar
expressions for the second and third terms of o0,. Adding
now all these terms, we find: 0, = (a + b + ¢) Sp+y +
+ abe S;,_1. Hence (after some transformations)

op=(@+b4c)Sy+abcSo=a+b+c
(Se =1, S =0),
o, =(+b+c)Ss-+abcS = (a+ b+ )3
since S3 =a + b + ¢, §,=0,
o;=(a+b+¢c)S,+abc S, =
= (@ + b+c)(@®+ b+ c* + ab -+ ac + be) + abe,
o,=(a+b+¢)Ss+abcS; =
=@+ b+c)l(a+ b+c)(a®+ b+ ¢ + 2abel.
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11. Transform the left member of our identity in the
following way

(a—a)(a—B)(a—7) (b—a) (b—P) (b—1%)
abe { T @—ba—0 T -0 0b—ab—c
+ (c—a)(c—=B) (c—¥) + 0—a)(0—PB)O0—7)  aPy
(c—0) (c—a) (c—b) (0—c) (0—a) (c—0) abe
Consider the first four terms of the sum in braces. Expand-
ing the numerator of the first term in powers of a, we get

@ — (x+ B+ v a®+ (afp + ay + By) a — aPy.

Performing an analogous operation with the remaining
three terms and adding them, we find that the sum of the
first four terms is equal to

S; — (¢ + B+ v S, + (2fp + ay -+ By) Sy — aPySo,

where S is the known sum (see Problem 9, where it is neces-
sary to put d = 0). Proceeding from the results of this
problem, we find that the sum of the first four terms under
consideration is equal to unity, and, consequently, the
sought-for expression takes the form

abe {1 ——Zf—f = abc —afy.

12. Consider the following sum:
S, — at + pe ,
T Pe—nE@—"0 ' BP—aB-vE—0
pe &4
= —P =8 G- BB = "
From Problem 9 we have: S, =a + f + y+ 6. Put o =
= abc, B = abd, y = acd, § = bed. Then
al athich
(aa—B) (e —7y) (@—9) = (abc — abd) (abc — acd) (abc — bed) =
a2b2c2
T Tc—=d)(b—d) (a—d)

+

Using a circular permutation, we get analogous expression
for the remaining three terms. Thus, the given identity
is proved.
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13. 1° Transform one of the terms in the following way:
1 1
Tab " ac

(+=7) (+-%)

i —
a(@a—b)(a—c)

1
@

b
| -~
o

Then the required sum is equal to
1\2

J_{ ()

UG- (a7

But (see Problem 8) S, = 1, and, hence, we get:
1 1 1 1

a(@a—b) (@a—c) + b(b—c)(b—a) + c(c—a)(c—b)  abc °

However, this result can be obtained in a somewhat diffe-
rent way. Let us consider the four quantities: a, b, ¢ and 0,
and form S, for them.

We then have

1 1 1
So = s@—bha—a b(d—a)(b—c) LY PRy -, +

1
+ (0—a) 0—b) (0—¢) =0,

since Sy = 0. Hence we get the previous result.
2° Likewise the sum can be transformed as

. ()
D T

e ()
|

(+-7

+

Q“lﬂﬁ

|~

+

N—" 1

T
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And so
1 1 1
a%(a—b) (a—c) + b2 (b—a) (b—c)+ Z(c—a)(c—b)

__abtac+tbe
o a2b2¢2

A similar method can be applied when computing other
sums of the form

1 X 1 1
ak (a—b) (a—c) bk (b—a) (b—c) ¢t (c—a)(c—D)
14. We have '
ak b
(a—0b) (a—c) (a—2x) + (b—a) (b—c) (b—2x) +
ch o _0
L T Py P iy e Y P s
at k=1 and at £=2 (Problem 9).
Hence
ak bk
@Cha—agGe—a T t—aG—a@=b T
c" - i k=1, 2
t oo = Eeae—ne—g =2

15. We have

btc+d _ (atbitctd—2)4(z—a) _

(b—a)(c—a)(d—a) (x—a) = (b—a)(c—a)(d—a) (z—a)
1

=etbtetrd—n g —ga—ae—a

1
+ (b—a)(c—a)(d—a) ~
Applying a circular permutation to the letters a, b, ¢, d

and adding the expressions thus obtained, we find that
the sum in the left member is equal to

A
(a—b)(a—c)(a—d) (a—x) +

1 1
+ (h—a)(b—c)(b—d) (b—u1) + (c—a)(c—0b) (c—d)(c—2)

(@+b-+ec+d—a){

. 1 }
TTa—a @b d—ed—a
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since the second sum equals zero.
It remains only to make sure that

1 + 1 N
(a—b)(a—c) (a—d) (a—rx) (b—a)(b—c)(b—d)(b—zx) '
. 1 n 1 N
T hie—de—2 = [@d=a)d—bh@d—a@d—n
1

+ (zr—a) (z—b) (z—c) (z—ad) =0.
It is possible to reduce these fractions to a common deno-
minator and, on performing necessary transformations in
the numerator, to obtain zero. But we can, however, proceed
in a different way.
Multiplying the left member by (a — z) (b — z) (¢ — z) X
X (d — z), we get
1
(a——b) (a__c) (a—d) (b— x) (C— x) (d_—]’) +
1 ,
+ (b—a) (b—c) (b—d) (a—*.'t) (C——l’) (d—1)+

1
+ e @ b—2) (d—2)+

1
+ A= @—0@d—0 (@—=z)(b—2x) (c—2x) +1.

It is obvious that we deal with a third-degree polynomial
in z. It is required to prove that it is identically equal to
zero. For this purpose it is sufficient to show (see the beginn-
ing of the section) that it becomes zero at four different
particular values of z. Replacing z successively by a, b,
¢, d, we make sure that our polynomial vanishes at these
four values of z, and, consequently, it is identically equal
to zero.

16. Transposing z? to the left, we get there a second-
degree trinomial in z. To prove that it identically equals
zero it suffices to show that it becomes zero at three diffe-
rent values of z. Putting x = a, b, ¢, we make sure that
the identity is valid.

17. Solved analogously to the preceding problem. How-
ever, Problem 16, as well as this one, can be solved by making
use of the quantities S, (see Problem 8 and the following
ones).

10—1225



146 Solutions

18. Put

a—b b—c¢ c—a
=y, B =2Z.

The left member of our equality takes the form

(@+y+a) (F+o+5) =3+t 2L
Consider the fraction &IZ We have
e (S5 55 iy iy Sk
e 'bz—ﬂ:bcw—a) = (_“"b+c)—
b —(—a—b—c+2c) = ,
since a4-b-+4c¢=0. Using a circular permutation, we find
e e @b 1),

But if a+ b4 ¢=0, then a® + b + ¢ = 3abc (see
Problem 23, Sec. 1). Consequently
y+z z+z | r-ty
z + y + z 6,
and the equality is solved.

19. Miltiplying the given expression by (¢ + b) (b + ¢) X
X (¢c+a), we get (@a—bd)(a+¢c)(b+c)+ (a+c) X
X(@a+b(d—c)+(a+d(—a)(+c) +
+ (@ —b) (c —a) (b — o).

This expression is a second-degree trinomial in @ which
becomes zero at @ = b, a = ¢ and @ = 0 and, consequently,
is identically equal to zero, i.e.

a , (a—b)(b—c)(c—a)
cta +(a+b)(b+c) (c+a)
We assume here b = c. If b = ¢, then it is easy to make
sure directly that the identity holds true.
20. We have
b—c  (b—a){(a—¢) _ 1 1
(a—b)(a—¢) (@a—b)(a—c)  a—b a—c

a—b , b—c c—

a-+b —'— b+c+ =0.
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Treating the remaining two terms in a similar way, we
arrive at the proposed identity.
21. Answer. 0. Solved analogously to Problem 19.
22, It is required to prove that
dm(a—b) (b—c)4-bm (a—d) (c—d) _ b—d _
cm (a—b) (@a—d)+-am (b—c)(c—d) a—c

Reducing to a common denominator, let us prove that
the numerator equals zero. However, if the numerator
is divided by the product (¢ — ) (a —c)(a —d) (b—¢) (b —
—d) X (c — d), we get the following expression

am bm
(R s Y e S o Y s y e
cm dm
T = =8 T @ @—a@—0
At m =1, 2 this expression is equal to zero (see Problem 9).
23. Let us first prove that

oz z(@—oy) z(z—oy) (@—ay)
1 oy + oLy0lg 0Lq0la0l3 +.F
(=1 z(E—a)(@—ap) ... (T—any) _
' a0y « - - Op
—(__ 4\ (r—ay) (z—ag) ... (z—an)
=(=1) Q40 + .+ Qp ) (*)

Likewise, it is evident that the second bracketed expression
is equal to

(Tt o) (z+ag) -.. (4 an)
o0l - -+ On :
And the product of the bracketed expressions yields

oy (#2—ad) (22 —a)) ... (2—al)
(=1 ; afoc%..z. ad '

Replacing here x by z? and a; by o} and applying the
equality () in a reverse order, we get the required identity.
24. Given

(Bt )+ (2250

+ (= 1) =0 (%)
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The first bracketed expression is equal to

(b—c)2—a> (b—c—a)(hb—c a)
2be - 2bc ’

the second to
(a—c)2—b2  (a—c—b)(a—cHb)
2ac - 2ac :

Likewise, the third one takes the form

(a+b)2—c2  (a+4b4c)(@af+b—0c)
2ab - 2ab :

Consider the sum of these expressions
__(a+b—c)(@at+c—b) __(a+4b—c) (c+b—a)+

2bc 2ac
(atb—c)(atb+tec)
+ 2ab =
- a—;abbc—c {c(a_l_b_* C)_b(c+b—a)—a(a+c_b)}:

__ (@+b—c)(c+a—b)(c—a-+b)
- 2abc :

Thus, we are given that

(atb—c)(atc—b)(c+b—a) 0
2abc -

wherefrom follows that at least one of the factors in the
numerator equals zero. Suppose a + b — ¢ = 0; then all
the three bracketed expressions in the equality () are equal
to zero, and, consequently two of the given fractions are
equal to 1, while the third one to —1. The remaining
two possibilities yield the same result.

25. Reducing the original equality to a common deno-
minator and cancelling it out, we get (after some trans-
formations)

@+b)(a+c)(b+c)=0. (1)

But the second equality (which is to be proved) can
also be reduced to the form

(@™ +b™) (a™+c™) (b"+ ) =0. (2)
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It is quite obvious, that with an odd » equality (2)
follows from (1), since if, for instance, a4 b=0, then
a=—b and a"+b"=0a"4 (—a)"=a"—a"=0.

26. Rewrite the given proportion in the following way

(bz+-cy)yz _ (cztaz)zz  (ay-+bz)zy
—azx -+ bytecz ~ ar—bytecz aztby—cz °
. A _C E A+C
But from the proportion FT=F=7F follows BrD =

C+FE AVE ey s . A
=DrF — BTF (1t is easy to check, putting 5=

=—=£—=7» and expressing 4, C and E in terms of A,

B, D, F).
Therefore we have
c(e®+y?)+zleztby)  a(z®4yH+z(bytea)

c a

_b (2 1a)dy (cad-az)
- L :

Subtracting 22 + y® + 2z from each term of this equality,
we get
z(az-+-by—cz) _ z(by+cz—ax) _ y(cz4azx—by)
c - a - b :

Take the original equalities
ay+bx bz+cy cx+az

z (azx + by — cz) = z(—aztbytcz)  ylaz—bytez)
Multiplying these equalities, we find

ay4bz  bztcy _ cxtaz
c ~—  a b '

Hence
¢ = (ay + ba) p,
b = (cx + az) p,
a = (bz + cy) p.

Multiplying the first of these equalities by ¢, the second
by b and the third by a, and forming the expression 4% 4
+ ¢* — a?, we find b% 4 ¢? — a? = 2pbez.

Analogously, we get

¢® + a* — b* = 2pcay, a® + b* — ¢® = 2pabz.
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Hence, finally

z _ Yy _ z
a2 c2—a?)  b(a2f c2—b?)  c(aZfbE—c?)

27. Since a + b + ¢ = 0, we may write
(@ + b+ ¢) (ae + bp + cy) = 0.

Expanding the expression in the left member, we find

a*a + b*p + c®y + ab (@ + B) + ac (@ + y) +
+ecb(B+1vy) =0.
But a +fp=—y, a +y=—f, p + v = —a, therefore
a*e + b*p + c®y — aby — acp — cba = 0, or a’a + bp +
+ ety —abe( % -2 +2) =0, and since + & + ¥ — ¢
(by hypothesis), we have: a’a + b%p 4 c®y = 0.
28. From the equalities
B24+c—a)z=(?+a>—b)y =(a>+ b> —c?)z
follows

x _ Yy . z
1 - 1 - 1 *
b2+c2_a2 02+a2_b2 a2+b2_c2

Put for brevity
24+ c*—at=A4, 24+ a?—b =B,a>+ b —c?="C.
It is evident that our problem is equivalent to the follow-

ing one: if the equation 2® + y® + 22 = (z + y) (z + 2) X
X (y + z) has the solution

r=a, yYy==5, z=mc,
then it also has the following solution

1 1 1

=74 ¥=p» =7

We know the following identity (see Problem 19, Sec. 1).
Et+ty+2 -2 -y -2 =3@+y @+2@F+2).
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Using this identity, we can easily prove that the equalities

B P 2=+ (+2) Y+ 2, 1)
+y+2a=40EC+yP+7) =

=4@+y)@+2)y+2, (2

@+y—2(@+z2—y Y +2z—2)=—brys )

are equivalent, and the existence of any of them involves
the existence of the remaining ones. Thus, it is sufficient
to prove that

(At = () () (32
i.e. that
(AB+AC +BC®* =44 +B)(A+C) B+ C)-ABC.
But
A+ B=2?% A4-+C =2, B+ C=2a
Therefore we have to prove
(AB + AC + BC)® = 32a%?%*-ABC.
Let us first compute 4B + AC + BC, and then ABC.
We have
AB + AC +BC =A B+ C) + BC =
= (b® + ¢® — a? -2a® + la® + (b® — )] X
X [a® — (b2 — )] = 2a?b* + 2a%c® — 2a* +
+ at — bt — ct + 2b%2 = —at — bt — ct |
+ 2a%b? + 2a%? + 2b%* = 4a%b® — (a® + b® — ¢?)? =
=(@—b+e)(—a+b+c)yl@a+b—c)(a+b+o).
By virtue of equality (3)
(@a+c—b(Bb+c—a)la+ b—c) = —4abe.

Therefore
AB + AC + BC = —4abc (a + b + o).
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Compute ABC. Put

a® + b* 4 c® = s,
then

ABC = (s — 2a? (s — 2b%) (s — 2¢%) =
=& —2(@®+ b + ?) s* + 4 (a®b® + a®c* + b s —
— 8a%b%c® = 4 (a®b® + a%® + b%* s — s* — 8a?b?c? =
= s {4a?b* + 4a’c* + 4b%* — (a® + b® + ¢H)?} —
—8a%b%* = — s {a* + b* + ¢* — 2a%b® — 2a%* —
— 20%*} — 8a*%* =s(at+tc—b)(b+c—a) X
X(a-+b—c)(a+ b+ c) — 8a%?* =
= —4abc (@ + b + ¢) (a® + b® + ¢%) — 8a?b%* =
= —4abc {a® + b® +c 4+ a®> (b +¢c) + b2 (a + ¢) +
+ c* (@ + b) + 2abc}.
But
(@+0b)(@a+c)(b+c)=a*+c) +
+ b2 (a + ¢) + ¢ (a + b) + 2abc.
Therefore, by virtue of equality (1), the bracketed expres-
sion is equal to 2 (a® + b® + ¢?).
But, by virtue of equality (2),

2(@ + b+ ) =1 (a+ b+ o

Therefore ABC = —2abc (a + b + ¢)3.

But, as has been deduced, AB + AC + BC =
= — 4abc (a + b + o).

Therefore,

(AB + AC + BC)® = 32a%b%*-ABC.
29. 1° We have:
P, =a,Pyy+ Pny, P, — P,y =0a,P,y,
On = a,0ny + Qnoay Qn — Qnoz = 2,0,

The left member of the equality in question is transformed
by the following method

Pn+2—Pn . Pn+1—Pn—1 —a Pn+1.a Pn =a .a
Pn Pn+1 n+2 Pn n+1 Pn+1 n+2 n+i.
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We get quite analogously that the right member also
yields @,+1-a,4+,. Thus, the identity is proved.
2° We have

Py Py PpQpy—QpPry _ (—1k1

Qr  Ont QrOn-1 T QrOr—
Putting here k. =1,2,..., n and adding termwise, we
obtain the required result.
3° We have

Pri9Qn_g — Pr_30nt2 = (an+2Pnts + Pp) Qo —
— Pr 3 (On+18nt2 + On) = ais (Prss@noz — ProzQniq) +
+ PnQn—Z - Pn_an =
= iz {(@n1Pn + Poy) Ope— Py (@041Qn + On-)} +
+ (anPr-y + Prg) Qnoz — Pn_s (a0, 1 +0Qp ) =
= Qn1nt2 (PnQpn-z — Pp_20;) +
+ @yi2 (PrnoyQn-2 — Py 2Qny) +
+ ap (Ppo1Qp-gs — Pr2Qny) =
= Qnt18yta {(@nProy + Priy) Qnos —
— Pp3(a,0n1 + Qud)} + Guio(—1)" + a, (—1)" =

= (an+Zan+lan + Ant2 + an) (_1)n.

4° It is known that P, = a,P,_; + P,_,. Therefore

P, Py,_e 1 1
=a = a —_— —_—
e Y i vy ey
Pn—2 Pn—Z
1 1
= q H _ =
n_f'a +Pn—3 n+ an—1+', 1
n-1 Pn—2 . + - + PO —
2+ ——
Py
=a
n+ an-1 + . + 1
: 1
a1‘+a—0
On

The expression for 0 is found in a similar way.
n-1{
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30. On the basis of the results of the preceding problem
we have

Py
P = (@n, @n-q, - .., @) ={a9, as, ..., ap) = 0.

Consequently, P,y = Q,.
31. We have to prove that

Prit—PniPryy=PrPry—P;,
or
Pn+1(Pn+1—Pn_1) :Pn(Pn+2 - Pn)-
But
Ppyv=aP, + Pry, Ppyy —= aPpiy + P.
Consequently,
Ppiy — Ppy = aPy, Ppis — P, = aPyqy.

Hence, follows the validity of our identity.
32. By hypothesis

xr = ————
(a,b,...,l,a,b,...,l)' Qn (avbv-"yl

Or )

x—i 1
a+T+,' 1
T
Thus, = is obtained from % if I is replaced by I+
n

Pn an-i+Pn—2

N T Therefore

+—gl in this fraction. But
n

Pn
(l + Qn ) Pn-l+Pn-2-‘ PnOn ‘I‘Pnpn-l
- 2
(l + gn )On—l+0n—2 Qn“l‘Pn()n—i
n
33. It is obvious that at & = 0, 1 our formula holds true.

Assuming that it is valid at # = n — 1, let us prove that
it takes place also at £ = n. And so, we assume

xXr =

p
b 2 ==t
"TE A T O

n-4
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However, according to the rule for composing P, and Q,,
we have

Pn_y — bn_1Pn_s+an_1Pn_3

On-t  bpyQno+tanyQns3’
where P, 2, Ppn_3, On_s, On_3 are independent of a,_; and
bn_1.
On the other hand, it is clear that the fraction

a4
bt a
n— an
bn—y +T
is obtained from the fraction
b0+ __I_ -
I ol o
by replacing b,_; by bn_,+‘;_"
n
Therefore
an
b0+a_‘+ _ (bn—l + ‘E) Pn_2 —|~an_1Pn_3 _
by + .

a
Qn-y an (bn—l + b_::-) Qn-2+8an-10n-3

bt 'b_n-

a a
bn-lpn-2+an—ipn—3+—lpn—2 Pn—l+—n Pn_z

bp_1@n-a+an- 1Qn—3+ Qn— Qn—1+ Qn—2

— ann—1+anPn—2 — Pp
bnQn-1+ anln-2 Qn

n

34. Denoting the value of our fraction by g—
n

Pl =r, Ql =r _I_ 17
Po=r(r+1), Q=r*+r+1
Using the method of induction, let us prove that
m—1 rn+l_{
Pp=r—y

.1 ’ an

, we have

r—1
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At n = 1 these formulas are valid. Assuming their validity
at n = m, let us prove that they also take place at n =
=m + 1.

We have

Pm+l = bm-HPm + am+lpm-—i~
In our case we find

1 o rm1—1 rm+i__{

m__
Pppyy=(r-+1)r ey R T =

Analogously we obtain that

rm+2__ 14
Qm+1:_r‘_1—
35. Put
4,1
Ur Urq Ur+ Iy
Then we find
__u
o Ur - Uriq
Therefore
1 1 1
'ﬂ_i_if:—T
2 gt
ug+ ug
Further
1 1 1 1 1 1
Z+u2+-{;§;—_u_l+ ug -9 ugtzy ’
where
x,= N
27 ugfugfag
Thus
1 1 1 1 1
PRET T i
ul—_l_ uy— i .
U+ ug - 7o g ug— —22
Ug - ug

Using the method of induction, we also get the general
formula.
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36. Let us denote the fraction

aq a
- 2
by +E-_|_._

. an
o,
P, .
by %, and put the fraction
Qn
94U cicon
1v2%2
ciby + Cabg ¢n-1Cnln
cpbn
P . . P, P,
equal to o It is required to prove that =" =7—for any
n n n
whole positive n.
We have
Py _ag Py ayby .
Q1 by’ Q2 bbgtay’ 777
Pl caay Py cqoaby
Qr  eaby 7 QF  cqeq(bybatag)’ T

We may put Py = ay, Q1 = by, Py = a1b,, Q2 = bib, + ay,
and then the following relations take place (see Problem 33)
Py = bpt1Pn + an+1pn-h

Qn-H = bn+lQn + an+10n—l'
Put

Pl = ciay, P, = cic2a1by;
Qr = c1by, O, = cic5 (biby + ay)
Let us prove that for any n we then have
Py =cicy...c,P,, Qn =cieo...c0,.
Let us prove this assertion using the method of inductlion,
i.e. assuming its validily for a subscript smaller than, o
equal to, n, we shall prove the validity for the subscript

n -+ 1.
We have

Phyy = cotibp 1P + ¢ Cp 10,14 P s
()n+i = cu+1bn+1()l’l‘l'cncn Han—HQ;l—l-
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Hence (with the asumption)
Prvi = cpyibpracics o o Py +
+ Cnlnt1@n1CiCa o« . €y —lpn—i =
= €1Cy « - . Cntt (Bpt1Prn + anp1ln) =
= €€ . . . cn+ipn‘.-1
Likewise prove that
On+1 = €13 « + « Cny1Qni1-
Now it is easy to find that

Pn _ Pn
Qn QO
37. 1° Put
200sx—ﬁ;_ 1 :%_
' 2cosz—-., _ 1 n
2cosx
We have
Py
—>=2cosz.
Q4
Therefore we may put
sin 2z sin z
Py= sinx ’ Qizsinx :
Further
Py 900 T — 1 4cos2z—1
Qs 2¢osx”  2coszx
Consequently, we may take
» __ Sin3z __sin2zx
Py= sinz ’ szsinx :
i “1) x
Let us prove that then P, = El—g—':r-j;—) y On= ~nz 2™ for any n.

Assuming that these formulas are valid for subscripts
not exceeding n, let us prove that they also take place at
n 4+ 1. We have (see Problem 33)

sin(n+1)z sinnzr
Priy=2cos sin z sinz _ sinz sin (n+2) z.
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sin(n41) =z

. and there-

In the same way we find that Qn. =
fore

Py _sin(nitz
Qn  sinnz

for any whole positive n.
2° Let us denote the continued fraction on the right by

Pn We have to prove that

n
Py

Qn =1+b2+b2b3+ . .—|—b2b3. . .I)u.

We have
Py 1 Py byt

1 17 Q 1

Therefore we may take: Py =1, Q; =1, Py, = b, + 1,
Q, = 1. Then, using the method of induction, it is easy
to prove that

P, =14 by -+ bybs+ ...+ bgbs... by,
On = 1]
and, consequently, our equality is also true.
38. 1° We have
sina—4-sinb—+sinc=sin(a+b+4¢) =
= (sina-+sinb)+ [sinc—sin(a4+b+c)| =

. . atb a—b 5 . a-tb at+b+t2¢
=2 sin 5— C0S —5 2 sin 5— COS 5 =
=25ina—+b(cosa—b—cos——a+b+20)=
2 2 2
o tb . atc . bdc
—4s1nTsm 5 sm-—z—).

2° Analogous to the preceding one.
39. Consider the sum

tan a 4 tan b + tan c.



160 Solutions

We have

tana - tan b tanc = sin (a4 b) +sinc:

cosacosb cos ¢

__sin(a+ b)cosc4sinccosacosb

- cos a cos b cos ¢ -

__sin(a--b) cos c4-cos(a--b) sin ¢ —cos (a4-b) sin ¢} sinccosacosb
- cosa cos b cos ¢ -
__sin(a+b4-c)+sinc[cosacosb—cos(a+b)]

- cos a cos b cosc -

sm (a+b+¢)+sin asin bsin ¢
cosacosbcosc

Hence follows the required equality.

40. The equalities 1°, 2° and 3° are easily obtained from
Problems 38 (1°, 2°) and 39 puttinga =4, b=B,¢c=C
anda +b+c=4 + B+ C = n.

Now let us prove 4°. Rewrite the left member in the follo-
wing way

S:tanf;l —{—tan (tan -+ tan = )
But since
A4+ B4+ C=m,
we have
C n A+B\_ A+B 1
Lan-i—_tan(j-———z——)_cot 5 = ATE ¢
tan
2
Hence
tan%—} tang-
S——tan tan &+ =1,
2 tanA+B
since
A B
tn A+B_ tan—i—-i—tan—z—
an ——= A B’

1—tan? tan -
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5° 1ndeed
sin 24 4 sin 2B -+ sin 2C =
=sin24 + 2sin (B 4+ C) cos (B — C) =
=2sinAdcosA + 2sin 4 cos (B —C) =
= 2sin 4 [cos 4 -+ cos (B — ()] =
= 4 sin A sin B sin C.
41. 1° It is necessary to find how a, b, and ¢ are related if

cosa-+cosb+cosc—1—4sin % sin% sin-;—=0.

To this end let us reduce the left member of the equality
to a forh convenient for taking logs, i.e. try to represent
it in the form of a product of trigonometric functions of the
quantities a, b and c.

We have
a-t+b a—b

3 COS——2——=

cosa-cosb=2cos

— 2 2 z_b__ s2 @ . 2_b_
=2 (cos 5 cos® 5 —sin® 5 sin 2),
cosc—1= -—2sin27§- )
Therefore the left member takes the form

28 o2l 9gi28 o0l 9 0 C
2 cos 5 €0s” 3 2 sin 5 sin® 5 2 sin 5

—4sin 2 sin — b sin —=
2 2 2

b . . b .
=2 [coszgcos2-.—)-—(st%smz———J-Zsm sin — b s1n—+
s 2 €\ 2@ o ob (
-+ sin 2)}—2[cos 5 COS Z sin - 2 sin 2 +alll ]_
=2[(cos2 +sm )+s1n })/
X[(cosico i—s'n—‘-’— in b in< | =
5 S 2 1 Pl S1 7) — S1 —2—]—

. a—b . ¢C a-tb A
=2 (cos—2——|—sm7) (cos T—sm—z-)—
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=2 [cosa—;—b+cos (%—-%)J [cos #—cos (%—%)J=
n—l—b—4|—c:_asin n+a2—c—b %

Kt-t+atb—c
4

= —8sin

sin aﬂ_b’zc_n .

X sin
By hypothesis, this expression must equal zero and, conse-
quently, at least one of the factors must he equal to zero. But
from the equality sin @ = 0 follows a = kn (where k is
any whole number). Therefore, among a, b and c, satisfving
the original relationship, there exists at least one of the
four relationships

at+bt+ec=GUk+1)n, a+b—c=(4k—1)n,
at+c—b=Gk—-1)n, b+c—a=(4k—1)n

2° We have (see Problem 30)
tana+tanb+tanc~tanatanbtanc:c%is%% .
By virtue of our conditions
sin(a +b+¢)=0and a + b+ ¢ = kn.
3° Transform the original expression. We have

1 —cos?a — cos®>b — cos’c + 2 cosacosbcosc =
=1 — cos’a — cos® b — (cos? ¢ — 2 cosacos bcosc -+
+ cos? a cos? b) + cos? a cos? b =1 — cos® a — cos®? b —
— (cos ¢ — cos a cos b)? + cos® a cos® b =
= (1 — cos? a) (1 — cos? b) — (cos ¢ — cos a cos b)? =
= (sin a sin b — cos ¢ + cos a cos b) x
X (sin a sin b 4 cos ¢ — cos a cos b) =
= [cos ¢ — cos (a + b)] [cos (@ — b) — cosc] =
at+b+t+c . at+b—c . at+c—b . ct+b—a

53— sin ——5— sin ——5—sin ——.

= 4 sin

Consequently, there exists at least one of the following
relations
a+b+c=2kn, a+b—c=2kn, a+c— b =2kn,
b+ c¢c—a=2kn.
42, Put
a

- —tan P - Y
x_tanj, y—tan?, Z = tan-z—.
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Then

2z 2y 2z
T—5 = tana, 1—_y—2=tanﬁ, T—z =tanvy,
and our problem takes the following form. Prove that

tan o - tan f 4 tan y = tan o tan p tany
it

tan——tan-g—l—tan—tan——]—tan—ﬁ—tan =1.

Rewrite the last equality as
tan—— (tan£+tan ) (1—tan B tan 2) =0.

Dividing both members by 1 —tan E— ta.l

t.‘:ln——tanﬂ-{_Y 1=0, tan——:cotﬂ_"’_ztan(jz‘_ 5-1—?).

Hence

(if tangents are equal, the corresponding angles differ by
the multiple of m) and

a+p+v=2k+1) m.

And co the proposition is proved (see Problem 40, 3°).
43. Put b=tanf, c=tany, a=tano. Then

b—c¢  tanPp—tany
T7b = Irtanprany — 20 B—7)

and, hence, our equality is equivalent to the following one
tan (B — ) + tan (y — @) -+ tan (& — ) =
= tan (B — v) tan (y — @) tan (o — B).

Put
B—Y=x7 Y—Ot=y, OC—ﬁ=z.
Let us finally prove that

tan x 4 tan y -+ tan z = tan z tan y tan z
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if
z+y+2z2=0.
But then we have

tanz4-tany = tan z

tan(x—l—y)-.:—tanz, mx—tan—y—

Hence follows the required equality.

It is obvious, that the last two problems can be solved by
direct transformations of the considered algebraic expres-
sions.

44. We have
_ 8in3a _sina (3—4sin2a) 3—4sin2a
tan 3a_cos 3 cosa (1 —4sin2a) tane 75 a’

Divide both the numerator and denominator of this

: 2 1 2
fraction by cos® a and replace o by 1 + tan® a.
We get
3—tan2a V3 tan « V3—tana

tan 3a = tana = lano

1 —3tan2a 1—V§tana.i+1/3tana.
Hence

tan3a=tanatan(% {—oc) tan (%— )

45. Multiplying both members of the equality by a + b
and replacing unity in the right member by (sin®a 4
-+ cos? a)?, we get
sin‘oc—!—cos"a—{—% sin4oc—|—-% costa =

=sinta -+ cos* a4 2 sin®a cos'z,

whence

b . . a
- sinto —2 sin®a cos%a-{-T costa=0,

T - 2
( ]/i sinzoc——]/—a- cos"oc) =0,
a b

b . 4 a 4
— SN = - COS™ &,
a b
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or
sinfa  costa
a2 =_bT=}"'
Substituting it into the original equality, we find
1

P =T

Therefore

sinfoa | cosda a b . 1
R R RN S VRN (R
46. From the second equality we have
(aycosay + ascosay + ... + a, cos a,) cos 6 —
— (ay sin oy + ay sinay, + ... 4+ a, sin a,) sin 6 = 0.

On the basis of the first equality and since sin 8 5= 0, we get
a; sinay + assinay, + ... + a, sina, = 0. (+)

Multiplying the first equality by cos A and the equality ()
by sin A, and subtracting the second result from the first
one, we have

ajcos (g + A) + azcos (g +A) + ... +
+ a, cos (o, + A) = 0.

47. 1t is obvious that the left member is reduced to the
following expression

(tan p — tan y) 4+ (tan y — tan @) + (tan @ — tan B) = 0.
48. 1° We have

r _r—— $ __i—_f_a___
@ T p—a p  p—a’
Hence
a2 ap(p—a)
ra—r s :
Therefore
. a2 he 2 _r b b
o=t b= le(P—a)Fb(p—b)tc(p—o)}.
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But
sf=p(p—a)(p—0b) (p—c).
Hence

a b c
0=s { =0 —9 T =0 (=9 r=a (p—b)} =

_Jp=b+(p—c) | (p—a)+(p—c) | (p—a)+(p—b)\ _
=N eHe—a T =0k T gm0 S

=2 (ra+ro+re).

2° We have

a’r, b2ry c2re .

0= (a—0b) (a—c)+ (b—c) (b—a) + (c—a)(c—b)
. a2 b2
—S{w—@m—ww—d+w—ww—ow—@+
c2

NPy p

a) (c—b) } :
But (see Problem 9)

a2 b2
@ he—9 G HE_9F—a

c2

_ p?
T o—a =0 r—a (b F—o

Therefore
oW P
(p—a)(p—b)(p—c) 2 s 1
3° We get

B 1 1 1\ __ s(ab+ac-+bc—p?)
ra+Try+re=s (m+17_——5+1)_—(_‘) T (p—a)(p—b)(p—c)

Further
St == (P—a)+b (p—b)+ec(p—0)) =
=% (2p2—a2—b2———c2) —

=%(—-p2+ab+ac+bc).
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The rest is obvioush.
4° Consider the first sum
1 be (p—a)? ac(p—b)2 . ab(p—c)2 | _
2 (a—b)(a—c)+(b—c)(b—a)+(c—a)(c—b) -
be ac ab

1
=% {”2 [(a—b) (a—0) + (®—c) (b—a) + (c—a) (c—b)] -

0=

1 1 1
—2pabe [(a——b) (a__c)+ =y (b——a)+ c—a) (c_b)] +

a b c h
+abe [(a_b)(a_c)+(b—c)(b—a)+'(c_a) (c——b)J }

But (see Problem 8)

1 1 1

(Y s Rl ey e R
a b c

(oY s R s e Y e Rk

Therefore

_ p? be ac ab .
o=&e=na=s to=a o= Te=a=n

further
be ac ab
@a—1) (a—c)+ (b—c) (b—a) + (c—a)(c—b)

1 1 1
= abe { [a(a—b) e SR Yy Sy pey e

1 1
T 0—H0=9 ] +71%} =1

2 1
o= 221
s r2

And so

Let us go over to the second sum. We have

1 a’r, b2ry
0= {(a—b) (7 R sy —
c2re s a?
(c—a)(c—b) f  rerere {(a—-b) (a—rc) (p—a)+

b2 c2

Sy ey o B S e T Y S
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But
a2 b2
@ hE—aa—p  t—at—aG—pT
+ ot £ =0
(c—a)(c-—b)(c—p) ' (p—a)(p—b) (p—c)  °
Therefore
5 S2—0) (P—b) (p—0) | p? _r_ 1
B s P—a)(p—b)(p—c) & 2’
5° We have
arg bry cre .
G:(a—b)(a—c)+(b—c) (b—a)+(c—a)(c-—b)_
a b
_s{w—mm—w@—m"kw—qw—@@—w+
c a
=g ) =~ eoeea +
b ¢
N (Y Y (i el ey e s S
p _ p -
+(p—a)(p—b)(p~0) (p—a)(p—-b)(p—C)}
- sP _P_r
(p—a) (p—b) (p—c) s r’
Further
_ (bFor, (cta)ry (a4b)re
0= (a—b) (a——c)+(b——c)(b——a)—l_(c—a) (c—b)
_ (b+o) (c+a)
= { e=heao=a T T=o=a =5 "

1

(@i b) _ _
+emaemo—a ) =@+t e e t

1 1
'*w—aw—ww—m*’w—mw—ww—a}”

a b
- {(a—«l») (01— 0) (l'-—“)+ (b—c) (b—a) (p—10) +

c
+ =T )
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But
: + : +
(a—0b)(@a—c)(a—p) (b—c) (b—a)(b—p)
1 1
+ (c—a)(c—b)(c—p) +(p—a) (p—b) (p-e):O'

Therefore, the first braced expression is equal 1o
1

(r—9) (p—1) (p—c)
to p_2 Hence

8§
s(@+b-tc) P _2p* _p2_p:_p

T —a)(p=b)(p—0 s s s s 1’

. The second braced expression is equal

o

49. Rewrite the supposed identity in the following way:
sin(fa+b—c¢—d)sin(a — b =
= sin (@ — ¢) sin (@ — d) — sin (b — ¢) sin (b — d).

Using the formula sin 4 sin B = —;—{cos (4 — B) —
— cos (A + B)}, we find
sin(@a+b—c—d)sin (a—b) =

=% {cos (2b—c—d) —cos (2a—c—d)},
sin (a—c¢) sin (a——d)=% {cos (c —d) —cos (2a—c—d)},
sin (b—¢) sin (b — d) = = {cos (c—d) — cos (2b— c — d)).

The rest is obvious.

0 1 2 b+-c¢
o . 2 —_—— — =
50. 1° We have: 1+ tan 5 0~ TTcos0 !’
COs 7

where a4 b4 c=2p.
Hence

1+tan2%—|~1+tan2 —(2'1+1+tan2lg—=

_btot+@tot@td) _,
P

’
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and, consequently, tan? g + tanz-fg— -+ tan? —éﬂ_—_ 1.

2° tan? S _bte 1=L2=2 Therefore
2 p p

6 ? Y _ 1/ (p—=a)(p—b) (p—c)
1an§—tanTtan-2——]/ 3 .

But, as is known

A B 4 _l/(p—a)(p——b)(P—C)
tan 5 tan 5 tan T = 73 .

0 ) y .. A B c
Hence, tan 5 tan - tan 5 = tan 5 tan 5 tan 5 -

51. The left member of our equality can be rewritten as

1 . .
sin (@ —b) sin (a —¢) sin (b —c) {sin (b—¢)—sin(a—c)+
~+sin (a—b)}.

But we have

sin (b—¢) — sin (a —¢) = 2sin "2 cos “E5=2

Therefore, the braced expression is equal to

b—a bta—2c . b—a b—a
5 COS 5 ——2sm-2—cos 7=

=4 sin b—asinb—'csin ce
- 2 2 2

2sin

But
sin (a—b) sin(a—c¢)sin(b—c)=

=8 sin 2= sin @—Cqin2=°¢ cosa_bcosa—ccosb—c
- 2 2 2 2 2 2

The rest is obvious.
952. 1° The fraction in the left member has the form

1
sin (a—b) sin (a—c) sin (b—
+sin bsin (c—a) -+ sin ¢ sin (a —b)} =

1 . .
= sin(a—b)sin (@a—c)sin (b—c) - Q) sinasin (b—c),

5 {sin asin (b—c)+
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where summing is applied to all the expressions obtained
from the one under the summation sign by means of a
circular permutation. But

sin a sin (b —c)=%[cos(a—b+c)—cos(a—|—b—c)].
Therefore we have
Z sin a sin (b—c):%{cos(a—|—c—b)—cos(a—|—b—c)—|—

+cos(b+4+a—c)—cos(b+c—a)+cos(c+b—a)--
—cos (c+a—12)}=0,
and our identity holds true.

2° Thegiven identity can be proved similarly to case 1°. But
we can get the same formula immediately from formula 1°,

replacing aby 5 — a, b by 2 — b, and, finally, ¢ by > — c.
D) P 2

53. 1° We have to prove that ) sin asin (b — ¢) X

X cos (b + ¢ — a) = 0. Here summation is applied to all
the expressions obtained from the original one by means of
a circular permutation. But

sin a sin (b—c):%{cos (@a—b+c)—cos(a+b—c)}.
Therefore
Z sina sin (b —c) cos (b—}—c—a):% Z cos (b+c—a) X
X cos (a —b+c)———;— Z cos(@+b—c)cos(b+c—a)=
=% Z [cos 2¢ + cos (2b — 2a) — cos 2b — cos (2¢ — 2a)] =
=—1—{cos2c—cos 2b + cos 2a — cos 2¢ + cos 2b —

— c0s 2a -} cos (2b — 2a) — cos (2¢ — 2a) + cos (2c — 2b) —
— cos (2a — 2b) + cos (2a — 2¢) —cos (2b—2¢)} = 0.

2° Can be obtained from 1° by replacing a by —g——a, b
by —g——b and ¢ by %——c.
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3° Likewise we find
>\ sinasin (b—c¢)sin (b+c—a) =
— 2 {sin2 (b—a) +sin 2 (c—b)+ sin2 (a—0)}.
It only remains to show that

S {sin2(0—a)+sin2(c—b) +sin2(a—c)) =

=2 sin (b-—c) sin (¢ — a) sin (¢ — D).

4° Proved analogously to 3° or by replacing a by %——a,

b by g——b and ¢ by —g——c.
54. 1° We have

>\ sin® A cos (B—C) = D) sin® A sin A cos (B—C) =

= 5 S\ sin? A {sin (A+B—C +sin(A—B+C)).
But since 4 + B + C = n, we have
S\ sin? A cos (B — C) = 3! sin® 4 (sin 2C + sin 2B) =

= D\ sin® 4 (sin B cos B + sin C cos C) =

= sin? A4 sin B cos B + sin? 4 sin C cos C +

-+ sin? B sin C cos C + sin? B sin A cos 4 +

-+ sin? C sin 4 cos A + sin? C sin B cos B =

= sin 4 sin B (sin A cos B + cos 4 sin B) +

+ sin A4 sin C (sin A cos C + cos 4 sin C) +

+ sin B sin C (sin B cos C + cos C sin C) =

= sin A4 sin B sin (A 4+ B) + sin 4 sin C sin (4 + C) +
+ sin B sin C sin (B 4+ C) = 3 sin 4 sin B sin C.
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2° We have
Z sin A sin (B—C) = D) sin? A sin 4 sin (B—C) =

= Z sin? A sin (B+C) sin (B—C) =

_—_% ) sin? 4 {cos 2C — cos 2B} = D) sin? A (sin? B —sin*C) =

1 1
sin2C  sin2 B

=sin? Asin® Bsin?C ), ( ) =sin® Asin? Bsin?C x

1 1 1 1 1 1
X {sinZC’_sinZB-i"sin2 A~ sin2 C+si112B_ sinZA} =0.
55. 1° We have

sin 3z = 3 sin r — 4 sin® z.
Therefore

D) sin 34 sin® (B —C) = >| sin 34 {3sin (B—C)—

N N

—sin3(B—C)} == >\ sin3(B+C)sin (B—C)—

— 1 N sin3(B+C)sin3(B—C) =

=2 3 {eos (2B+4C) — cos (4B +2C)) —

—% 2 (cos 6C —cos 6B) =

= 2 {c0s 2 (B +2C) — 052 (C+ 2B) 4 cos 2 (C + 24) —
— 082 (A+42C)+cos2(A+2B)—cos2(B+24)}—
— %{cos 6C —cos 6B+ cos 64 —cos 6C+ cos6B—cos6A4}.

But
cos (2B + 4C) = cos (2B - 44),
cos (2C + 4B) = cos (2C + 4A4),
cos (24 + 4C) = cos (24 + 4B).
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And so, we finally have
D) sin 34 sin® (B — C) = 0.
2° Since cos 3z = 4 cos® x — 3 cos z, we have

2 sin 34 cos? (B—C)=
=2 3\ sin3 (B4 C) {cos 3 (B—C) +3 cos (B—C)} =
=7i- D) sin3(B+C)cos3 (B—C)+
—{-% D) sin3(B+C)cos (B—C)=
=L+ 3 (sin 6B+ sin 6C) +% S {sin (4B+2C) +

+sin (2B +4C)) =  (sin 64 + sin 6B 4 sin 6C) =
=sin3A4 sin 3B sin 3C.

SOLUTIONS TO SECTION 3

1. The validity of the given identity can be checked, for
instance, by the following method. From the formulas (x)
(see the beginning of the corresponding section in “Problems”)
we get

VI T/ T V- Y T
Therefore we have
= T\ 2
2+V3 _ ( %Jrl/%) _U+Vvyva
VIRVt VE ya)/3ay/ L 2V

_ U4V Ve 14V
2V3(1+V3) Vs




Solutions to Sec. 3 175

Likewise we get
2-V3  _ V+V3) _
VYRS viy/ ey 3

T ) o I e

2(3—7V3) Ve
Consequently
( 2+V3 2—V3 )2:(1+V§+V§—1 )2___
Vi+Ve2+13  Vi-Va-V3 Ve ' Vs
_(2V3By2_,
- () -2

2. Let us prove the proposed identities by a direct check.
1° Put /2 = a, i.e. a® = 2. It is required to prove that

1 —a+a®)? =9 (a—1).

We have
1 —a+a?)? =1+ a®+ at 4 2a® — 20® — 20 =
=3 (a? — 1),
since
od = 2, at = 2a.
Hence

1—a+a?®=3@—a-+1)(—1)=
=3@@—a+4+1)(x+1)(a—1) =
=3 (@ +1)(a—1) =9 (a—1).
2° We have to prove that
(V2 20-)25)* =9 (/5—7%).
Squaring the left member, we find
Y&+ Y500+ Y 6252 40—2 Y 50 —2 Y 500 =
=Y h4+2 Y5045, 544 5—-2.)50—10 4=
=9 (/5—.4%).
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3° Proved as in the preceding case.
4° We have to prove that

(%/3+1)‘*= 34+2y5
V5—1 3—2V5

vV

Put

cu

=a.
We have

V541 )4_(a+1)4_1+4a+6a2+4a3+a4_
({/3___1 T (a—1)* T 1—bdo+6a2—4adtat

342043024 203
T 3—20+3a2—2a3"

since at=2>5.
Further

Y5+1\* 342 4a2(3+2a) 3420 3+2{/‘5’
( ¥5—1 ) T 3—-20+4a2(3—2a)  3—2a 3—2¥5 °

9° It is required to prove that

(1+y3—=y9) =5 (2—)/20).

Y 3=a, ie ab=3.

Put

We have
1+a—a?)2=1+4a®+ a* + 200 — 2a® — 203 =
=14 20 — a? — 2a® 4 al,

Further
1+a—a® =1+ 30 — 5a® + 3ab — a’.
But
b = 3a, a’ = 3.
Therefore

A +a—a?®=10—>5a% =5 (2 — /' 27).

6° Put /2 = o and prove the first equality which can be
rewritten in the following form

504+ a+ a?)? = (1 + a?)s.
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The right member is equal to
1 4 5022 4+ 10at 4+ 10a’ + 508 + alt =
=51+ a® 4+ 2a* + 2a° + af),

al® = 4,

since
Further
ab =2, af =2a, o =2a3,
and, consequently,
A +a® =501+ a4+ 2a + 4a | 2a7).
It only remains to prove that
1+ a+ a®? =1+ 4o + a? + 20° + 204,

The last equality is readily proved by removing the bra-
ckets in the left member and performing simple transfor-
mations. To prove the second equality we have to show that

ViV 5= (Vi Vit Vi Vi)
or
5(14+y8) =V 16+ 8+y2—1)%
Put

ﬂ =a, a®=2, of =2a, o =2a% af = 2a3
Then we have to prove that
(2t 4+ a® +a —1)2 =51 + a?).
Expanding the left member, we find
1 + a2 4 ab + a® + 2a7 + 205 — 2at + 204 — 20° — 2a,
Making use of the equalities enabling us to replace high

powers of o by lower ones, we find the required identity.
3. Put

4
a

Then
A =akh, B=0bk, C =ch, D =dh.
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Consequently
VAa+VBb+ VY Cc+VDi=VA(a+b+c+d).
But
A+B4+C+D=A(a+b-tc+d
and
A A+B4-C+D
T Taqbyetd
i.e.
— VATETCID
Ve
Replacing /A in the equality
YV Aa+V Bo+V Ce+V Dd =V h(a+b+ctd)

by the found value, we obtain the required identity.
4. Put for brevity

‘3/ax2+by"—|—cz2=A.

We have
3 [ azd byd | ¢z8 . l/ (1 1 1 3/
A= T+T+T= ax (7‘1‘7+7)=$l/av
since
1 1 1
3 . 3 — pyd —_ — —
axd=by’=cz> and z+y+z_1'

Likewise we find

A:yyif and A:z,?/é.
Hence

A 3/~ A 3/ A 3/
=6 T=Vh =V
Adding these equalities termwise, we get

Al +5) =V eV e
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Hence, finally,

A=Y a+7 b+ ¢c.

5. Put
1 1
{4+ —= 11 g
Then
an=0a"+p" bp=a"—f",
where aff = _;_
Prove that
aman—ag_;nz am+n.
We have
Gt — 2220 — (@7 4 B) (2" ) — LA
—_— am+n + Bm+n +aan (aﬂl—n + Bm_n) .
g g
2n .
But
npn 1
a™p" = o
consequently,

Im-n L m+n
ann — B2 =M BT = .

The second relation is proved in the same way.
6. Put

1+V5 _ 1—V5
7 % 75— =B
Then
a+f= 1, ap = —1.
Furthermore

@ —a—1=0 P—p—1=0
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and
Un = -Vg (a - ﬁn)
Proof. 1° We have
un+un—1—‘-‘75 @& —'Bn)+v5 ﬁn-—1)__

= @ ) — "+ ).

Multiplying both members of the equality a?—a—1=0
by a™1, we get
ot+1=a? a®+a™l=qg""

Analogously, it is easy to conclude that
"t =,

Therefore

1
Un+Up-g1= VE:) (@™t — ﬂnﬂ) =Un4t.

2° We have
UpUn-k + Up-1Un-p-1 =

— _;_ {(ak_Bk) (an—k_ﬁn—h) + (ak—l_Bh—l) (n=h-1—Br-h-lyy —
— _;_ {a" + Bn_ akﬁ""‘ - Bkan-k + on-2? + ﬁn—2 — Bk‘la"'k_l —_—

— g1y =
=3 {oc"+a"-2+ﬁ"+ﬁ"‘2—ﬁ" (% + %) —
o ()} =
—5 {antarapprp gt —pr SELE gn B bR } =
=%{ a” a2 — B"ak_lg(gﬁ—i- D —gn Bk-lq(:ﬁdl_ =

=g (@ +am B B,
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since afp+1=0. Then we perform the following trans-
formations

Lo g g = wt (at =) 1B (B g ) )=
=% {an_l (x— ﬁ) + ﬁn_l (B— a)} = a__g—_E (@™ 11— ﬂn_l) _
= _'\/1_5 (@™ —prt) = up_;.

3° Obtained from 2° by putting n =2k, and then repla-
cing k£ by n.
4° We have to show that

B (an—B) — (a" —B)" — (@ — B - (o2 — ") = 0.

The left member is transformed in the following way

5 (@ — o) —am (@ —{—1—-—)—|—3a2"ﬁ"(a2ﬁ+1—a-23)
—3'1"62"(a62+1——gﬂ—2)+53"(53+1— % )-

It is easy to show that a2ﬂ+1-—-—6—0 ap®+1— ﬂ =0.
On the other hand, we can easily make sure that

@ = 1y = B =
=(oc—|—ﬁ) (e*—af+p?)+1=0®—ap+ p>+1=>5.

Hence follows the validity of our identity.
5° We have to prove that

(@" —p"t— (a2 —p"%) (@™ — B (@™ — B X
X (a2 — f12) = 25.
First prove that
(an—z_ ﬂn—'&) (an+2_ ﬂ“+2) . a‘zn ‘i" ﬁzn . ( . 1)n (a4 + 34),
(oc"‘l _ ﬂn—l) (an+1 _— ﬁn+1) — 21 + ﬁZn _|_ ( . 1)7! (a‘.’. + 52)
But
o® + p* = (@ + B)® — 20 =3, a*+ p*=
= (a® + P?)? — 2a2p% = 7.
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Therefore
(a2 =B (o™= B (@™ — ™) (a2 — B0 =
= (@ B — (— 1) (@ ) — 21,
On the other hand
(an_ Bn)4 P L 4063"Bn + f— 4anﬁ3n + ﬁ4n —
— B h— b (— 1) (@ ).

Subtracting the last-but-one equality from the last one
termwise, we find the required result.

6° and 7° are proved analogously to the previous cases.

7. 1° We have

1 1
2((a*+b%)* —a] [(a®+b?) * —b] =
1
=2(a®+b?)—2(@a+b)(a2+b*)? +2ab=
= (a®+ ) —2(a+0) V @+ U+ (a+b)* +
+ (a®+b%) +-2ab— (a + b)?

(singling out a perfect square).
Consequently

1 1

2[(@@+b?)% —a][(@4b%) % —bl=(a+b—} ¥+ B2)°.
Hence follows the first identity.

2° Multiplying the braced expressions on the left, we get

2 1
3(a®46%° —3(a+Db) (a®+b%)3 +3ab=
2 4
)

2 2 L
=3 (a?— ab-+b?)° (a+b)3 —3(a@>—ab}-b?)°3 (@a+b)° +
2 1

(@ b — (@ —ab 1) = () — (a*— ab+ )T
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The rest is obvious.

8. It is easily seen that ax= 2a—-—b’ hence
</ 2a—b 2a—b)\2
1—az_‘_l/ 5 (1= )
1+4az Ya—b 2a—b
+ 1+ 2a—b 1— 7

l/'Za— 2a— _ a—b b
- b—a

Analogously, we ﬁnd

T VaE—2ab 2ab+b2 T TV b—ap

(since b—a > 0). Multiplying the two obtained expres-
sions, we find

2a—b ]/2:1—— o 22—b
a—b )/ = —|—b 7

b—a b—a (b—a)2

_ a2—2ab b2 =1
="—ar "D

9. Factor the expression

n® — 3n — 2.
We have
n—3n—2=nr—n—-2n—2=n(m—1) —
—2n+1)=mn+1)(n—n-—-2)=

= (n + 1) (n — 2).
Likewise

n—3n+2=((n-—1)=%(/m+ 2).
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Now we may write:

—3n—24(n2—1) Vn2—4%
n3—3n 424 (n2—1) V;Z————ZL—_
_ (12 (= 24 (n2—1) Vn2—4 _ (n+1) Vn—2
(=12 () +(2—1) Vai—4  (n—1)VnF2
5 (D) Vr—24+(r—)Vn+2 _ (rn+)Vn—2
(n—1) Va2 +(n+1)Ve—2 (—1)Vnt2’

10. Consider the second one of the fractions contained in
the first brackets, namely:

1—a

— 1—a _ Vi=a
Vi—e2—t+a VYi—a2—(1—a) Vita—Vi—a

And so, the transformed expression takes the form

[ Vi+fa n V1i=a ].VT:&E—1_
Vita—Vi—a  Vifa—V1—a a

— Vitat+Vi—a VYi—a2—1 _
Vite—Vice

_ 20 (Vi=ei—1) _
Vite—Vi-ap @

2()/1—=a2—1) 1
T (fat1i—a—2Vi—a)
11. From the formula () it is easy to get:
VATVE+Vi—VE=2) 42 VEE

In our case

A=z, B=4x—4, A?

—B=x*—4x+4,
z—2 if > 2,
VA&—B=V(z—2)= { —z if z<2

In the first case we have
= Vs — T+z—2
Vx—l—2]/x—1—|—l z—2V z—1 =2]/ g =

=2V z—1.
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The second case yields
E— — -
Vx+2Vx——1—|—Vx—2Vx-—1=2 1/3_’%__’”=2,

It is easy to see that at £ = 2 the expression under con-

sideration is also equal to 2.
12, In this case

A=a+ b+ ¢, B =4bac+ 4be,
A — B = (a + b + ¢)? — 4dc — 4bc =
=a?® 4 b% 4 ¢® + 2ab — 2bc — 2ac =

=(a+ b — c)?
If
a+b—c>0,
then
VA—B=a+b—c.
If
a+b—c<O0,
then

VA —B=c—a—b.

Hence, we easily obtain that the given expression is equal

to 2/ a+bifa+b>c and to 2)/c if a + b <ec. At
a + b = c¢ these values coincide.
13. Let us denote

3 b 3 S
l/_l 4/ @ P l/ q l/qz P _
1Y Lp-u 2~V 7Tta=v

Then
r=u-+ v
Consequently
2 =@+ v =u+ ®+ 3w (u+ v).
But
W+ ¥ =—q, w = ——%.
Therefore
2 =—q—pz
or

24+ pr+q=0
which is the required result.
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14. We can proceed, for instance, in the following way.
Put

Vz+a+Vzrtb=z.

Then (multiplying and dividing theleft memberby})/ z + a—
— Vz 4+ b) we find.

a—b
Vire—Vatt
or
Vz-{-a——]/x—{-b:a:b.
Hence

2V zta=z+222, 2V ztbo=2—-222,

K4 4

i.e. both roots are expressed in terms of z without radicals.
15. Put

a b ¢ 1
A
Consequently
' b o a4
a ——a)\/, b ——bh, c —-CA,, }\'_Tk—b—l——c'
Therefore
Va+Vb+Ve+Vad + Vo +V =

=(1+V2) (Va+Vb+Ve).
QOur fraction takes the form
1 _(=V8) (Va+ Vb —Ve) _
(1+VR) (Va+Vo+Ve) - U—n) (atb—ct+2Vab)
__(-V4%) (Va+Vb—Ve) (a+b—c—2Vab) _

(1—A) (a2+4b24-c2—2ab—2ac—~2bc)

= (Vatbte—VaFo'4e) (Va +Vo—Vet)at+b—c—2Vab) Vatbic
(a+b+c—a’—b"—c’) (a2+b2+-c3—2ab—2ac— 2bc) )
16. Put

v 2=p+V73.

2 =p*+ 3pg+ 3p* + 9 Vg,

Hence
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since g is not a perfect square, it must be 3p* 4 ¢ = 0,
which is impossible.
17. 1° We have

tan ( 3; ——a)ztan (n—l—%——a) :tan(%—a) =cota,
cos (3Tn——a)=cos(n+i2t-—-oa)=—cos —g-—oc)z
= —sina (2°, 4°),

cos (2n —a)=cos (—a) =cos o (1°, 39,
cos(a—%):cos (%—a)zsina (3°, 49,
sin(mn—a)= —sin(—a)= +Sina (2°, 3%,
cos (n+4-a)= —cosa (29,
sin(a—%):—sin (—;i—a)z—cosoc (3°, 4°).
Now we get

%ﬁ’-yﬁ—ksinza—{—cosga:—1+sin2a+cos‘3a=0.

2° In this case we obtain

sin (B3n—a) = (—1)3*sin (—a) = —sin(—a)=sina (2° 3°),
cos(3n+a)=(—1)3cosa= —cosa (2°),
sin (%n——a) = sin (n—{—%—a) = — sin (—TZL—-—(Z) =

= —cosa (2° 4°),

cos (5Tn—a) =Co0s (2n—i——g——a> == CO0S (—Tzi——a) =sina

(1° or 2°, 4°).
Thus, we have
(1 —sina — cosa) (1 + cos a + sin @) + sin 2a =
= [1 — (sin @ + cos @)] [1 + (sin @ + cos a)] + sin 2a =
= 1 — (sin @ + cos a)? + sin 2o =
= 1 — sin’ @ — cos® & — 2 sin o cos @ + sin 2o = 0.
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3° Analogous to the previous ones.
18. Indeed, we have

a9
1—cosa=2sm27,

1—cosa
sm .

But in our conditions

whence

x Qo (e 7))
7=kt (0<F <n).
Then
sin%—:sin (lm—i——%‘—’—) = (—1)"sin% )
where

sin 9232 0.
Therefore, indeed

.o ]/ {—cosa
S]ﬂTz(—'l)h -—2——'.

The second assertion is proved analogously.

19. Let us prove the validity of some of the proposed for-
mulas. Let us, for instance, prove that 4, =0 if n =0
(mod 2). Put n = 2. Then

—;-Am:cos( ;{—n )—I—cos (ﬂl—l—n 3 )+

+32 )
n)——cos (ln—i}—g—%n)+

- cos (%‘—Hn—i—%n) + cos (2ln——l}—|—%n);

Slm

—l—cos( A +32 )—}-cos(”n

In 3

:—“WT“ﬁ

— —cos (%——%n)~—(——1)’cos (lTn—l—%n) +

+(—1)"cos (lTn+3_52_ﬂ) -+ cos (lTn—?%n) =0.
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Let us prove, for instance, that A,, =0 if n=1, 3, 4
(mod 7). We have:

—;—A“ = coS (—g— nn—i—i :n) -+ cos (—:;—n:n — %n) +

—l—cos(?n:rt—f4 )

If we replace here n by a number, which is comparable with

it by modulus 7, then all the cosines will acquire only a

common factor equal to 1. Indeed, let us assume that

n=a (mod7), i.e. n = a + 7N, where N is an integer.
Therefore

cos ( kna —ﬁ) = oS (f_(“_‘*;"_]v)_’_‘;_ﬁ) _

7
=C0S (E%Lf-l—an_ﬁ) —(—1)" cos (k;.;n-—ﬁ) _
-__(_1)”cos(—"9‘7i‘-—-ﬁ),

since in our case k = 1, 3, 5 and, consequently, is odd; (P is
equal either to i:rt or to ¢z 13 ) . Therefore, in order to prove

that A,, =0 at n=1, 3, 4 (mod 7), it is sufficient to prove
that it will take place at n = 1, 3, 4. The validity of this
is readily checked.

First put » = 1. Then we prove that

cos (%n—-gn)—}-cos(gn——-n)—l—cos( %n):O.

After transformatinns we get:

cos1—1n+cos 3 u—l—cos-17—4*c=cos (n————ﬂ) + cos Mn-i-

7 3 3
+cos—2—— —cosﬁn—l—cosﬁn—O.
Let now n=3. Then we have to prove that
3 13 9 3 15 3
cos (—7-n—1—[;:|1) + cos (7n—1—5n) + cos (7u—1—4n) =

7
= C0S 17 ! 7Lt cos 15R—|—COS in:cos (JH-—TZ)-{—

—i—cos(Z:n—-iz)— cos 4-{ cos —=0.
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Reasoning in the same way, we make sure that at n = 4
we also obtain zero.

In conclusion, let us prove that Ay never becomes zero,
i.e. at no whole values of n. We have

%Agzcos(%nn——’-n)—l-cos(—%nn—l—nn 11 )~
:cos(inn )—l—(—i) cos(inn—{—fb )

Consider the followmg cases:
1° Let n=0 (mod 4), n = 4N. Then

—;—As_—_cos (Nn )+(—1)‘Ncos (Nn—{-16 )

1

6=

:(—1) cos En—|-(—1) coS

:(—1)N(cos T%n-&—cosi%n).

The bracketed expression is not equal to zero, since it
represents a sum of cosines of two acute angles.
2° Let nz1(mod4) i.e. n =14 4N.

—;—A3=cos( —+Nn— )—I—cos( +3Nn— —%
=(—1" {cos(%—% )+cos( ﬂ—% )
:(—1)N{cosi%n—|—cos116n}.

It is obvious that the braced sum is not equal to zero,
and, consequently, in this case Ag is also not equal to zero.
It only remains to consider the cases: n = 3 (mod 4) and
n=2 (mod 4), but we leave them to the reader.

20. It is required to prove that

2p (k) =0

ifk=n, n—1, n —2, n—4, n—>5, n —6, and the
sign before p (k) is chosen accordingly.
It is evident that

Zp(k)—AZ(k—|—3) +CZ _1)h+DZCOS an

7) =
b=
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The first two sums on the right are equal to zero. It remains
to prove that

N cos———-O

If k is a whole number, the following cases are possible:
1°k is exactly divisible by 3, k = 3I;
2° k, when divided by 3, leaves the remainder 1, k =
=3l+1;
3° k, when divided by 3, leaves the remainder 2, k =

= 314-2.
In case 1°
2k —1.
coSs T =
In cases 2° and 3° cosz—?‘— = cos —2;— .
Let us first assume that n is divisible by 3. Then
Z cos ng =(:0532nn — cos 21 (rg—-i) — cos 2n (n 2)+
-+ cos 2n (n —{— cos ('g_ %) _ cos 28 (';_ o
But
= —1 (mod 3)
and
2nk 2nck’
€08 ~5— = C0S —5—
if
k= k' (mod 3).

Since by the assumption n = 0 (mod 3), we have
n—1=—1,n—2=1,n—4= —1,

n—5=4+1,n—6=0,
and our sum takes the form

2n 2n 21 21
1—cos———cos T—l—cosT—{-cosT—i:O.

It remains to prove that our sum is also equal to zero in
the cases when n = +1 (mod 3). The proof is similar to the
previous case.
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21. We have
; °__gi °_30° =sin (= —2) —sin =~ cos X —
sin 15°=sin (45 30)_sm(4 5 )._sm 7 C0s ¢
_'\/2 V3 V2 1 VE—-V2
—-cos-4—s1n-g--— R e
Analogously we find cos 15°.
We have
sin 18° = sin — = cos 2n
- - 10 5
But
1 1 . 2m
Zsm?cos?=sm-3—,
2si ﬂcos—?'it——- in An in =
sin 7 =sin & =sin .
Multiplying these equalities termwise, we find
osEcos 21
c 5 S5 =7-
On the other hand
cos = —c¢ 2 _9si —Sisi 2 —2cos=-cos 2n 14
05 5 — 008 5~ =48I 75 Sl =5 = 5% 5 =3
Thus, if we put
si i—cosﬂ——z oS = o=
o T 5 — 5 5 7Y
we have
1 1
y—r=+, TY=7.
But
1 5
@+y’=@—y)’+éey=7+1=7
Consequently,
5
x—i—y:lz-.
Using this relation and the relation y—x=-%—, we get
n_ o —1+V5
a:—-snn10 sin 18°= % .

Now cos 18° is readily found.
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22. Indeed
sin 6° = sin (60° — 54°) = sin 60° cos 54° — cos 60° sin 54°,
But

sin 54° = cos 36° = 1 — 2 sin?18°=1—2°%= ib'\/5 _1+41/5 ’

cos54° =)/ T—sin®58°= - V10— 2 /5.

To obtain the result we have to substitute these values into
the first formula; cos 6° is found in the same way.
23. Bear in mind that

1) —5 Larcsin z<< + z , ——%<arctanx < —l—% ,
O<arccos r<m, 0 < arccot z < m,
(2) sin(arcsinx)=x, cos(arccos x)= z,
tan (arctan z) =z, cot (arccot x) = .

Let us now prove that

cos (arcsin z) = J/1 — z=
Put

arcsin r = y,
then

siny = z.
We have got to compute cos y. But it is known that
cosy=)T—sinty=V1—r,
and the radical is taken with the plus sign, since

U K19
and, consequently,
cosy = 0.
Let us, for example, also prove that
1

cos (arctan r) = ———.
V12

Put
arctanz = y, tany = z.
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We have to find cos y. We have

1 — 24— 2
Consequently
2 0
cos’y =13
and
0s y =cos (arctan 1‘)————1—
CoRy=oo8 Vigae

where the radical is taken with the plus sign again. since
cosy = 0.

The rest of the formulas are proved in the same way,
24. By definition,

——%<arclanx< —|—%,
0 < arccot x < .

Therefore
T 3n
— < arctan x -+ arccol x < - — -

Let us compute sin (arctan x + arccot x). We have
sin (arctan x - arccot r) =
= sin (arctan x) cos (arccot x) -+
-+ cos (arctan x) sin (arccot z) =
z k2 1 1
T Vige Vite + Vit Viter

However, if the sine of a certain arc is equal to 1, then this
arc equals

1
T—l— ZkJT,
where % is any whole number, i.e., in other words,
arctan x -+ arccot z

can attain one of the following values

on 9n
2 2

—Tn —3n
MR ] 2 b 2 ,

z
2 b



Solutions to Sec. 3 195

But only one of them, namely %, is contained in the

1

interval between — 5 and _{_37:1. Therefore it is obliga-

tory that

1
arctan x - arccot r = 5

Likewise, let us prove that

a

arcsin x -} arccos r = 5

First of all we have
. 3
—%g arcsin x - arccos ng”.
On the other hand,
sin (arcsin x - arccos ) =

= sin (arcsin z) cos (arccos z) -+
+ cos (arcsin z) sin (arccos z) =

=24+ Y1 —22.Y1—22 =1,

wherefrom follows that

. 11
arcsin x + arccos r = 5 -

25. First of all it is easy fo prove that the quantities

arctan x 4 arctan y
and

z+y

arctan
1—zy

differ from each other only by en, where & is an integer.
Indeed,

b

tan(arctan zty )= sty
1—zy 1—zy

tan (arctan x + arctan y) =

__ tan(arctan z){-tan (arctany) = z+4y
~ {—tan (arctan z) tan (arctany) = A1—ay °
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But if two quantities have equal tangents, then they differ
from each other by a term divisible by m.
Therefore, indeed,

Lot en. *)

arctan r - arctan y = arctan
Let us find out the exact value of e. Smce
——% < arctanx < +%, —%<arctany<+% s

we have
—n < arctanx -+ arctany < +4m

and, consequently,

—}—en < m.

arctan

And since

<+

then |e| <2 and, consequently, ¢ may attain only one of
the following three values

07 +'17 -

To find the value of & let us write the following equality

—}—en)

-5 < arctan

cos (arctan -+ arctan y) = CO0S (arctan

Hence

cos (arctan x) cos (arctan y) — sin (arctan z) sin (arctan y) =

z4y )
ry

COS €Tt.
{1—

= CO0S (3I'Ct311

On the basis of the results of Problem 23 we have
N S S T
Vit Vitye Vifz22 Vitge

z+y
1/1 + 1 —a:y
Consequently

1—zy z+y 2
COS e = .
Vi+a2) 1+ l/ +

*COS &Tt.
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We have
VW= A+=2d+s®) _ VI UAFs?)
—ay (1—zy)? VI —zy)?
But
VUO=zypP=1—zy if 1—zy >0, ie. if zy<1,
and
Vi—zy)i=—(1—zy) if 1—zy <0, i.e. if zy>1.
Therefore, cosen =1 if zy <1, and cos en = —1 if

zy > 1. Since en can attain only the values 0, n and —m,
it follows that if zy << 1, then &€ = 0, and if zy > 1, then
¢ = +1. What sign is to be taken is decided in the follo-
wing way: if zy > 1 and z > 0, then also y > 0, then

arctan £ > 0 and arctan y > 0, and arctan szyy < 0.

The left member of the equality () is a positive quantity,
consequently, the right member must also be positive, and
therefore en must exceed zero, and &€ = +1. Quite in the
same way we make sure that if zy >1 and z << 0, y < 0,
then ¢ = —1.

26. We have
2
1 1 1 5
4 arctan — = 2 arctan =+ 2 arctan 5= 2 arctan =
b) 11
5 S b} ®
= 2 arctan 5 = acrtan o --arctan ==
D 5
=arctan M = arcla 120
= 1_2 = arc n1—19 .
144
Further
120 1
arctan 119 -+ arctan ( — m) =
120 1
= arctanM —arctan 1 =2 .
1120 1 :
T119° 239

27. Using the formula of Problem 25, we easily obtain
the result,
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28. First of all let us notice, that since arcsin z is con-

tained between — % and + % , and 2 arctan x lies between

—mn and +m, we have
3n . 2z 3
——2—-<2arctanx—|—arcsm—m§—< —|——-§— .

Let us now compute the sine of the required arc, i.e. find
what the expression

: . 2z
sin (2 arctan x --arcsin Tra )

is equal to.
We have

. . 2z
sin (2 arctan x + arcsin T2 ) =

= sin (2 arctan x) cos (arcsin —% ).—{—

-+ cos (2 arctan z) sin (arcsin T ?:zz ) .
First compute sin (2 arctan z). Put
arctan x = y, tany = x.
Then
sin (2 arctan x) = sin 2y = tan 2y -cos 2y.
But
1 —tan2 y

0052y=m .

2 tan
tan 2y = —__—1—tan2yy ,

Consequently,
2tany 2z

sin (2 arctan x)=1+tanzy=1 a2

Further

cos (arcsinT_g:x—z) =V 1_(_1__2_5;2_)2:

. (1—x2)2 z2—1

= A3z 1122 °

since x> 1.
Further, it is obvious that
2 tan )——.1;'12_
cos (2arctan x) = o7
2z )__ 2z
1422/ 14227

sin (arcsin
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therefore

2z _
1+ z2 ) -
2z . r2—1 1—2a2 2z
T 122 1422 1fz2 " 1+f22
Thus, the sine of the required arc is equal to zero, consequ-
ently, this arc can have one of the infinite number of values:
.., —3n, —2xn, —a, 0, 4=, 27, 3n, 4m, .

But among these values there are only three (—mn, 0 and )

sin (2 arctan z - arcsin

=0.

lying in the required interval between — 377[ and + 37:; . On the

other hand, x > 1 and, consequently, 2 arctan z > 0 and
2z

T2 > 0, and therefore the required sum

arcsin

2 arctan x 4 arcsin

2x
1-F 22
will also be greater than zero and, consequently, can be

equal only to .
29. It is evident that

—n< arctan z-}-arctan —;—g -+ ;.
Let us form
sin ( arctan x -+ arctan %)
The required sine turns out to be equal to (see Problem 23)
sin (arctan ) cos (arctan%) --cos (arctan z) sin (arctan —l—) =

1

— T . 1 + 1 z
1 22 1 1+ 2 1
V42 ]/1+_z_2 Vit ]/-1_*__‘1‘_2__
Viter Vitaz | Vita: 2 V1ita2

z2 1
=1 tixae =1
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if >0 (since in this case l/x—‘:a:) And if 2 <0, then
V?: —z and we have sin (arctanx—}—arctan%) = — 1.

Hence follows that
arctan x 4-arctan %: =+ %+ 2k,

where plus is taken when £ > 0, and minus when z << 0.
But since, on the other hand, it must be

—mn< arctan x -} arctan %g + =z,

our problem has been solved.
30. Compute the expression

sin (arcsin z + arcsin y).
We have

sin (arcsin x 4 arcsin y) = sin (arcsin x) cos (arcsin y) 4
+cos (arcsin z) sin (aresiny) = z Y 1 — 2 +y V' 1— 22
Thus, considering the two arcs

arcsin x + arcsin y
and

arcsin (z Y 1—yi 4y V1 —12),

we may assert that their sines are equal to each other.
However, if

3 CcoS 5

a—B a+ﬁ=0

sina=sinf, 2sin

and, consequently, either a;ﬁ:kn or on-B =(2k’+1)—21—[

(k and %’ integers), i.e. either
a =P+ 2kn
a = —Pp 4+ 2k + 1) n.
Therefore we may assert that

arcsin z - arcsin y = 1) arcsin (x ]/1 —y+y V1 —-xﬁ) + e,

or
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where 1 = 41 if e is even, and 1 = —1 if € is odd. To de-
termine & more accurately, let us take cosines of both
members. We get

cos (arcsin x 4 arcsin y) =

=cos [narcsin (z)/ 1 —y>+y V' 1—2%) +en].

Hence
Vi—=z22 )V 1—yp*—ay =
= (—1)®cos [arcsin (z Y 1—y2+y Y 1—2?)].

Further

VI— Y 1—p—ay=
= (=) Y 1—@VIT—p+yV1—2")".
The radicand on the right can be transformed as
1— (VT +yVI—2")=
=1—2(1—yp)—p*(1—2) —2ayV1—22 Y T—y*=
=(1—=2)(1—p)—2zyV1—2*V1—y+ 2% =
=(VT=2V1—y*—ay)*.
If it turns out that
Vi—a*V1—y—ay >0,

then
VI-GVivy/ T o) =
VWV —p—a) =V T—&VT-p .

Therefore, in thi< case

o (—1)r = +1,
1.e. € 1S even.
And if
) Vi—22Y1—y*—azy <O,
then

(‘_1)8 = _1’
and, consequently, ¢ is odd.
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Let us now consider the expression

1 — x* — 2
We have

1——-x2—y2=1—x2—y2+x2y2—x2y2=
=(1—2)(1—y’)— 2=
TR TP ) (VT=V TR 4 ).

The quantity 1 — 2> — y?® can be greater (smaller) than or
equal to zero. Let us consider all the three cases.

1° Suppose 1 — 2?2 — y* >0, i.e. 2?2 + y> << 1. If the
product of two factors is positive, then these factors are
either both positive simultaneously, or both negative simul-
taneously. And so, we have either

Vi—22 Y 1——azy >0, VI—22V1—ypi4ay>0
or
VI—2VT—f—ay <0, VI—2V Ty +ay<0.

But the second case is impossible, since, adding the last two
inequalities, we get

Vi—22 Y 1—y* <0,
which is impossible. If, however, the first two inequalities
exist, then

VI—2YT—g—ay >0.

Consequently, in this case ¢ is even.
Thus, if 22 + y* << 1, then in our formula ¢ is even.
2° Let now 1 — 2? — y> << 0 and, consequently, either

V1I—22 ) 1T—y2—ay >0, V1—2)1—y+ay<0
or
VI=2 )Y 1T—yi—ay <0, VI—22V 11—+ a2y >0.

But from the first two inequalities we easily obtain 2y <<0
If this inequality is fulfilled, then it will obligatory be

VI—a Y T—§ —ay >0,
and, consequently, ¢ is even,
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From the second pair of inequalities we get zy > 0, and
¢ is odd.

3° Finally, suppose 1 — 2> — y?> = 0. Then again two
cases are possible: either zy << 0 or zy > 0.

In the first case /1 — z2.)/ 1 —y®> — zy >0, and, hence,
¢ is even. Likewise, the second case gives an even ¢ (¢ = 0),
since there -exists the following relation:

arcsin z 4 arcsin Y 1— 22 ————Tz—[— (z>0).
Thus, we can judge whether ¢ is even or odd. Now let us
consider the value of e. We have

| arcsin x -+ aresin y | << m.
Consequently

|'r]arcsin (zV1=y+y ]/1—x2)+an| <.
Hence
le| < 2.

And so, € may attain only three values: 0, +1, —1.
Comparing the results obtained, we may now assert that

if 22 + y®°<<1or if 2y << 0, then ¢ =0, n = +1,

and if 22 + y>>1 or if 2y >0, then ¢ = +1, n = —1.
To find out when ¢ = +1 and when ¢ = —1, let us notice
that at « >0, y > 0 arcsin z + arcsin y > 0 and, con-
sequently,

—arcsin(z Y 1—y24+y VYV 1-—2%) +en >0,
and therefore in this case & = 1. If, however, z <0,
y < 0, then it is obvious that ¢ = —1.
31. We have (see Problem 24)
arccos - arccos (%—{——;— V3—3x2) =
= n — arcsin x — arcsin (i+%]/3—3x2);

2
on the other hand (Problem 30),

arcsin x -+ arcsin (—325——|- % V33— 3x2) == aresin § + em,
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VTR TR

3. m—=\2_ 1 (/i 3
- (242 T=2) - L (VT=2—V3a),
and since x>%, we have 4x?>1: 32°>1 — 2? and

V3z>)V1—4a2

Therefore

V-G BVT==) =5V == Vo -
L VeV T=D)

E=13.

and
Consequently

inf =~

arcsin§ = - .

The only thing which is left is to find n and & (see Prob-

lem 30).
Let us prove that

ﬁ+(2*'zl ”x)

We have
3 1 1 5
=7 t+5t5(1—2)=7.
Consequently,
n=—1, e = +1.
Therefore,

arccos x -+ arccos (—;——{-% V 3—3x‘~’) =5 — (—%—l— :rt) =—;l .
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32. We have tan A:% , tan B = % Let us compute

cos2A4. Since

1+tan2A=——1—

cos2 A’
we have
1 1 50 49
-I‘,OSTA:1 +4—9:Z§ and COSzA=§) .
But
s 98, 2%
cos 24 = 2 cos A—1_STJ—1 =5 -
Further
sin 4B = 2 sin 2B cos 2B.
But
cosZB—ZcosZB—llf—2————1—i
- "~ 14tan2B 57
. . . . op_ 2tanB _3
Sln2B———2SlnBCOSB—2tanBCOS B—m———an—z—B——'g'.
Consequently,
sindB=2.4.3_2% .nd sin4B=cos24.

33. By hypothesis we have
(a+b)*=9ab or (a—}—b)2=ab.

The rest is obvious.

34. Put
logon=12z, logmen=y.
Then
a*=n, m'a?=n.
Hence

x
a=m".a¥, a¥=ma.

Taking logarithms of this last equality to the base a, we get
the required result.
35. Put
z(y+z—z) _ yltz—y) z(zty—2)
log = log y - log z

1
==
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Then
logrx =tz (y +2—x), logy =ty z +z —y),

logz =tz (x + y — 2).
Hence
ylogz + zlogy = 2txyz, y log z -+ z log y = 2tayz,
z log z + z log z = 2txyz.
Consequently
ylogz +zlogy=ylogz + zlogy = zlogz + z log 3,
log z¥y* = log zYy° = log z%z".
Finally

2Vy* = ¥y = x°z2%.

36. 1° Put log, a = x. Then

b* = a.
Taking logarithms of this equality to the base a, we get
z log, b = 1.

But z = log, a. Cousequently, indeed, log, a log, b = 1.
2° We have

alogab — b.
Therefore
logy, (logy, @) 1
a logy a — (alugb a)logb(logb a) _ (aloga b)logb(logb a) —

log; (logy a)
:b b b

37. From the given relations it follows that
yl—logx —_ 10, zi-logy — 10.
Taking logarithms of these equalities to the base 10, we get

(1 —1logz)logy =1, (1 —logy) logz = 1.
whence

=log,a.

R 1
logy = 1 — 1—logsz

e

log z

and, consequently,
1

= 101-1log z,
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38. The original equality yields
a?® = (¢ — b) (c + b).

Hence

2logesy a = logews (¢ — b) + 1,
2 ]()gc-b a = IOg(‘—b (C + b) + 1.

Multiplying these equalities, we find
4 10gc+ba’10gc—ba = 10gc+b (C - b) + lOgc—b (C + b) +
+ 1 + loge+s (¢ — b) loge_p (¢ + b).

log._y (¢ + b) logeyp (c — b) = 1.

However,

Therefore
4 logerp alog.ya=21logerpa — 1+ 2log._pa— 1-+42.
Finally

log.+p a + log._, a = 2 log.4+p a log .y a.

39. Put

log, N ==z, log. N =y, logy N =z

The last equality yields
2
(ac)? = N.
Hence
log, N :%(1 +logac), log.N =%(1 + log. a).
Therefore
%— 1 =log,c, %— 1 =1log, a.

Consequently
2z 2y .
(F—1)(F—1)=1
or
i r—2z
y z—y’
40. We have
' 1 1
10gasas...an® = logyajag ... an  logyay | logyas ... Llogcan -
. 1
- 1 1 1

log, = " log,,z Tt log, z
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41. Let

a, = aq", b, = b+ nd.
Then

log a, = loga+ nloggq, loga, — b, =
=loga+ nlogqg — b — nd =loga — b.

Hence
nlogg —nd =0, logsqg=d, p!=gq.
And so
1
p=q".
SOLUTIONS TO SECTION 4
1. We have
r—ab r—ac r—be
(———a+b —c)+( e —b)+(———b_+ > —a)=0.
Hence
xr—ab—ac—bc r—ac—ab—bc r—bc—ab—ac
a+b + a+tc + b+c =0
or

1 1 1
(x——ab——ac—bc)(a+b -+ aTe +- b+c):O'

Assuming that
1 1 1
a+tb + atc + btc

is not equal to zero, we obtain

xr = ab + ac + be.
If, however,

1 1 t _o
a1t TaTe + btfec O’

then the given equation turns into an identity which holds
true for any value of z.

2. Rewrite the equation as follows

(STt t- R+ (5t ) o




Solutions to Sec. 4 209

We have

r—a—b—c r—b—a—c r—c—a—>b
be + ac + ab =0

Hence

1 1 1
(2—a=b=0) (5o +o+37) =0,
and, consequently,

r=a-+ b+ c
It is assumed, of course, that none of the quantities a, b
and ¢, as also E%—I—;;—{—%} is equal to zero.
3. If we put in our equation
6x +2a =A4,3b+c=B,2x +6a=0C, b+ 3c=0D,
then it is rewritten in the following way

A+B _ C4D
A—B C—D °

Adding unity to both members of the equation, we find

24 2
A—B~C=D "

Likewise, subtracting unity, we get

28 2D
A—B~C—D"

Dividing the last equalities termwise, we have

A c
B "D
i.e.
6r+2a  2z+6a
3b+c  bt3c
Hence
6 2 6 2
(m—m) ’”(m‘—w) a
Finally
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4. Add 3 to both members of the equation and rewrite
it in the following way

(Ll:—i+1)+(a_—|~:,_—:i+1)+(_b+z_—x_+1)=

bz

=4-— atbtc *

Hence

[=N

1 1 b —
(a+b+c—.l') (‘E-—l‘?—ll-?-) 14%;—? .

Consequently

1,1 4
(atbte—a) (45 +5—5mrs) =0
and, finally,

r=a-+ b+ c.
5. Taking ’f/ b + z outside the brackets in the left mem-
ber, we get
p/ T obtz _ cpo
Vite =2z
Consequently,
1+ 1
(b+z) P be
1+1 @
z vy
Hence

Further

6. 1° Squaring both members of the given equation, we
find

z+1+z—1+2/22—1 =1.
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Consequently,
2/ 2 —1 =1 — 2z,
4o — 4 =1 + 4a? — 4a,
7 — 5
=7

Since squaring leads, generally speaking, to an equation
not equivalent to the given one, or rather to such an equa-
tion which in addition to the roots of the given equation may
have other roots different from them (so-called extraneous
roots), it is necessary to check, by substitution, whether

%is really the root of the original equation. The check shows

that % does not satisfy the original equation (here, as befo-

re, we consider only principal values of the .roots).
2° Carrying out all necessary transformations similar to

the previous ones, we find that z =% is the root of our

equation.
7. Cube both members of the given equation, taking the
formula for the cube of a sum in the following form

(A 4+ B)> = A® + B® + 34B (A + B).
We have
a+]/_.i+a—1/:—c—|~3f’/a2—x($/a—|~]/5c.-|—$/a—]/—.i):b.

Since

VatVz+v a—Vaz=Y0,

we have

2a+3Y =z b=b, x=a2—(b;7ia)3.

We assume that a and b are such that

2 (b—2a)3
a 275

Since the equality of cubes of two real numbers also
means the equality of the numbers themselves, the found
value of z satisfies the original equation as well.

=0.
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8. Squaring both members of the equation, we find

—Vat — 2 =2 — 2z.
Hence
zt — 2 — 2% (x — 2)2 =0,

22[2? — 1 — 2 — 4 + 4a] = 2% (4 — 5) = 0.

Thus, the last equation has two roots £ = 0 and =z =%.

Substituting them into the original equation, we see that
the unique root of this equation is
x z‘z.

9. Getting rid of the denominator, we obtain

(VatVz=0) Vo=V a(V b+ 7=0)

or
Vbz—b=Va(@x—a), brr—b=a(x—a), z=a-+b.

As is easily seen, this value of z is also the root of the origi-

nal equation.
10. Multiplying both the numerator and denominator by

Va+zx+Va—z we get
" (Vatz+Va—z)*=2zVb.

Hence
Vea—22=2)b—a.

Squaring both members of this equality, we find two roots

. 2a'\/5

z=0, z= g

However, the first of these values is not the root of the ori-
ginal equation, the second one will be its root if

b>1.
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Indeed, we have
e e VS
m_V zaVb ~Va @z

—Va Vb—1 (it Yo—1=0).

Substituting the obtained values for V'@ + zand Va — z
into the original equation, we make sure that our assertion
is true.

11. Adding all the given equations, we have

$_{_y+z+v:;gi{7.%_id .
Consequently
b d
v=(z+y+ztv)—(ety+a)-- Tl oo
_btctd—2a
_—-—‘3—‘-,

Likewise, we obtain

a+t+c+d—2b y*a~]—b—|—d—2c x_a+b+c——2d

=y Ym—— > ¥=—3

12. Adding all the four equations, we get
41'1 = 2a1 + 202 —|" 2(13 + 201”

To— a4+ ay 4 az+ a,
1= 2 .

Multiplying the last two equations by —1, and then adding
all the four equations, we find

a1+ 3 —a3—a,

x2= 2
Similarly, we get
ay—ay - az—a, ay—ag—az-ta
Z3 = . R 22 stay
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13. Put z + y + 2z + v = s. Then the system is rewrit-

ten as follows
ax +m(s—z) =k
by + m(s—y) =1
cz+m(s—z) =p
dv+m(s—v)=q

so that

ms+z(a—m) =k ms+y(d—m)=I,

ms—+z(c—m)=p, ms+v(d—m)=q.
Hence )

Adding these equalities termwise, we find

_ k l p q
S=a—m + b—m + c—m + d—m

1 1 1 1
a—m + b—m + c—m + d—m )

—ms(
Consequently
s[1+m(m et o e ) | =
e Tt N NS SRR P
Wherefrom we find s, and then from the equalities (+) we

obtain the required values of the unknowns z, y, z and v.
14. Put

Zy—0y  Zg—ag Zp—4p —
T = " .

Hence
zy = aq + myd,

.........
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Substituting these into the last one of the given equations,
we get
o+ T+ ... Fxp=a=

=(ay+ay+ ... +ap) +FA(m +my+ ...+ my).

Consequently,
a—ay—ag—... —ap
my+me4...+mp °’

and then we readily get the values of

A=

Ty, Loy . .., Tp.
15. If we put
i_ ’ 1 ! 1__21 i_ ’
T =, 7 =Y, _Z- ] v v,
then the solution of this system is reduced to that of Pro-
blem 11. Using the result of Problem 11, we easily obtain

3 2
T=aTrrc—2a YT agrrd—2

B 3 - 3
Tafetd—2' YT bfeid—za-

16. Dividing the first equation by ab, the second by ac
and the third by bc (assuming abe = 0), we get

z z b a
yte=w ateTa TtvT e

Adding all these equations termwise, we find

T y z 1 ¢ b a
strti—z(wmtatw)

Hence
2 (EL Y 2y (2L YY L -
c”'(a_l_b_'_c) (a b)_z(ab+ +bc) ab -’
2. p2__ 2 2.1 p2._c2
Consequently, i:Ltszc—c-’ i.e. z=a—~}—2b(;b——i and then
analogously
——a2+82_b2 _b2+62_a2
Y="%a& — *T

17. First of all we have an obvious solution z =y =
= 2z = (. Let us now look for nonzero solutions, i.e. for
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such in which z, y, z are not equal to zero. Dividing the
first of the given equations by yz, the second by zz and the
third by zy, we obtain
c b a 4 ’ b a _ "
Hence
a b c ' "
7+7+—z=d+d +d".
Therefore
a ’ " b _ " __ gt £ _ R U
—=d'+d —d, -y—_d—l—d a, —=d+d—d".

Finally

b

a
=vye—a V-age—a *

c
z =ire—a

18. Rewrite the system in the following way

ay--bx 1 aztcx 1 bzt+cy 1
zy ¢’ zz b’ yz  a '
Hence
a b 1 a c 1 b c 1
—-—L——:—— — — T — — —— T =——
z 'y c’' =z + z b oy + 2z a’

Consequently (see the preceding problem)
2a2bc _ 2ab2c 7= 2abc2
ac+ab—bc’ y_bc—{-ab—ac’ " bctac—ab ’

19. The obvious solution is z =y = z = 0. Dividing
both members of each equation of our system by zyz, we get

X =

A4t 4411
zz ' zy yz a2’ =zy | yz  xz b2’
1 1 1 1
wimw=F
Adding pairwise, we find
2 1 1 2 1 1 2 1 1
wmETE pmwmTtaE mTata:
Consequently
2a2b2 2b2c2 2a2c2
W=grm V=@rar “=gra’ )
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Multiplying the equalities, we obtain
8adbicd
(a4 b2) (b2+¢2) (a2 4-¢2)

2yt =
Hence

2V/2 a2b2c2
V@2 b2 (022 (@24 b)

xyz = =4

Using the equality
2a2b2
=

we find for z two values which differ in the sign. By the
obtained value of z we find the corresponding values of y
and z from the equalities (+). Thus, we get two sets of
values for z, y and z satisfying our equation.
20. Adding all the three equations, we find
@+y+20@+b+c)=0.

z+y-+2=0,

Hence

whence
a—b a—c h—a

Y= e v YT airqe P aTugc

21. Adding all the three equations termwise, we get
b+c)z+ (cH4 a)y+ (a+ bz =2a® + 26 4 2¢°.
Using the given equations in succession, we find
20 +c)x =2+ 2, 2(c+ a)y=2a+ 2,
2(a + b))z = 2a® + 203,
whence
z=5b—bc+c? y=a*—ac+c? z=a%>— ab+ b
22, Consider the following equality
ﬁ5+?%5+?i5*1=“‘%1%%13$;§'

Let us transform the equality, by reducing its terms to a
common denominator and then rejecting the latter. We get
a second-degree polynomial in 6 with coefficients depending
onz,y,z M W, v, a, b, ¢, which is equal to zero. If now we




218 Solutions

substitute successivly A, p and v for 0 into the original
expression, then, by virtue of the given equations, this
expression (and, consequently, the second-degree polyno-
mial) vanishes. However, if a second-degree polynomial
becomes zero at three different values of the variable, then
it is identically equal to zero (see Sec. 2) and, consequently,
the equality
T ¥, s _ (6—=2)(6—p) B—V)
a+6 " 6+6 " c+6 (6+a) (8+8) (640
(by virtue of existence of the three given equations) is an
identity with respect to 0, i.e. it holds for any values of 6.
Multiplying both members of this equality by a + 6, put
0 = —a. Then we find
(a+2) (a+p) @+V)
(a—b) (a—o) :

=

T =

Likewise we get
_G+AM b+p) (b+V) ZA(H—M(MLM)(C*FV)
V=" T—0—a ' T t—a@e—0b

Of course, we assume here that the given quantities A, p,
v, as also a, b and ¢, are not equal to one another.
23. The given equations show that the polynomial

a® + za? + ya + 2z
vanishes at three different values of a, namely at ¢ = a, at
a = b and at @ = ¢ (assuming that a, b and ¢ are not equal
to one another).
Set up a difference
a® + za? + ya + 2 — (@ — a) (@ — b) (& — ¢).
This difference also becomes zero at o equal to a, b, c.
Expanding this expression in powers of &, we obtain
+a+b+c)a2+ (y—ab—ac—bc)a+
. -+ 2z + abc.
This second-degree trinomial in @ vanishes at three different
values of @, and therefore it equals zero identically and,
consequently, all its coefficients are equal to zero, i.e.
z+a+b+c¢c=0, y—ab—ac— bc =0,
z 4+ abe = 0.
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Hence
z=—(a+ b+ o),
y = ab + ac + be,
z = —abe

is the solution of our system.
24. We find similarly

t=—(@a+ b+ c- d),

z = ab + ac + ad + bc + bd + cd,
y = —(abc + abd + acd + bed),

2z = abcd.

25. Multiplying the first equation by r, the second by p,
the third by g and the fourth by 1 and adding, we get

(@ +a*qg+ap+r)z+ (B°+bq+bp+1)y -+
+(+cgtep+nz+ (@ +dqg+dp+nu =
=mr - np + kq + L.

Let us choose the quantities r, p and ¢ so that the follo-
wing equalities take place

b+ b +bp +r =0,
E4+clqg+cep+r=0,
@ +dq+dp+r=0.
Hence, we obtain (see Problem 23)
gq=—0b+c+d, p=bc—+ bd—+ cd, r= —bcd,

and, consequently
N

AT agtatr T @ h@e—og@—d °

where
N = —mbed + n (bc + bd +cd) — k(b + c + d) + L
As to the equality
a@+aq+ap+r=(a—1"(a—c)(a—d),
it follows readily from the identity
a® 4+ qat 4+ pa+4r =(a —b) (& —c) (@ — d).
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To find the variable y, the quantities ¢, p and r are so chosen
that the following equalities take place

a® + a*q + ap +r =0,
¢ +c*qg+cp+r=0,
@+ dqg+dp+r=0.

The remaining variables are found analogously.
26. Put
x,—l—xz—l— N +xn_—‘3.
Adding the equations term by term, we get

s+2s+3s+ ... +ns=a,+a,+ ... + a,.
But

14243+ ... +n="- (nt1) (an arithmetic pro-

2
gression).
Therefore \
2 .
S =TTD) (ay +az+ ... + a,) = A (for brevity).

Subtracting now the second equation from the first one, we
find

rn+z+x34+ ... + 2, —nx; = a — a,.
Hence
nxy =A + a; — a4
and
A+tag—ay

Xy =
1 n

Subtracting the third equation from the second, we get

. A+a3-—a2

z
2 n

and so on.
27. Put

r+ x4+ ... +x, =s.

Then we have
—s + 2z = 2a, —s + 4z, = 4a,

—8 + 823 = 8a, ..., —s + 2"z, = 2mq,
Hence

8 s s 8
T, ==a+7, z,=a+-4-, x3=a+-8-, . .,zn=a+2—n.
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Adding these equalities, we get
1 1 1
s=na-+s (7+T+ N +2—n).

But
1 1 1 1
sttt =1l—sr.
Therefore
s = 2™na.
Consequently

zy =a—|~%:: a-+2"'na=a(1+n-2"1),

xzza—{——z-=a+2"‘2na=a(1-|—n-2"'2) and so on.

28. Let
oyt 2yt a3+ ... 2, =5=1.
Then

S$—2y =2, s—x3=23,...,8—x,4=n—1,

Consequently (since s = 1)

g =—1, z3=-2,..., 2, = —(n—1).
Hence
Zo+ 23+ ... Fz,=—[(1+2+ ... +C0—=1D]=
_ n(n—1)
-T2t
Finally
n(n—1)

z1:1—($2+$3+...+zn)=1+ 3 .

29. Suppose the equations are compatible, i.e. there
exists such a value of x at which both equations are satisfied.
Substituting this value of x into the given equations, we
get the following identities

ar +b =0, az+ b =0.

Multiply the first of them by &', and the second by b. Sub-
tracting termwise the obtained equalities, we find

(ab’ — a'b) z = 0.
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If the common solution for z is nonzero, then it actually
follows from the last equality

abt! —a'b =0.

If the common solution is equal to zero, then from the ori-
ginal equation it follows that

b=1?bv =0,
and therefore in this case also
ab’ — a'b = 0.

And so, in both cases, if the two given equations have a
common solution, then

abl —a'b = 0.
Hence, conversely if the condition
abl —a'b =0

is satisfied, the two given equations have a common root
(the coefficients of the equations are proportional), and,
consequently, they are compatible.

30. To prove that the given systems are equivalent it is
necessary to prove that each solution of one of the systems
is simultaneously a solution for the other system. Indeed,
it is apparent, that each solution of the first system is at
the same time a solution for the second system. It only
remains to prove that each solution of the second system
will also be a solution for the first system. Suppose a pair of
numbers z and y is the solution of the second system, i.e.
we have identically

IE+1I'E =0,

mE + m't’ =0,

E=ar+by+ec, & =dx+4+by+c.
Multiplying the first equality by m’ and the second by ',
and subtracting them termwise, we find

(Im' — ml') E = 0.

Likewise, multiplying the first equality by m and the se-
cond by [/, and subtracting, we get

(Im’ — ml') & = 0.

where
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But since, by hypothesis,

Im' — ml' 0,
it follows from the last two equalities that
£E=0
and
g =0,
i.e.
ax + by + ¢ =
and

a'x + by + ¢ =0.

Thus, the pair of numbers z and y, which is the solution of
the second system, is simultaneously the solution of the
first system.

31. Multiplying the first equation by b’ and the second
by b, and subtracting termwise, we find

(a) —a'b)yzxz +cb —c'b =0.

We get similarly
(ab) — a'b)y +c'a— a'c=0.

These two equations are equivalent to the original ones.
It is evident that if ab’ — a’b 5= 0, then there exists one
and only one pair of values of z and y satisfying the last
two equalities, and, consequently, the original system as
well.

32. Multiplying the first equality by &’ and the second
by b, and subtracting, we find

(ab) — a'b) z = 0.

Since, by hypothesis, ab’ — a’b 5= 0, it follows that z = 0.
In the same way we prove that y = 0.
33. From the first two equations we get

¢'b—cb’ a'c—c'a

~ab —a'b ’ T —a'b "

If the three equations are compatible, then a pair of num-
bers x and y being the solution of the system of the first two
equations must also satisfy the third equation. Therefore,
if the three given equations are compatible, then there
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exists the following relation

, c'b—cb’ b’ a'c—c'a

@ ey TV =y ¢ =0

or
a” (c’b —cb') + b"(a'c—c'a) +¢" (abl —a’'b) =0. (¥

Conversely, the existence of this relation means that a
solution, which satisfies the first two equations, satisfies the
third one as well. This relation may be rewritten in the
following ways

ar (Cbll _ Ilb) _|__ bl (acll _ ca") + CI (ba” _ blla) — O,

a (cllbl c b”) + b (all ’ C"a,) + c (b” ’ I allbl) —_— O.

Hence it follows that the solution of each pair of the three
equations is necessarlly the solution of the third equation,
i.e. our system is compatible provided the condition ()
is observed.

34. Subtracting from the first equality the second, and
then the third one, we find

(@a—by+(@—=0z2=0, (a—c)y+ (a®>—c?)z=0.
Since a — b0 and a — ¢ 5= 0, we have the following
equalities
y+@+bdz=0, y+(a+ec)z=0.
Subtracting them term by term, we have
(b —c)z =0.

But by hypothesis b — ¢ 5= 0, therefore z = 0. Substitu-
ting this value into one of the last two equations, we find
y = 0. Finally, making use of one of the original equations,

we get
z = 0.

35. Multiplying the first equality by B, and the second
one by B, and subtracting them termwise, we get
(ABy — A{B) z + (CB;, — CB) z = 0. 1)
We find analogously
(AC, — AC)x + (BC, — B,C) y = 0. (2)



Solutions to Sec. 4 225

Suppose none of the expressions
ABi — /ljB, C'B‘ — ClB, ACi — A‘C

is equal to zero. Then we get
4 z

C\B—CB; _ AB;,—AB

[multiplying both members of the first equality by the
product
(AB, — A,B) (C:B — CB,)]
and .
x _ y
CiB—CB, ~ CA,—AC; °

Thus, in this case the required proportion really takes
place.
Let now one and only one of the expressions

AB, — A\B, CB; —CB, AC,— A,

vanish. Put, for instance, CB; — CiB = 0. Then from
equalities (1) and (2) we get + = 0. Further, suppose that
two of the mentioned expressions, for instance, C;\B — CB,
and CA; — AC, are equal to zero, and the third one, i.e.
AB; — AB is nonzero. We then find x = y = 0. In these
cases our proportion, or, more precisely, three equalities,

z = A (CyB — CBy),
y=MA(CA; — AC)),
z = A; (ABl -_ AiB),

will also take place.
Thus, in these cases two given equations determine the
variables z, y and z “accurate to the common factor of pro-
portionality”.

If all the three quantities

AB] — AlB, CB‘ — CIB and AC‘ — A,C

are equal to zero, then there exists the following proportion

A c

A _B_C
Ay By Cy
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In this case the two equations (forming a system) turn
into one, and nothing definite can be said about the values
of the variables z, y and z which satisfy this equation.

36. From the first two equations (see the preceding pro-
blem) we get

T y z
oc—b2  bc—a2  ab—c2 °

Hence
z=MA(ac —b%, y=>A(bc—a?, z=RAhr(ab—?.
Substituting these values into the third equation, we find
blac — b +a(bc —a* +c(ab—c* =0

or

a® + b + ¢ — 3abe = 0.
37. Multiplying the first two equations, we get

22 22 1 y2
a2 T 2 T 2

The same result is obtained by multiplying the third equa-
tion by the fourth one, which shows that if there exist any
three of the given equations, then there also exists a fourth
one, i.e. the system is compatible.

To determine the values of z, y and z satisfying the given
system proceed in the following way: equating the right
members of the first and the third equations, find

MA+3)=n(1—2).

Solving this equation with respect to y, we have

A
—pbr—r
y= TESY
Substituting this into the first two equations, we get
Taz_ oz oz 2
a ¢ W+A’ a c p+A
Hence
z=q-ptt z }‘"j_i
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38. Rewrite the system in the following way
a(z + py) + b (z + gy) = ap® + be?
ap (z + py) + bq (z + qy) = ap® + bg®
ap*~* (z + py) + bg" 7 (= + qy) = ap*** + bg* .
Now it is obvious that the system is equivalent to the follow-
ing two equations
z+py=p* T+ q =g,
and, hence, the system is compatible.
39. We have
Ly = Q4 — Iy,
Ty = @y — Ty = Az — A T 1,
T, = Q3 — %3 = a3 — Az + a4 — Iy,
T, =Qn4 —Qn_2+ ...+ ay F ay &+ z4.

It should be noted that in the last equality the upper signs

will occur when n is odd, and the lower signs when n is
even.

Consider the two cases separately.
1° Let n be odd. Then

Ty =0py —Qu_2 + ... + a3 — a; + 4.
On the other hand,
z, + . = a,.
From these two equalities we get

_ O —8pqfGpo—... —ay+ay
Zy = 9 )
and, hence,
z _G—ap+fap_4—...—az+a
2 — 9 )
Tou ag—ay+ap—...—a,+ag
3— 9 )

2° Let now n be even. Then

xn:an_i—an_z“" o e —az—l—al—l'l.
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On the other hand,
Ty = Qp — Z4.
Consequently, for the given system of equations to be com-
patible the following equality must be satisfied
nt —App + ... —ay + a = a,,
i.e. .
a, +a,»+ ... +tays=0a,4+a,_3+ ...+ q

(the sum of coefficients with even subscripts must equal
the sum of coefficients with odd subscripts). It is apparent
that in this case the system will be indeterminate, i.e. will
allow an infinite number of solutions, namely:

zy = A,

zy = a; — A,

z3 = a; — a; + A,

x, =a3—as;+ a — A,

X, =Qpy —Gu_p+ ... + a3 — ay + a—A\,

where A is an arbitrary quantity.
40. From the first two equations we find

x . ] 4
b2 2 T c2 a2 a2 b2
b—d c¢c—d c—d a—d a—d b—d

=\

Substituting this into the third equation, we have

7‘{ aid(bfd*cfd)+ bid (cizd ~afd)+
+53 ( aa—zd - bfd )}=d(a—b)(b—c) (c—a).
After simplification we get

aid ( bb—zd o cizd )+ b—b—d ( cfd__ aa—zd )+
+ c—cd ( aa—zd - bb_zd )= d(((za—_dl;)(gb_—dc))((ca—_dc)) :

Therefore

A= —(@a—d) (b—d(c—d),
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and, consequently,
z=(a—d) (b —c)(db+ dc — be),
y=(b—d(—a) (e + da— ao),
z2=( —d)(a—0) (ad + db — ab).
41. Solving the last two equations with respect to z
and y, we find

(c—m) (n—a)

T+n= z-tc !
(b=l (m—o)
ytb=—"rr——
Hence
x+a:~(f;';%f—'2—:i)———(n—a):(a—n) Zzi’:
Analogously
. z+4c
y+1=(1—-0b) PR

Substituting the found values of # + a and y -+ [ into the
first equation, we see that it is a consequence of the two
last equtions. Thus, the system is indeterminate, and all
its solutions are given by the formulas

o) _ (=Y (m—o)
T=——— e M Y=y, b

for an arbitrary z.
42. From the second and the third equations we have

(1—kKz+ky=—1(1+kz+(12—Fkyl

hence, taking into account the first equation, (5 — k) y =

= 0 wherefrom either ¥ = 5 or y = 0 (hence x = 0), which

yields (substituting into the second equation) k = —1.
43. We have

sin 2a = 2 sin a cos a,
sin 3a = sin a (4 cos? a — 1),
sin 4a = 4 sin a (2 cos® a — cos a).
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Therefore the first of the equations of our system is rewrit-
ten in the following way

z + 2ycosa + z(4cos?a — 1) = 4 (2 cos® a — cos a).
The remaining two are similar. Expand this equation in
powers of cos a. We have

8cos*a — 4zcos’a — 2y + 4) cosa +z—=z=0.
Putting cos a = ¢ and dividing both members by 8, we get

3 3,9 Y42 z2—x

£—5t i t+—5—=0. (%)
Our system of equations is equivalent to the statement that
the equation (+) has three roots: ¢ = cos a, ¢t = cos b and

t = cos ¢, wherefrom follows (see Problem 23)

=cosa-}+cosb-cosc,

D pof »

yZL = —(cosacosb-+cosacosc—H cosbcosc),

X —

z
g = cosacosbcosc.

Therefore the solution of our system will be
z =2 (cosa + cos b + cosc) + 8cosacosbcosc,

y = —2 — 4 (cosacosb + cosacosc -+ cos b cos c),
z2 = 2 (cos a + cos b + cosc).
44, Put

a b c

sind = sinB = sinC ~

Since A + B + C = mn, we have
sin A = sin (B 4 C) = sin B cos C + cos B sin C.
But from the given proportion we have

. a . b . c
smA_T, smB:T, smC——k—.

Substituting this into the last equality, we find
a = bcos C + ccos B.
The rest of the equalities are obtained similarly.
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45. Expressing a and b in terms of ¢ and trigonometric
functions (from the first two of the given equalities), we get

¢ (cos A— cos B cos ()
b= sin2 C ’ (1)

- c (cos B;i—nczozA cos C) . @)
Substituting (1) and (2) into the third equality and accom-
plishing all necessary transformations, we find
1 —cos* A —cos®> B —cos?2C — 2cos 4 cos Bcos C = 0.
Let us now prove that
A+ B+ C =m.

Transform the obtained equality in the following way

cos? 4 + 2 cos A cos B cos C =
=1 — cos* B —cos® C — cos® B cos®? C + cos? B cos® C,
cos? A + 2 cos A cos B cos C + cos®? B cos? C =
=1 —cos® B — cos? C (1 — cos® B),
(cos A + cos B cos C)? = sin? B sin® C.

But since we have obtained [see (1)] that

cos A+ cos BeosC = L[Ll,zc~>0,

we have
cos A +cos BcosC =sin BsinC,
cos A =sin BsinC —cos BcosC = —cos (B -+ (),

cos A +cos (B +C)=2cos A+t;+c coS A—S—C =0,

wherefrom follows that either

A+B4+C n
— =02+ 5
or

A—B—-C , n
AB=C _arinE,
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where [ and [’ are integers. Let us first show-that the second
case is impossible. In this case we would have

A—B—-C=Q +1)n, B=A—C — (2l + 1) =,
cos B=cos(4d —C —xn) = —cos(4 —C) =
= —cos A cos C — sin 4 sin C.
Consequently,

cosB +cosd cosC = —sin A4 sin C <0

which is impossible, since we have obtained (2)
asin2 C

cosB—l—cosAcosC::—c.—> 0.
Thus, there remains only the case
A+B+C=(Q2l+1)a.

However, by virtue of the inequalities, existing for 4, B

and C, we have
0<<2l+1<3,

20 +1 =1

i.e.

and
A+ B+ C=nm.

It only remains to show that
a b
sind ~ sinB = sinC ’
We have shown that
cos A + cos B cos C = sin B sin C.
On the other hand,
cosB 4+ cosAdcosC=cos(mn —A —C) +cosA cos C =
= —cos(4 + C) + cos 4 cos C =

= gin 4 sin C.

Using this equality and also equalities (1) and (2), we easily
obtain the required proportion.

46. Let us first show that equation (2) follows from equa-
tions (1). Multiplying the first of equations (1) by a, the
second by b and the third by — ¢ and adding them term-
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wise we get
a® + b* — ¢ = 2ab cos C,

i.e. the third of equations (2). Likewise we obtain the re-
maining two of equations (2).

To obtain equations (1) from equations (2) add the first
two of (2). Collecting like terms, we find

2¢2—2bccos A —2accos B =0.
Hence
¢c=bcosA4A + acos B,

i.e. we get the third of equations (1). The rest of them are

obtained similarly.
47. From the first equality we get

cos a—cosb cos ¢

cos 4= —
sinbsin¢
Hence
sin? A=1—cos* 4 =
sin2 b sin? ¢ — (cos a — cos b cos c)?
- sin2 b sin2 ¢ -
__ (1—cos2b) (1—cos? c) —(cos a—cos b cos )2
- sin2 bsin2 ¢ -
1 —cos2a—cos2b—cos?c-+2cosacosbcosc
- sin2 b sin2 ¢ ’
Consequently
sin24  1—cos2a—cos2b—cos2c{2cosacosbcosc
sin2a sin2 a sin2 b sin2 ¢ '

Since the given formulas turn one into another by means
of a circular permutation of the letters a, b, ¢, 4, B, C,
and as a result of this transformation the right member of
the last equality remains unchanged, we actually have

sin2 A sin2 B sin2 C

sin2a  sin2b ~  sin2¢

But the quantities a, b, ¢ and 4, B, C are contained between
0 and =, therefore
sind __ sinB  sinC

sina  sinb  sinc
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48. 1° Let us take the last two of the equalities (+) from
the preceding problem. We have

cos b — cos ¢ cos a = sin a sin ¢ cos B,
—cos a cos b -+ cos ¢ = sin a sin b cos C.

Multiplying the first of them by cos a and the second by 1
and then adding, we find

—cos c cos®a 4+ cosc = sin a sinc cos B cos a +

-+ sin a sin b cos C.
Hence

cos ¢ sin @ == sin ¢ cos a cos B -+ sin b cos C.
But since it was shown in the preceding problem that from
the equalities (+) follows the proportion
sina  sinb  sinc
sinA =~ sinB  sinC

in the last equality we can replace the quantities sin a,
sin b and sin ¢ by ones proportional to them. We get

coscsin A —=sin C cosacos B -+ sin B cos C.

It is apparent, that there exist six similar equalities. Let us
take one more of them, namely, the one which also contains
cos ¢ and cos a. It will have the form

cosasin C = sin A cosccos B + sin B cos 4.

(This equality can be obtained in the following way: mul-
tiply the second of the equalities () by cos ¢ and the first
one by unity, add them, and in the obtained equality repla-
ce sin ¢ by sin C and so on.) Thus, we have

cos ¢ sin A = sin C cos a cos B 4 sin B cos C,
cos a sin C = sin 4 cos ¢ cos B -+ sin B cos A.
Eliminating cos ¢, we find
cos A = —cos B cos C + sin B sin C cos a.

The rest of the equalities are obtained {from this one using a
circular permutation.

2° The formulas (+) of Problem 47 make it possible to
express cos A, cos B and cos C in terms of sin a, sin b,
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sin ¢ and cos a, cos b, cos c. Let us find the expressions for

oA A
sin and cos - We have
.o A cos a—cos b cos ¢
2sin?% —=1—cosA=1— 22208 =
2 sin b sin ¢
_cos(b—c)—cosa
- sin b sin ¢ ’
A cosa—cos bcosc
2—: —+ — =3
2 cos 2 14cos A =1+ sin b sin ¢
cos a—cos (b4-c¢)
sin b sin ¢
Hence
.oatb—c . adc—b
“in A m‘/bm ) sin )
o= sinbsin ¢ ’
.oat+b4c . btc—a
. 4 l/;n 5 sin 5
05 5= sinbsinc
N . . . . B B
Similar expressions are obtained for Sin—-. €0S -~ and
. C . A-B
sin—-, cos%. Now compute sin —%—- We have
AT A B A B _
S 5 =S§ TCOTICOSZ 111—2——
sin atbte sin atb—c
2 2
= - - X
sinasinbd
sin _L(I—i sin ,_b_u COS a—b
< 2 n 2 —cosE 2
sin ¢ sin ¢ - 2 c
cos 5

Thus, we have obtained the following formula

cos

A+B 2 ¢
2 ¢

sin

COS ——



236 Solutions

Likewise we find

a-t-b
C0S ————
A+B 2 . ¢
coSs 5 = z Sin 5 .
COST

Since e =4 4-B+C—n, we have
A+B o C—¢

2 2 2
Therefore
. A4B C—e
sin —5— =cos —;
and, consequently,
cos C—e¢ a—b
0 5 B COos 5
Ccos ¢ B cos ¢
2 2
Hence
cos L—° cos-C— cos 2=2 ¢
5 — 5 B 0S 3 ——COS—Z-
—F c a—b c
cos 5 +-cos -5 cos 5 ! cos -5
and, consequently,
€ C € . p-—b p—a
tanTtan (-Z——T)_tan 5 tan 5
Using the formula
atb
0s A+8 T sini
N Y z
2
we find analogously
€ c e\ __ P p—c¢
tan—4—cot (—Z——T)_—tan 5 tan 5 -

(1)

(2)

Multiplying the equalities (1) and (2) termwise and

extracting the square root, we get

1 _1/ p p—a p—b p—c
tan—;e- tanTtnn 5 tan 5 tan 5
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49. We have
altan (z+7)— tan (z+ B)] + b [tan (z 4 o) — tan (z -+ )] +
+c[tan (z +p) —tan (z +a)] =0.

Hence
asin (y—pB) bsin (o —v) |
cos (z + P) cos (z+7v) + cos (zf-a) cos (z+7v)
csin (f—a) .
+ cos (z+PB) cos (z +a) =0.
asin (y —p) cos (x4 a) -} b sin (o — ) cos (z -+ B) -|-

J-esin (p—a)cos («+7y) 0.

Finally

asin (y—P) cos a4+ bsin (e —7y) cos p+ ¢ sin (B —a) cos y
asin (y—p) sinat-bsin(a—7y)sinP f-esin(B—a)siny °
50. We have

tan =

6 T 1
COS"T=——"—T .
1 4 tan2 =
Therefore
x 1 —tan2 %
cosx:-—ZcosZ?—1 =
2 L
1} tan 5
2 tan — 1 —tan2-2- 2 tan -
. 2 2 2
sin x =tan xcos ¥ = - —= — .
—tan2 -2 J-tan2 =X 2 *_
1tan2 1{1;1112 1{tan2
It is obvious that if tan = is rational, then sin z and cos z

2
are also rational. Show that if sin x and cos x are rational,

then tan % is rational too.
From the first relationship we have
(1—{—tan2—;-) cosx:l—tanz—;- .
Hence

x 1—cosx
tan? o = —— ",
2 {Llcoszx
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Consequently, if cos z is rational, then tan® 2 isrational as
well. But from the second equality it follows that
L : 2 T
2tan7_smx<1—f tan? 3 )

Hence, it is clear that if sin £ and cos x are rational, then
tan i;— is also rational.

51. Since sin?x 4 cos®«zx

=1, we have
sintr + costa + 2sinxcos?x = 1,
i.e.
sin*x + costx = 1—2 sin? x cos? z.
Therefore the cquation is rewritten as
1 — 2sin?zcos®z = a,
2sinzxcos’z =1 — a,
sin?2r =2 (1 —a), sin2z = + V2 (1 — a).
hFor the solutions to be real it is necessary and sufficient
that

|
—2—<a<1.

52. 1° Transforming the left member of the equation,
we get

sin x -+ sin 3z + sin 2z =

2 sin 2x cos x -}~ sin 2z

= sin 22 (1 + 2 cos ) = 0.
Hence
(1) sin22=0, (2) cosa == —% .

2° In this case the transformation of the left member
yields

cosnt + cos(n —2)x —cosxz = 2cos (n— 1)z cosx —

—cosz =co$z[2cos(n—1)x—1]=0,

i.ec. either cosx =0 or cos(n — 1)z = !

? .
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53. 1° We have
m (sin a cos £ — cos a sin z) —
— n (sin b cos £ — cos b sin z) = 0,

(n cos b — m cos a) sin x — (n sin b — m sin a) cos z = 0,

nsinb—m sin a
(ncosb—mcosa)cos x| tan x — J

ncosb—m cosa
Hence

nsinb—m sina

tan r = ———m88— .
ncosb—mcosa

2° We have

sin x cos 3o + cos z sin 3a = 3 (sin @ cos £ — cos & sin z).
Hence

sin  (cos 3a + 3 cos &) — cos z (3 sin @ — sin 3a) = 0.
But

cos 3o = 4 cos® & — 3 cos @, sin 3a = 3 sin o — 4 sin® a.
Therefore the equation takes the form

sin x cos® & — cos z sin® a = 0.
And so

tan r = tan® a.
54. It is easy to find that
sin 5z = 16 sin® x — 20 sin® 2 -+ 5 sin x.
Therefore our equation takes the form

—20sin®z + S5sinx =0
or

sinx (1 — 4sin?2z) = 0.

Thus, we have the following solutions

sinx = 0, sinz = i-;—.
35. We have

2 sin x cos (@ — 1) - sin a + sin (2 — a).
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The equation takes the form
sinz + sin 2r —a) =0
or

2sin§-%——a

Thus, the following is possible

. 3r—a 3z—a
sin — =0 and 5 = kn,

r—a
——=0.
cos 5

i.e.

3x=a-42kn, z=
where k is any integer.
Similarly, we have

cos I;a =0, I_Z—a :(2l+1)%, z=a-+ (214 1)x,
where [ is any integer.
56. We have

sinz sin (y — x) —:—;— [cos (2x —y) —cos y].

Therefore the equation is rewritten in the following way
cos (2x — y) — cos y = 2a,
cos (2r — y) = 2a + cos y.

57. We have

. . . sin(t+z
sin (o 4 ) + sin & sin xas—iﬁ ~—mecosccos z=0.
Further
sin (o + z) . .
—_ L - — —
cos (@1 2) {cos (o -+ x) -+ sina sin x} — m cos a cos z = 0.
Hence
sin (- )
Gos (o z) C0S % COS Z— 1M COS &L COS T=

=cos acos z {tan (a+ z) —m}=0.

Assuming cos a = 0, we obtain the following equalities
for determining z

cosz =0, tan(a + z) = m.
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58. Rewrite the equation in the following way
cos? o + cos® (& + ) — 2 cosa cos (@ + z) =1 — cos? z.

Hence
[cos & — cos (o + 2)]*> — sin? z = 0,
i.e.

[cos & — cos (& + z) — sin z] [cos & — cos (¢ + z) +

+ sinz] = 0.
Further

[cos @ (1 — cos z) + sin z (sin & — 1)] X
X [cos & (1 — cos ) + sin z (sin @ + 1)] = 0,
sin®z [cos @ tan % + sina — 1] X
X [cosatan%—l—sina—l—i]:O

(if sin 5= 0). If sin z = 0, then cos® @ (1 — cos z)? = 0.
Now we easily find the following solutions:

cosz=1, tanx=cota, i.e. z=2kn

and
pe g 2k
= - 5 .
59. We can readily obtain
sin %z — 2tan
T 44 tan2x
Therefore
2 tan )
(1—tanx)(1 +T—m) :1—1~tan xX.
Hence
(1—tan z) (1-}-tan x)2 .
1-+tan2z — (1 +tan z)=
1+tanz 9 .. _ 2N
Tians {1 —tan?z—1—tan®>z}=0,
tan2 z (1 + tan z) ~0
14 tan2z -

For determining 2 we have: tan =0, tanz= —1.
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60. We have
__ sin(A+B)
tan A+ tan B= cosAcosB
Therefore
sin 5z
tan 2+ tan 4z +tan 2z + tan 3z = cosz cos 4z

sin 5z sin 5z «
co0s 2z €0s 3x  €oS x €0S 2z €OS 3x oS 4z

X {cos 2x cos 3x - cos x cos 4x}.

+

But
cos 3z = 4 cos® x — 3 cos z.
Thus, our equation takes the form

sin dx
7557 cos 3z cos 7z €08 2z (4cos®?x—3) 4-cos 4x] =0.

Hence

sin 5z [4 cos? 2z —cos 22— 1] -0
€os 2z cos 3 cos 4z -

Consequently, either sin 5z = 0, i.e. bz = kn, or

4 cos?2x — cos 2z — 1 =0,
that is
8cos2r =1 + V17.

61. Substituting the expressions containing X and Y for
z and y into the trinomial

azx® + 2bzxy + cy?,
we get

ax? + 2bxy + cy® = a (X cos 0 — Y sin 0)2 +
+ 2b (X cos 0 — Y sin 0) (X sin 6 4 Y cos 0) +
+ ¢ (X sin 0 + Y cos 0)2 =
= (a cos® O + 2b cos O sin O + ¢ sin? 0) X2 +
+ (a sin? 8 — 2b sin 0 cos 0 4 ¢ cos? §) Y2 +
+ (—2a cos 0 sin 8 + 2¢ cos 0 sin 6 4 2b cos? 6 —
—2b sin? 0) XY.
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Since, by hypothesis, the coefficient of XY must be equal
to zero, we have the following equation for determining 0:

2b (cos? 8 — sin?0) — 2 (a —¢)sin B cos O =0
or
2b cos 260 — (a — ¢) sin 20 = 0.
Thus,
2b

a—c '

tan 20 =

62. It is obvious that

z+y _ sin(204a+B)
z—y ~  sin(a—p) °

Therefore

TEL sin? (2 — ) + L sin? (B— )+~ sin® (y— o) =

=sin (20 + o + ) sin (@ — B) +sin (26 + P +- ) sin (B —7) +
+sin (20 + y +a) sin (y—a).
But

sin (20 o + B) sin (o — B) = - {cos (20 4- 2B) — cos (20+2a)}.

Using a circular permutation, we easily check the vali-
dity of our identity.
63. 1° Put

sinr siny  sinz k

a b c

We then have

sin x = ak, siny = bk, sinz = ck.

On the other hand,
sinz=sin(n —z —y) =sin(z + y) =

= gin x cos y -+ cos z sin y.
Hence

acosy +bcosx =c¢, becosz 4+ ccosy = a,
ccosz + acosz =b.
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Solving this system, we find

b2 12 g2 21 a2 __p2
cosx=—+2T——, cosy::——_*_zca——,
a2 b2 —c2
2ab :
At k = 0 we get also the following solution sin z =
=siny = sinz = 0.
2° Put

CO0S 2 =

tanr  tany tan z —k

a b ¢

Hence

tan x = ak, tany = bk, tanz = ck.

Adding these equalities term by term, we get (see Problem
40, Sec. 2)

(@a+ b+ c¢)k=tan x + tan y + tan z = tan z tan y tan z.
Consequently,

(@a+ b+ ¢c)k — K abc —= 0.
Thus,

ey
k=0, k== )/ 2E0He
Hence either tanx = tany = tanz = 0 or

Lanx:il/-ﬂ—.%i)_a_, tany:i-'/ﬁ.}é}c)_b_’

tan z = + _(a_~|—_bi_cl_(:_ .
ab
64. We have

t. 4+t
tan 2b = tan (x“}'y):i—ft;;riv_—_%\nn_yy— :
But, by hypothesis,

tan x tan y = a,
therefore

tan z 4+ tan y = (1 — a) tan 2b.

Knowing the product and sum of the tangents it is easy
to find the tangents themselves (see Sec. 5).
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65. Transform the equation in the following way

1 1 1
X—— x4 X—
4% 42213 2+3 2’ 4x+_;_.4x=3 2(1+3)’

33Ty
Hence
T3 T, g (3,
And so
2 2x-3
(7)) -t
Consequently,

20—3=0 and x=% .

66. Taking logarithms of both members of our equation,

we find
(z + 1) logyo x = 0.
Hence
z =1.
67. Taking logarithms of the first equation, we find
z logio a + y logio b = logy, m.
Finally, we have to solve the system
z logio a + y logyo b = logye m,

r 4y = n.
68. Put
z =058 y=an
(from this problem on we assume that a > 0, b > 0, a 5= 1,
b # 1 and find positive solutions).
Then (by virtue of the first equation):
by = =,
But
b¥ = a*.
Consequently,
b¥ = (bV)E = a*t.
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Hence
at =a”, z(Et—1) =0,

Thus, either £ =0 or 1 = &. But at £ = 0 we get y = 0,
Rejecting this solution, consider the case n = §,
Consequently,
z=>5b and y = af.

But
zloga = ylogb,
b*loga =at log b, (T) =Toga
Hence
log &
log ——
_ 1 logh _ loga
E(logb—loga)-—log————loga , &= Togb—loga °
Therefore
log b
log loga log b
.’Z:bgz(b log b . log b-log a )

Since the ratio of logarithms of two numbers is independent
of the base chosen, in the expression

log b
log log a
log b
we may consider the first logarithms as taken to the base b.
Then

log b
log log a
b logb _ log b
" loga
and
log b
log b log b—log a
- ( loga )
Analogously, we find
log a
. log b logb—log a
- ( log a )

69. Taking logarithms of the second equation, we find
log z log y

loga logd °
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Putting this ratio to be equal to &, we get
z =at, y = bt

Substituting these values into the first equation and assu-
ming a = b*!, we find £ = —1. Thus

1 _ 1
$—T , =3
70. We have
x
z=yVv.
Consequently,

mx
=y V.

Making use of the second equation, we find
mx
yv =y"
Hence, either y=1, and then =1 or i"f—zn, i.e.

n
z=—2.
m

Substituting into the second equation, we have:

()" =vm = ()"

And so
m \moR ENPTRY —
v=(5)"" == ()
SOLUTIONS TO SECTION 5
1. We have
xz(b—f—x)(x—}—c):x3(b+c+x)+xbcx.
(x—0b) (z—c¢) (x—b)(x—c)
Therefore the left member of our equation is equal to
b z3 b " 3
b+e+9) | ooemato=a =g Tema et

z b 3
+bex [(z———b) ot =90=0Te=9 (c—-—b)]'
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But (see Problem 8, Sec. 2)
3 b3 o3
(Y s Sl e e Y R A
z b c
(x—b)(x—c)+(b—x) (b——c)+(c—z) (c—-b)=0'

Therefore the equation takes the form
b+ c+2)=(b+ )
(b+4+c+ 2)?—(b+ )2 =0,
b+ct+z—b—c)b+c+zxz+b+c¢c) =0,
and consequently
zy =0, z5=—2(b+ 0.

2. Rewrite the equation in the following way

Hence

, 3
(x—a)(x—b)(x—c)(b——c)(c—a)(a——b){(I_a)(cim(a_b)—{—
b3 c3
+eoho—aa=s T e )~
As is known (see Problem 9, Sec. 2)
ad b3 .
(a—z) (a—b) (a—c)+(b——x) (b—a)(b—c)*
c3 z3 1

L + =1.
"(c—z)(c—a)(c—b) ' (z—a)(x—Db)(z—¢)

Therefore, the equation is rewritten as follows

(z—a)(x—b)(x—c)(b—c)(c—a)(a—Db) X

{1~ eaeme=a) =°

or
b—c)(c—a)(a—>)l(x—a)(x—>b) (z —c) —2°1=0.
Assuming that a, b, ¢ are not equal, we get

(@a+ b+ c)a® — (ab + ac + bc) x + abec = 0,

ab+ac+be 4= |/ (@b + ac + be)2 —4abe (a+ b+ c)
2(@+b+4c) *

X ==
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For the roots to be equal it is necessary and sufficient that

(ab + ac + bc)? — 4abec (@ + b + ¢) = 0.
Hence

a?b? + a%? + b%® — 2a%bc — 2b%ac — 2c%ab = 0,
(ab + ac — bc)® — 4a’bc = 0,

(¢+35—%) —%=
Consequently,
(Frd i) (i) =0
or

[+ =4l eV -5
Finally

(&+% ﬁﬂé+%+’h

X(&f‘&z—wk)(&?_;a+1k)=

3. Rewrite the equation in the form

3 s
2 2
(a'_-’:)1 +(x_b)l —a—b,

(@—2)% +(z—b)>

wherefrom we have
1 1

a—z—(a—2)%(z—b2+2z—b=a—b
or
Vi{a—z) (z—b)=0.
Thus, the required solutions will be

Iy =a, x,=>.
4. We have

Véia+b—5z+V4b+a—5x=3) a+b—2z.
Squaring both members of the equality and performing all
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the necessary transformations, we get

Via+b=—5z.Vib+a—5z=2(a+b—2z).
Squaring them once again, we find
(4a + b) (4b + a) — 5z (4a + b + 4b + a) + 252® =
=4 (a® + b® + 42° + 2ab — bdax — 4bz).
22 —ar — bz + ab = 0,

and, consequently,

Hence

Iy =a, xy=>.

Substituting the found values into the original equation, we
get

Vo—a+2)Vb—a—3)Vb—a=0.
2Va—b+Ya—b—3YVa—b=0.

Hence, if a = b, then the equation has two roots: ¢ and ¢

(strictly speaking, if the operations with complex numbers

are regarded as unknown, then there will be only one root).
5. Rewrite the given equation as

1+MNz22—(a+c+ A+ Ad) z + ac + Abd = 0.

Set up the discriminant of this equation D (A). We have
DM =(a+c+ A+ Ad? — 41 + A) (ac + Abd).

On transformation we obtain

D M) =2 (b —d?+ 2\ (ab+ ad + be + dc — 2bd —
— 2ac) + (a — ¢)2.
We have to prove that D (A) = O for any A. Since D (M) is
a second-degree trinomial in A and D (0) = (a — ¢)2 >0,
it is sufficient to prove that the roots of this trinomial are

imaginary. And for the roots of our trinomial to be ima-
ginary, it is necessary and sufficient that the expression

4 (ab + ad + be + de — 2bd — 2ac)? — 4 (@ — ¢)? (b — d)?
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be less than zero. We have
4 (ab + ad + be + de — 2bd — 2ac)? —
—h@—o?(b—d =
= 4 (ab + ad + bc + dc — 2bd — 2ac —
— ab 4+ ¢b 4+ ad — cd) X
X (ab + ad 4 be + dec — 2bd — 2ac + ab —
—cb —ad + cd) =
=—16((b—a)(d—c)(c — D) (d— a).
The last expression is really less than zero by virtue of the

given conditions
a<<b<c<d.

) 6. The original equation can be rewritten in the follow-
ing way

322 — 2@+ b+ c)x+ ab + ac + be = 0.
Let us prove that

b(a+ b+ c)2— 12 (ab + ac + be) = 0.
We have
4(a+ b+ c)®—12 (ab + ac + be) =
=4 (a® + b® + ¢® — ab — ac — be) =
=2 (2a® + 2b% + 2¢* — 2ab — 2ac — 2bc) =
= 2 {(a® — 2ab + %) + (a® — 2ac + ¢?) +
+ (b2 — 2bc + ¢?)} =
— 2(e — b + (a— ¢ + (b — 9*} >0.

7. Suppose the roots of both equations are imaginary.
Then
p* — 49 <0, p}— 4q, <O.
Consequently

p® + p? — 49 — 4q; <0, p*+ p! —2pp,; <O,

(.p - pi)z < 07
which is impossible.
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8. Let us rewrite the given equation as
(a+ b+ c)x* — 2 (ab + ac + be) z + 3abe = 0.
Prove that its discriminant is greater than or equal to zero.
We have
4 (ab + ac + be)® — 12abc (a +b + ¢) =
= 2 {(ab — ac)® + (ab — bc)® + (ac — be)?} = 0.
9.-By properties of the quadratic equation we have the
following system
p+g=—p, pg=4g

From the second equation we get

g(p—1) =0.
Hence, either ¢ = 0 or p = 1. From the first one we find
if ¢g=0, then p=0; if p =1, then g = —2.

Thus, we have two quadratic equations satisfying the set
requirements

22=0and 22+ —2 = 0.
10. We have
24y 4+ 22—y —xz—yz =
=-;—(2x2 + 2y? + 22> — 22y — 222 — 2y2) =
= {@ =y +@—22+ (y — 29 >0

(see Problems 6 and 8).

But we can reason in a different way. Rearranging our
expression in powers of z, we get 22 — (y + 2) « + y® +
+ 22 — yz. To prove that this expression is greater than,
or equal to, zero for all values of z, it is sufficient to prove
that: firstly

y¥+2—yz >0
and, secondly,

(y + 2 =4+ 22 — y2) 0.
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It is evident that there exist the following identities
1 2 3
yP+o—y=(y—52) 12
W+2—4@ +22—y)) =-3(@y—12°
and, consequently, our assertion is proved.
11. We have
a2 a2
P+y+rt—a =2+t a—z—y)P——7.

It is necessary to show that the last expression is greater
than, or equal to, zero for all values of x and y. Rearranging
this polynomial in powers of y, we get

yz—l—(x—a)y—l—xz——ax—k—t;i.
It remains only to prove that for all values of z
xZ—ax+f;>o, (x—a)2—4(x2—ax+—a;-)<0.
We have -
xz——ax—}——agz—: (x~—‘-21—)2+112a2>0,

(x—a)*—4 (;cz—ax+—a§2—) = —3 (x——;—a)zg(),

which is the desired result. However, the proof can be car-
ried out in a somewhat different way. Indeed, it is required
to prove that

3% + 3y? + 322 > a?

22 + y? + 2* + 22y + 22z + 2yz = a®.

Consequently, it suffices to prove that

32 4+ 3y + 322 = 2% + y? + 2% + 2zy + 2zz + 2yz
or

if

2z% + 2y® + 222 — 2zy — 22z — 2yz > 0.

And this last inequality is already known to us (see, for
instance, Problem 6).

12. See the preceding problem.

13. By the properties of quadratic equation we may write

a+p=—p af =g
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Therefore
8 = —p.
Since o and P are roots of the equation
z? + pz + ¢* = 0,
we have
o'+ pa+q=0 p*+pp+g=0.
Adding these equalities term by term, we find

sy + psy + 29 = 0.
Hence

Sy = —psy — 29 = p* — 2q.
Multiplying both members of our equation by x
ah*? 4 pahtl 4 gzt = 0.
Substituting @ and p and adding, we find
Sp+2 + PSps + gsp = 0.
Putting here k¥ = 1, we have

k. we get

S3 = —pPSa — §5y.
Further
s3 = —p (p* — 29) + gp = 3pg — p*
Likewise we find
s, = p* — 4p*q + 2¢®, s; = —p°® + Sp*q — Spgt.
To obtain s_;, let us put in our formula k¥ = —1. We have
sy + pso + gs_y = 0.
But
S =2, s = —p.
Therefore
4

gs.4 = +p —2p = —p, 3-12—7-

Likewise we get s_,, s_3, s_, and s_;. However, we may pro-
ceed as follows

N T
wherefrom all the desired values of s_, are readily found.
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14. Let
¥ aty B=o.
Then
ot=o+4) o0+ 6 B 14 o+ .
But
o+ p=—p, af=gq.
Consequently
o= —p+6)g+4 af(Va+VB)

But

(Vat+ V) =a+p+2Vap=—p+2V 4,

therefore

4 — — —_—
o=V —p+6Va+4y 7V —p+2V e
15. Let = be the common root of the given equations.
Multiplying the first equation by A’, and the second by 4
and subtracting them termwise, we get
(AB' — A'B)z + AC' — A'C = 0.

Likewise, multiplying the first one by B’ and the second by
B and subtracting, we find

(AB' — A'B) 2* + BC' — B'C = 0.

Take the value of z from the first obtained equality and
substitute it into the second one. Thus, we obtain the, re-
quired result.

16. Adding all the three equations termwise, we find
(+y+2?=a®+ b+

Hence
z+yt+z=xV a4+
Consequently
a2 p2
~TVermre VT Iverere

c2
Z =

TVetrte

x

b
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17. It is obvious that the system can be rewritten in
the following way

(z 4+ 2) (z + y) = qa,
(y+2)(y+2 =0
(z+2)(z+y) =c

Multiplying these equations and extracting a square root
from both members of the obtained equality, we have

(z+2) (x4-y) (y +2) = =1/ abe.

Hence

y+Z=i-1/TEC—, +Z_+1/abc, 2y—= Vcabc.
Adding these equalities termwise, we find

sy pa=x 0 (L 01
But since
yz==+ Vﬁm,
we have
o B (i)

Analogously

e VE (Lrdog), sme VE(H4do),

simultaneously taking either pluses or minuses everywhere
18. Put

y—]-x:y, x—}—z:ﬂ,y—l—z:a.
Then our equations take the form
Y+ B =avp
a + vy = bay
B+ o = caf.
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Solving this system (see Sec. 4, Problem 17), we find the
solutions of the original system

z=y=2=290
(p b+ 1%1)’
(p—1—c Jr-p—i—a_'p—l—b) ’

1 1 1
(p—a+p—b_p—0)’

I

<
I

where

=a-+0b+ec

19. Adding unity to both members of the equations,
we get
1+y+z2+yz=0a+1,
1+z+z24+22=0b+41,

l+z+ytazy=c+1

M+y)(+2=a+1,
M+2(t+2 =0>b+1,
W+ +o)=c+1.
Multiplying these equations, we get
t+2P0+p)*A+2=>0+a 1+ 1A+

or

or

A+ +n(+2)==xV{T+a) (1+b) (I +o).
Consequently,

\pz— +l/(1+1b)+(t+c)’ 14y +l/(1+f)+(§>+c)’

{4zmt l/<1+1a>+<1c+b)_

20. Multiplying the given equations, we obtain
(xyz)? = ab cx yz.

First of all we have an obvious solution 2 =y =2z = 0.
Then

zyz = abe.
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From the original equations we find
zyz = ax®, zyz = by?, zxyz = cz*.

Hence
azx® = abe, by® = abc, cz® = abe,

z? = bc, y? = ac, 2% = ab.
Thus, we have the following solution set
z = be, y=V ac, 2=V ab;
z=—Vbe, y=—Va, z=Vab
z="V b, y=—Vac, z2=—V ab;
z=—Vbe, y=Vac, z=—) ab.

21. Adding the first two equations and subtracting the
third one, we get

22 = (¢ + b — a) zxya.
Likewise we find
2y = (c + a — b) zyz, 22* = (a + b — ¢) zyz.
Singling out the solution
r=y=12=0,
we have
2z =(¢c + b —a)yz, 2y =(+ a—"b)uxz
22 =(a+ b —c)ay.

Then proceed as in the preceding problem.
22. The system is reduced to the form

zy + zz = at,
yz + yz = b*,
2z 4+ zy = c2
Adding these equations term by term, we find

xy+x2+y2=%(az+b2+cz)-

Taking into consideration the first three equations, we get
2 2__q2 2 2 __p2 2 2 __ o2
yz=————-——l7 +02 =, zxza——+62 b , xy=a——+; <.
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Multiplying them, we have

oy = EEE D@ e @)

i.e.

xyzzil/(bZ_l_cZ_—aZ) (a2+;2__b2) (a2+b2__62).

Now we easily find
=+ ‘/(a2+ —b2%) (a2 + b2 —c?)

802t 2—a?) J
Y A B o Y )
y== l/ 8 (a2 F c2—1?) J

YT GEr
2= +l/ 8 (a2 b2 —c2)

23. Adding and subtracting the given equations term-
wise, we find

PryP=a@ty+b@+y =(@+?(+y),
P —yP=a@—y) —b@x—y) =(@—>(x—y.
Hence
+y) @ —ay+y*—a—10b) =0,
(z—y) @ +2y+y*—a+d) =0.
Thus, we have to consider the following systems
1°z4+y=0, z—y=0;
Xz4+y=0 22+azy+y*—a+b=0;
F¥z—y=0, 2?—zy+y*—a—>b=0;
22 —zy+y!—a—5b=0,224+ay+y>?—a+
+ b =0.

The first three systems yield the following solutions
1° 2=y =0;
2 z=+Va—b y=FVa—b;
3 z=y==+Va+b.
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The last system is reduced to the following one
22+ y?=a, zy = —b.
Solving it, we get
z==(eV a—2b+nl a+2),

y=7(eVa=2—n) a¥2),

where ¢ and n take on the values =1 independently of each
other. Thus, we get four more solutions.
24. Reduce the system to the following form

E+y—2@+z—y =a,
W+z—2)(y+z—12 =0,
+z—yE+y—2a)=c
Multiplying and taking a square root, we get
@+y—2(@+z2—y @+2z—2) =+Vabe

Further
y_l_z——x: =+ l/-%y
x+z_y=iVaTc ’
rty—z==+ ]/ac—b
Consequently

= (VS F) == (VE T
=+ (VEVE)
25. Put

_=zty _.;"_Z'_'_z__za L‘“_—ﬁ
z+y +cxy ¥ y+z+ayz ' ztz4bzzm T

Then the system takes the form
by +cp=a, ca +ay=2>, ap + ba =c
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or
>, B_a e, v b B a_ c
c+b—bc’ a+c_ac’ b+a—ab'
Therefore
a B, v Aa24b24c2
T vt Ty T
and, consequently,
b2 4c2--a? a2 c2—p2 a2 b2_¢?
C="9 » PT 7o VT T -
Further
chytery 1 cxy A 4 zty ¥
zty v'oady v 7 ey A=y
Finally
1 1 ey
FRTIE et

Analogously, we find

1.1 1.1 aa
ERAraa v R i

wherefrom we find z, y and z.
26. Multiplying the first, second and third equations
respectively by y, z and z, we get

cx + ay + bz = 0.
Likewise, multiplying these equations by z, z and y, we

find
bx + cy + az = 0.
From these two equations (see Problem 35, Sec. 4) we obtain

z y__ 2
a2—bc  b2—ac c2—ab !

i.e.
z=(a®—be)h, y=(*—ac)r, z= (2 — ab) A\

Substituting these expressions into the third equation, we
find

AZ _ c . '1
" (c2—ab)2— (a2 —bc) (h2—ac) a3} b3+ ¢3 —3abe

Now it is easy to find z, y and z.
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27. Rewrite the system as follows
W —a22) + (@ —zy) =a
@ —ys) + @ —ay) =b
(#* —zy) + (¥ — 22) =c.
Hence

_btec—a

2t —yz — y2—-xz=a+c-b

: . P—ay=— at+b—c¢

2 1
i.e. we have obtained a system as in the preceding problem
28. Subtracting the equations term by term, we have

(—y (@+y+2 =0 -2,
(r—2)(z+y+2 =c—ad.
Put z +y + z = ¢, then
—yt=0—a? (x—2)1t=c—ad
Adding these two equations termwise, we have
3z —(z+y+2)] t =b*4c* — 2aP.

Hence
r— 12 4 b2 4 c2— 202
- 3t :
Analogously
t2 4 a2 4 c2— 202 t2 4 a2 4 b2 — 2c2
y=——g——, I=——g—-

Substituting these values of z, y and z in one of the equations,
we find

t4—(a2+b2+62)t2+a4+b4+c4——

— a®b? — a?® — b = 0.
Hence

2 a2+4b2+4c2 + V3 (a+b+tc)(—atb+c)(a—bte)(atb—c)
= 5 )

Knowing ¢, we obtain the values of z, y and z.
29. We have the following identities

@+y+2— @+ + ) =2@y + 22+ y2),
+ty+2P -+ +72) =
=3(.z-|—y—|—z)(a:y-|—xz—|—yz)—3xyz.
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Taking into account the second and third equations of our
system, we get from the first identity

zy + z2z + yz = 0.
From the second identity we have
zyz = 0.
Thus, we obtain the following solutions of our system
=0, y=0, 2z =a;
=0, y=a, z=0;
r=a, y=90, z2=0.

30. Let z, y, z and u be the roots of the following fourth-
degree equation

at — pa® + qa® —ra + ¢t = 0. ()
&yt 4R =

Put

Then

Sy — ps3+ qsy —rs; + ¢ =0.

But by hypothesis
s, =at, s3=a® s,=a% s =a.

Therefore, the following identity must take place

at — pa® +qa® —ra+1t =0,
i.e. the equation () has the root & = a, and therefore one
of the unknowns, say z, is equal to a..

Then there must take place the equalities
u+y+z2=0 w4+y4+22=0, w+yP+2=0,
and, consequently, (by virtue of the results of the last
problem)

u=y=1z2=0.
Thus, the given system has the following solutions

z=a, u=y=1z=0;
Yy = a, l‘=u=z=0:
z2=a, z=y=u=0
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31. Equivalence of these systems follows from the iden-
tity
(@® + b2+ 2 — 12+ (a'2+ b2+ 2 —1)2 +
+ (@ + b + ¢ — 1) + 2 (aa’ + bb" + ') +

+2 (aa” + bb" + ¢cc")? + 2 (a'a” + b'b" + c'¢")? =
=(a®+ a?+a”— 1)+ (bz + b2+ b — 1) +
+(c*+c2+c" — 1)+ 2 (ab+ a’'d + a"b")? +
+ 2 (ac + a’'c’ + a"c")? +
+ 2 (be + b'c" + b"c")2
It should be noted that nine coefficients: a, a’, a”, b,
b’, b"y ¢, ¢’ and ¢” can be (as it was established by Euler)

expressed in terms of three independent quantities p, ¢
and r in the following way

g tpP=—rr 20+ pg) ¢ = 2{=a+pr)
__"'——'—‘N , - N 9, N y
o =2=rtee oy =P, 2k
- N ’ - N , - N L
a'lzz(Q+Pr) b"zz(—P+TQ) cn=1—'P2—q2+r2
N ’ N ’ N

N=14+p*+¢+1?.
32. Multiplying the first three equalities, we get
2222 (y + 2) (z + 2) (z + y) = a®b3cs.
Using the fourth equality, we have
y+2 (x+2(x+y =abe

By +2) 49z +2) + 2@+ y) + 2ayz = abe.
But adding the first three equalities, we find
P+ttt +2@+y) =a+ 0+
Thus, finally

or

ad + b® + ¢ + abc = 0.
33. Adding the three given equalities, we get

=2 (z—2)(z—y)
a+btc= P -
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Similarly, we have
_ =9 (et (=+y)

a—b—c X
Tyz

he—g— =24y y+2)
zyz ’

p= &YWyt (Et2)

zyz

c—a—
Hence
(a+b+e)b+c—a)(at+c—b)(a+b—c)=
z_(LMQQi_iyg_lyz_ﬁ%g

z y T z y T
Hence, we finally get the result of the elimination
2b%c? + 2b%a® + 2a%® — a* — b* — ¢* + a?b%c® = 0.
34. We have
Yy 2 Z4r_ .Y
_;+7_2a, z+z*2b’ y+z—20'
Squaring these cqualities and adding them, we get
2 2 2 2 2 2 . )
%+%+%+%+%+%+mquww&
On the other hand, multiplying these equalities, we find
y2 22 22 22 | a? y2
7*%;2—‘1—,—2-*-721--‘;/74-;7—!-2:8056-
Consequently, the result of eliminating z, y and z from the

given system is
a® + b® + ¢ — 2abc = 1.
35. We have an identity
a+b+e)bt+tc—ay(at+c—b(a+b—c) =
= 4b%* — (b + ¢ — a?)*.
Replacing in the right member a?, b% and ¢? by their expres-
sions in terms of z, y and 2, and using the relationship

zy + 2z + yz = 0,

we get
4b%* — (b + ® — a%? = 0.
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Thus, the actual result of eliminating z, y and z from the
given system is

a@+b+e)+ec—a)yat+c—ba+b—c)=0.
36. We have
@+ =22+ +3ayx+y =

=2+ 2@+ ) [+ ) — @+ )
And so
B (+y)?=3@+y @+ ) —2(@E+ ).
ut
z+y=a 224+yt=0>b 2+ =c.

Consequently, the result of the elimination is

a® = 3ab — 2c.
37. Put
z y z 1
a b ¢ A
Then
a=2a\h, b=y c =zh ()

On the other hand, we have
(@a+ b+ c)?=a®+ b+ 2+ 2ab + 2ac + 2be.

Since a + b +c =1, a® 4+ b* 4+ 2 =1, we obtain from
the last equality

ab + ac + be = 0.
Taking into consideration the equalities (x), we find

2y + xz + yz = 0.
38. We have

(= 2) e 3) (=) =

or
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39. From the first two equalities we find
s d—c)+z(d—a)+y(d—b :o,}
wd—c)+zxza—c)+ylt—c)=0.

Multiplying the first equality by y, and the second by z,
and adding them, we get

(zy +wry(d—c)=2*(c —a) + y> (b —d) +
+axy(a+c— b —d.

()

We find in the same way that
(zz +wy) (d —c) =2*(a—d) + ¥ (c —b) +
+ay(b+c—a—d),
w(d—c)?=22(a—d)(c—a)+
+ 3y (0 —d)(c—0b)+
+aylla—d) (c—b) + (b —d)(c—a)l

Substituting the found expressions for zy + wz, zx 4+ wy
and zw into the third equality, we get

Az® 4+ 2Bzy + Cy* = 0,
where
A=(c—a(@a—ad*0b—cP+(—d X
X (b —d)?(c—a)?—+
+(@a—d (c—a)(d—c)(a— b
C—(b—d@—d (b —c+
+ (e —0b)(b—ad?(c—a)P+
+ (b —d (c—b)(d—c)(a—Dd)?
9B =(@+c—b—d(a—d?®d—c?+
+0b+c—a—ad (b —ad(c—a?+
+(@—cP(@a—t)>+l(a—d(c—0b +
+ (b —d) (c — a)l (d —c¢) (a — b)%

Performing all the necessary transformations (the work can
be simplified by making use of the result of Problem 8,
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Sec. 2), we find
A =(a—ad*(c—a)}(c—a),
B={d—c(a—d)(b—c)(a—c)(d—D),
C=(—="0b0—ad(C—ad.
Therefore we have
Ax* + 2Bzy + Cy* = (c —d) [(a — d) (a — ¢) x —
— (b —¢)(d—0b)yl2=0.
Hence

z _ y
(b—c)(d—0b) (a—d)(a—¢)"
Substituting these values into the equality (x), we get the

required proportion.
40. 1° We have

+B cos 26 —(2cos2i_§—6—1): 3

2 cos

or

2.“‘;_5_40053‘%_(;05 5 +1=0.

4 cos

(Z—B l/- 2 (Z—B

atB 4 cos 3 + 16 cos —5 —16

2 8 *
B

Since the radicand is equal to — 16 sin? 9;2_— and cos

B

is real, the expression — 16 sin® a.—;- must be greater than,

or equal to, zero. But this expression cannot exceed zero.
Therefore we have

Hence

COS
a+B
2

sin a;ﬁ =0.

But since 0 < a < m and 0 < p < @, we have & = P and,
consequently,

_1
coso=r
and
k11
a_ﬁ_T

2° Analogous to 1°.
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41. By hypothesis

0+¢ 06— . 049 b—9 _
2 cos 57— C0S ——=a, 2 sin 5 C0S —3 =b.
Hence
tan O+ =—b—.
2 a
But
1 —tan2 = 2tan%
oS T =—"—oy, sinx=——x—.
2.2 2
1+4tan 5 1+tan 3
Therefore
2 b
1—2_2 a%—b2 . 27 2ab
cos(e—i—cp):—bz-:m, Sln(9+¢)=—'—bz—=az—+ﬁ-
s Sy

42. By hypothesis we have acosa + bsina =c,
acos f + bsin p =c. Adding these equalities termwise
we find

2a cos a2 B cosg—;—6+2bsin—%—;—ﬁcos 2‘—;—B—=2c.

Hence

sa—ﬁ__ c _

2 acosazﬂ—{-—bsin a—;—ﬁ

co

c

B cosa—;_ﬁ— (a—{—btan%g)

Subtracting now the given equalities termwise, we obtain

—2asin a2 B sin a;—ﬁ —|—2bsin-°‘—;Ecos G'ZHS =0.

Since @ and P are different solutions of the equation, then
sin a;zﬁ = 0. Consequently, the last equality yields
b

tan—m—l_6 =
2 a’
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Let us return to computing cos? a;ﬁ . We have

cos? a—B _ 2

2 cos? a—gﬂ (a+btan _0_4;21—_£)2 -

=c2(1—|—%22—) (a_:bl)zz azibz .

a

43. Rewrite the given equalities in the following way
sin 0 (b cos @ — a cos B) = cos O (b sin @ — a sin f),
sin 0 (d sin @ — ¢ sin f) = cos 0 (c cos f — d cos a).

Eliminating 6, we find
(bcosa — acosP) (ccos p — dcosa) =
= (b sin @ — a sin P) (d sin & — ¢ sin B).

Hence

be cos a cos B — ac cos’Pp — bd cos® @ + ad cos a cos fp =
= bd sin?¢ — ad sin a sin f — bc sin a sin B + ac sin? p

or

(be + ad) cos a cos B + (be + ad) sin & sin p = bd + ac.

Finally
bd
cos (x—P) =———bcj;z; .

44. 1° We have
e2—1 __ 1+4-2ecosP--e?
142ecosa+e2 e2—1

2e2+2ecos P — e+ cos f

2e2 | 2e cos a, etcosa

(by the property of proportions, from the equality -:— =%

atc__a
follows b-—:i-_—d'—"b—) .
Similarly, we have
e2—1 _ 44-2ecos P f-e?
14 2ecosate2 e2—1 -

__ _—2—2cosfp  14ecosP
T T 2F2cosa 1+ecosa °
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Then
e+cos B )2__(1—}—ecos B)2 €2+t cos2f—1—e2cos2f _ sin2f
( etcosa /] ~ (14ecosa):  e2-+fcos2q—1—e2cos2q  sinZo
Consequently,
e2—1 . 1+4ecosP — sin f
1 2ecosa}e2 1+ecosoe ~ ~— sina °
2° From the given equality follows (see the result of 1°)
efcosf 1+ecosP
etcosa  dtecosa °
Consequently,

etcosBp—1—ecosP _ ed-cosP41-+ecosP

etcosat1+tecosa etcosa—1—ecosa

(from the equality -‘;—z% follows 216 — ¢—¢ )

bi1d  b—d

Further

(—e)(1—cosP)  (1+e) (1+4cosf)

(I-+e)y(1-rcosa) ~ (1—e)(1—cosa)
or

(1—cosP)(1—cosa)= gi:))z (14 cosP) (1+ cos ).
Finally 6
o I
tan—z——tan—z-——l_—r__—e.

45. Solving the given equation with respect to cos z,
we find

cos z (sin®? P cos & — sin® @ cos B) =
= cos? a sin? p — sin? @ cos? f=cos? & — cos? f.
But
sin? B cos & — sin® a cos p = cos o (1 — cos? B) —
— cos p (1 — cos® &) = cos a — cos B +
-+ cos a cos P (cos & — cos B) =

= (cos @ — cos B) (1 + cos a cos B)
therefore

cos o -+ cos f

cos L= 14cosacosf °
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Further
tan? £ — 1—cosz _ 44-cosocosf—coso—cosp
2 14cosz ~ 1-4cesc cosB-cosatcosp

T (14-cosa) (14 cosB)
and consequently
z . a B
tan7-— =+ tan Ttan 3 -

46. We have

sin® @ = 4sin® & sin2%= (1—cos¢) (1 —cos 0) =

2
=(1-%5) (1)

Hence
1—costa =1 — cos o 203 Btcosy + cos? o
cos fcosy cosBcosy ’
i.e.
1 cos f+cosy
2 e — = e ——
cos™a (1+ cos f cos y ) cosa cosfcosy °

Assuming that cosa is nonzero, we find

cos y +cos p
1-+cosvycosf
Now it is easy to check that

COS & =

20 2 _li 2 ¥
tan 5 =tan 3 tan 5 -
47. Put tan - = a, tan LI B. Then the first two equa-

2 2

lities take the form
za? — 2y + 2a —x =0, 2p? —2yP + 2a — z = 0.
Consequently @ and p are the roots of the quadratic equation

xz* — 2yz + 2a — z = 0.
Therefore

2 2a—
atp=="L, ap="72
Furthermore

a— p = 2L



Solutions to Sec. 5 273

Let us now eliminate @ and f from the last three equalities.
We have identically

(@ + B = (o — B)® + hasp.

Consequently,

(—:-2—"/—)3::/1!2*'1-4 20-—x )
x

x
After simplification we actually get
y? = 2ar — (1 — I?) 22

48. From the first two equalities it is obvious that 6
and @ are the roots of the equation

zcos a + ysin & — 2a = 0 (unknown a).
It is clear that O and ¢ are also the roots of the equation
(2a — z cos a)? = y? sin® a.
Transform the last cquation in the following way
22 cos® o — hax cos a + 4a* = y? (1 — cos? a),
(2% + y*) cos® a — 4ar cos a + 4a® — y? = 0.

Therefore the quantities cos 0 and cos ¢ are the roots of
the following equation

(a? + y°) 2% — haxz + 4a® — y? = 0,

and thercfore
ha? -y bax
cos B cos q w008 0 -+ cos ¢ = T
We then have
0

)
“

4 sin®

.

24 4, 1—cosh 1—cosq
T2 7 =1

or1—(cos 0 -+cos¢) +-cosOcos p=1. Hence, y>=4a (a — ).
49. We have

0 a

2 _ tan2
0 Lo 0—a tan 5 tan 3
tan 5 tan =

1 —tan2 % tan2 —g—-
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Solutions
But
tanzﬂ— 1—cos®  1—cosacosp
2 1+cosO  1i-cosacosP ’
s 1—cosa
tan 2 1-+4cosa ”
Consequently
{—cosacosp 1—cosa
0+« 0—n  Tfcosacosp  1+fcosa
tan —5— - tan —; _'1_ 1—cosacosp 1—cosa
{1+4cosacosf 1-4cosa
_1—cosp 2 B
= TTcosp — 07 -
50. We have
atc  cosz+cos(z-20) _ cus(z+0)cos® b
' bd ~ cos(z+0)fcos(z+30)  cos(z+20)cosO ¢ °
Hence
atc  b4d

b ¢
21. We have

14 tan’6= cos 14+ tanlgp= cos

cosa ’ cosy
Hence
tan20  cosP—cosa cos y
tan2¢@ cos o cosB—cosy
On the other hand, it is given that
tan20  tan2aq
tan2¢ ~  tan2y
Therefore we have
cosp—cosa cosy _ tanZa
cosp—cosy  cosa  tan2y °

From this equality we get

cos2 o sin2 y —cos? y sin2 o
COS[f5= Y Y —

sinZ2 y —sin2
€os o sin2 y—sin2 ¢ €03 y

cos o 8in2 y—sin2 o cos y
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But
tan2£= 1—cosp  cosasin2y—sin2qcosy—sin2y4sin2a
2 1+cosP = cosasinZy—sin2acosy+sin2y—sin2a
sin2 o (1 —cos y)—sin2 y (1 —cos @)
sin2 y (1 + cos &) —sin2 a (1 4 cos y)
8 sin2 % cos? % sin2 %—SSiHZ % cos2 % sinz%—
T asin? Y cosz ¥ cos? % _gsin? & co? oz L.
8 sin 5 cos? —- cos 5 8sin o) cos? - cos? o
sin2 & gin2 ¥ (cos';2 2 _cos? —2)
2 2 2 2 3 Q 2 ¥
= = tan® —-tan® -,
cos? & cos? l(sinZI—sinZ i) 2 2
2 2 2 2
since
2% oot Y _gin2 Y g2 %
0s® o~ —cos” & = sin® 5 —sin®=-.
92. Put
6 )
tani——".z, tan—2—=y.
Then
_ 1—22 1-——y2
cose——mz——-cosoccosﬂ, COS @ = o ==
=cosoy-cos f.
Further
2 A —cos o cos B g 1—cosajcosf
" 1+ cosacosf ’ ~ 1{-}+cosagcosp ’
therefore

(1 —cos a cos B) (1 —cos a cos B)
(14-cos o cos B) (1} cos ey cos B)

Add unity to both members of the equality. We find
2 _ 2 (1 +cos o cos aq cos? f)
14cosP — (1-+4cosacosB) (1-+cosaycosB)”
Assuming cos p 5= 0, we obtain
cos & + cos a; = 1 + cos a cos @y cos? B,

tan? % =%’ =
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i.e.
cos @ + cosa; =1 4 cos a cos a; (1 — sin? B),
cos & cos & sin? p =1 + cos & cos &y — cos & — €OS Qg =

=1 —cos a) (1 — cos o),
and, consequently, indeed

. 1 1
szﬁz( cos o _1) (cosa‘ —1)'
53. We have
cos (B—y)—cos (x—f) _ cos(y—a)—cos(B—7v) _
cos (a+fB) —cos (B+7) cos (B+y)—cos (v+a)
_ cos (a—f)—cos (y—a) 2

€0 (Y &) — cos (@ B)

sin(m_’z_Y —-ﬁ) sin( 5_;(1 —y) sin(l——lziﬁ——-a)
sin(a’;v +B) sin(ﬁta +'V) sin( v;_ﬁ—}—a)

or

a4y
2 —_—

2
tan p-tan 2TV “+? tan y -+ tan 5;“ tan a - tan 842“7

B+

tan f —tan tan y— tan 3 % tan o —tan

But from the equalities
a—'b . al___bl _ al’__b” )
a+b - a'+b' - ar/_l__b”

follows
a _a a”
R
Therefore we have
tan a tan g tan y

tn @4y tni@ty  tandatp

54. From the first equality we have

(tan 6 cos p—sin f) cos o + (cosa—tanBsina)sinf
(tanpcosa—sina)cosP ' (cosP-+tangsinP)sina
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Hence
sin & cos B cos (x — f§) tan 0 +-sin f cos & cos (ot 4 P) tan ¢ =
=2sinfcosPsina cosa. (x)
From the second equality we get
tan0 cos (w—f) tan f

tan ¢ cos (- P) tan o

Therefore we may put
tan 8 = A cos (o — P) tan B,
tan ¢ = —A cos (o + P) tan a.

Substituting the expressions for tan 6 and tan ¢ into the
equality (+), we find

1
M ~ 2sina sinf °
Thus
- 1
tan 0 =—Zc%SiIfOLT———w§)ﬁ:—2—(cotoc + tan f),
. cos(a+B) 1
tan @ =~ Scsasmp T (tan o« — cot f).
55. We have

sin? & 4 sin? B — 2 sin a sin P cos (a — P) =
= sin? @ + sin? f — 2 sin o sin P cos @ cos fp —
— 2 sin? o sin? p = sin’a  — sin® @ sin® B +
+ sin? B — sin? a sin? f — 2 sin « sin P cos a cos B =
= sin? a cos® f + sin® B cos® & —
— 2 sin & sin P cos a cos B =
= (sin & cos p — cos a sin B)? = sin® (& — B).

Therefore
sin (@ — B) ==n sin (a 4+ B),
sin a cos p — cos @ sin f= =+ n (sin o cos f 4 cos a sin ),
tan & — tan f =-4n (tan o + tan B).

Finally
1+

tan o = =

n
- tan p.
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56. Expanding the given equalities, we get

cos a cos 30 4 sin a sin 30 = m cos® 0,
sin a cos 30 — cos a sin 30 = m sin® 6.

Multiplying the first equality by cos 36, the second by
— sin 30 and adding them term by term, we find

cos o = m {cos® O cos 30 — sin? O sin 30}.
But it is known that
c0s 30 = 4cos® 0 — 3 cos 0, sin30 = 3 sin 8 — 4 sin® 6.
Consequently
cos® 0 cos 30 — sin® 0 sin 30 = 4 (cos® 6 + sin® 0) —
— 3 (sin* O + cos? 0).
But squaring the original equality and adding, we get

1
6 P06 —
cos® 6 + sin 9_,n2'

Compute cos* 6 + sin* 6. We have
cos® O 4 sin® 0 =
= (cos? O -+ sin?0) (cos* & + sin* O — cos? 0 sin? 0) =
= cos? O + sin* 0 — cos? O sin® 0.

Thercfore
;115 = (cos? B + sin® 0)2 — 3 sin® 0 cos?® 0,
1

3sin? 0 cos? B =1 — 3
sin ® + cos?* 0 =1 — 2 sin? 0 cos? B =
2 1 1 2
=t —g(1—m)=3(1+)
Thus
cos a = m {4 (cos® 0 + sin® 0) — 3 (sin* O + cos* 0)} =

. 4 1 2 _2—m?
=m{z—1—m} ="

m? 4+ mcosa = 2.
57. From the first equality we obtain
a [sin (8 4+ ¢) — sin (8 — @)] =
= b [sin (0 — ¢) + sin (6 + @)].

i.e.
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Hence
a tan ¢ = b tan 0.
Consequenlly
. 2 tan—g—
Flang= 1-- tanZ%

But from the second equality we have

g blan e
2
tang = —2= |
2 a
therefore
2ta\n2i 2(btan—(g—+c)
2 - — .
b 1—tan2-qzl [ (btan %4—a) ]
afq—> = 7
a2
Putting for brevity tan % = z and transforming the last
equality, we find
be (1 + 2?) = — (b% + ¢ — a®) 2.
But
2z .
—-1‘:_—‘;2— = S1n .
Finally
. 2bc
sin ¢ -=

@2 —p2—c2 *
58. From the third equality we obtain

sin? 0 sin? ¢ = (cos B cos ¢ — sin P sin y)2.

Using the first two equalities, we find

(1 sin2 B (1 sin2y ) :( sin fsiny

sin2 g sin2 o sin2 o

—sin B sin y)z.
After some transformations this equality yields
tan® @ = tan® y + tan® .
59. We have
asin®0 4 bcos? 0 =1, acos®> ¢ 4 bsin® g = 1.
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Hence
atan? 0 + b =1+ tan? 6, btan®¢ + a =1 + tan? .
Consequently
(a —1)tan*’0 =1 —5, (b— 1)tan’¢p = 1—a,
tan2 0 1—0\2
g ~ (1=2)

On the other hand,
tan2 b2
tan2¢@ = a2 °
From the last two equalities we get (assuming that a is not

equal to b)

a-+ b— 2ab = 0.

60. Rewrite the first two equalities in the following way
cos 0 cos o + sin 0 sin @ =a, sin 0 cos f—cos 0 sin f=0b.
Multiplying first the former by sin P and the latter by cos a,
and then the former by cos f and the latter by —sin a and
adding them, we find
sin 0 cos (@ — ) = asin p + b cos a,

cos 0 cos (@ — P) = acos p — b sin a-
Squaring the last two equalities and adding them, we get
cos? (@ — PB) = a® — 2ab sin (@ — P) + b2

61. Since
cos 3z = cos® z — 3 sin? z cos z,

sin 3z = —sin® £ + 3 sin z cos? z,

the equation takes the form
(cos® x — 3 sin? z cos z) cos® z +

+ (—sin® z 4 3 sin z cos? z) sin® z = 0,

cos®xr — 3 costzsin2xz + 3sintzcos?zxr —sinfax =0
o (cos? z — sin? 2)® = 0, cos 2z = 0.
62. Since
sin 2z + 1 = (sin z + cos z)?,

we have

(sin x + cos z)2 4+ (sin £ + cos z) + cos? z — sin® x = 0.
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Hence
(sinz + cosz) (1 +2cosz) =0
or
cosz (1 + tanz) (1 4+ 2 cosx) = 0.
And so
tanx = —1 and cosz = — %

are the required solutions of our equation.
63. We have

sin? z 1—cosz

cos2z  1—sinz
Hence

(cos® z —sind ) — (cos2 z —sin2z) 0

c0s2 z (1 —sin z) -

or
(1 —tanx) (1 — cosz) = 0.

Hence

tanx = 1 and cos z = 1.
64. We have

cos 3a = 4 cos® @ — 3 cos a.
Therefore
cos 6x = 4 cos® 2x — 3 cos 2z.

On the other hand,

1+4cos2z \3
—=)
The equation takes the following form

4 (1 + cos 2x)® — (4 cos® 2 — 3 cos 2z) =1

cosb = (

. 4 cos? 2z + 5 cos2x +1 = 0.
Thus
cos 2x = —1, cos 2z = —/17'
65. We have
sin 2z cos £ - cos 2z sin x + sin 2 — msin x = 0.
Hence
sin z [2 cos® x 4 cos 2x + 2 cosx — m] = 0,

sinz [4 cos®z + 2 cosz — (m + 1)] =0,
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And so, one solution is
sinz = 0.
The other is obtained by the formula

Cos X = —1 i}!/4m+5 .

Hence, first of all, it follows that there must be
dm 4+ 5 = 0.
Further, for one of the roots to exist it is required that

| —1 + Vim +5|< 4, ie that —4 < —1 +Vim + 5<
<+ 4or—3<YV4m +5<5, i.e. m<5. For t"e other
root to exist it is necessary that

| —1 —Viam +5 <4, —4< —1 —Vhm +5< 4,

m <1
Thusif m << ——g, then cos z has no real values; at m = -75
it has one real value (cos r = —%); for ——%<m<1 cos
has two real values (cos x = :M_Z_II_Z_TT-_E) and for 1 <

<<m <5 cosz again has one real value (cosx =

= :L":l{ﬂ‘i‘é)and at m > 5 it has no real values.
66. Rewrite the equation as

_r
cos (r—a)

{(14+k)cosxzcos(2r—a)—
—(1+kcos2r)cos(x—2)}=0.
But

cos z cos (22 — o) = - cos (3r —at) +—;—cos (r—a),

€0s 2z cos (£ —0t) = - Cos (3x—a)+—;-cos (x+a).
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Therefore
1
cos (z —a) {(14E)[cos (3x —x) 4 cos (x — )] —
—2cos (x—a)—k[cos (3x—a) 4 cos (x4 )]} =0
or :
1
s m—a) {cos (3x —a) —cos (x—a) -
+klcos (x—a)—cos (z 4 )]} =0,
Fb(l;l_f—a—)— {ksina—sin (2z—a)}=—0.
Hence

sinz = 0 and sin 2z — a) = k sin a.
67. Since sin? z 4+ cos?x = 1, we have sin* x + cos* = +
+ 2sin?zx cos’z = 1andsin*z+t-costz =1 — %(sin 2x)2.
The equation takes the following form
sin? 2z — 8sin 2z + 4 = 0.

Hence B
sin 2z = 4 4+ Y/ 16—4, sin2z =4 =+ 2)/ 3.

Rejecting one of the solutions, we get finally
sin 2z = 4 — 2)/3.
68. We have

1
logea == logesa =50 loguma= q—75-

The equation takes the form

2 1 3
log, = + logg, z +1 + logg z+ 2 =0.

Put
log, z = z.

Finally, we have to solve the following equation

2 1 3
P e A
Hence
622 411z 44 =0
ATER IS
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The required roots are

—_4 -1
2= — 3 Zg = 2
Thus
A 1
ry=a 3 , Ty = Q 2,
69. We have
a
r=y>ry,
Hence
ha?
y’”y—:yx'l-y N
) 2
Consequently, eithery =1 orz 4+ y = %. But at y =1

z% =1 and, consequently, x = 1. Thus, we get one solu-
tion
z=1, y=1.

Let us now find a second solution. We have
(x + y)z = 4a?,

i.e.
z + y = 2a.
Therefore
20 __ 0 x2 \a
==y, (7) ’—17
and consequently
z? =y,

i.e.
22 = 2a — x.

From this quadratic equation we find

= —%i L/—l——l-Za.

The positive solution is

The corresponding value of y is found by the formula
y = x%
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70. Raising the first equation to the power g and the
second to p, we oblain

uPlp? — g™ Pl — gVP,

Dividing one of these equalities by the other termwise, we
find

2 - p2 xq—
vI°-P>—=q 1 ?lp’

and consequently

PU—gx
v=aPr*-9,
Analogously, we find
xXp—-yq
u=gqpP?—a (*)

Substituting these expressions for u and v into the third and
fourth equations, we have

Pyt —2xyg — pp-q2  g2xyp—q(x?+y?) = cPP—q?,
Hence
p (@® + y?) — 2zyq = (p* — ¢*) log, b,
2zyp — q (2* + y*) = (p* — ¢°) log, c.
Consequently
z® + y*» = plog, b + g log, ¢, 2zy = qlog, b + p log, c;

wherefrom we find z and y, and then u and v using the for-
mulas (+).

SOLUTIONS TO SECTION 6

1. Let x = a + PBi, y = y + 6i. Then
zty=a+y+P+8i z—y=0a—y+(P—29i
lz +yP+ lz—ylPP=(2+v)?+ P+ 08>+

+@—y2 4+ PB—0>=
=2(a®+ B + 2 (y* + 6% =2 {|z|® + |y}
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2. Let z = o - Bi, hence = = a — Bi.
1° By hypothesis,

a — pi = a? — P 4 2api.
a=a?— B2, —PB = 2af.

2o+ 1) =0, a=oa®—fp

Assume first f =0, a =a? or a(a — 1) = 0. And so,
first of all we have the following solutions

a=0 p=0 z=0;
a=1, p=0 z=1.
Let us now pass over to the case when 2a + 1 = 0, i.e.

Hence

Therefore

1 1t 1 2 s 3 ., V3
“=—7 _7’2—5’ ﬂ*Z’ ﬁ"4'—_2’
i.e.
1 .V3 1 . V3
T=—gti—HG, T=—g—i—g.

Conscquently, there exist four complex values of z sa-
tisfying the condition
2

z=2x%
namely
1, .7V3 i 1 . V3
2=0, o=1, z=—gt+iT, T=—g-i.
2° Let us solve the following system
a(a?—3p2 —1) =0, p@Bat—p2+1) =0.
We find the following solutions
a =0, p=0;
a = 07 ﬂ = i17
o = +1, p=0
And so
z=0, z==+1, = =+i.
3. Put
a‘+b‘i=x, a2+b2i=y, ey an_i—i‘bn_li:u’

a, + bpi = w.
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Then the inequality to be proved may be rewritten as
lzt+y+ ... Futw|<

<lz|l4+lyl+ ... +lul+lwl
i.e. we have to prove that the modulus of a sum of several
complex numbers is less than or equal to the sum of moduli

of the addends. Let us first prove this for two addends, i.e.
let us prove that

le+ylI< x| +yl
But

|24y =V (a1 + a)* + (b:s+b,)7,
|z|=Vai+b], |y|=Va+8.
Consequently, il is required to prove that
Vet @)+ b+ b SV af +67 + Vg + 8]

On squaring both members of this inequality and after
some simplifications we get an equivalent inequality

a1ay +bib, <V (a7 +-b3) (a3 4+ b)).
This inequality is undoubtedly true if
(@105 + biby)® < (af + b)) (a3 + b)),

i.e. if
(aiay + biby)? — (a} + b)) (a; + B}) <O,
— (ayby — apby)? K 0,
which is obvious. Thus, it is proved that
le+ylI<lz|+ 1yl

for any complex x and y. To prove our proposition for the
general case proceed as follows. We have

lz4+y+z2+4+ ... Futw]|=
=l@t+y+ ... tuytw|<|let+y+ ...+
+ul+lwl
Let us now apply an analogous operation to the first term

lz+y+ ... +ul
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Continuing this operation, we shall prove our proposition
for the case of n terms. The above proof was carried out
by the method of mathematical induction. Let us add to it
another proof. Suppose the complex numbers are reduced to
the trigonometric form, i.e. put

x = py(cos @y + i sin ¢y),
y=pz(cos@, +ising,), ..., wW=pnp(cos@,-isin@,).
We then have

n n
z+y+ ---+w=h§ pkcosqwrikg1 Pr Sin @y,
n
Lzl +1yl+ - Hlwl= 2 en,

|lety+ ... +wl= (2 o €05 93)” +(Z prsingy) .
It is required to prove that

A= (zpk) -—( PkCOS(Ph) —(_.J Pksmfph) =0.
we have

n 9 n
(2 00)" = 2 pk+2 Zpsp:,
(2 O COs (Pk) = Zl Pk cOS? @ -2 2 PsP: COS s COS @y,
(

P, Sin (p,,) 2 sin? ¢y, -+ 2 5‘ PsP¢ sin @g sin @y,
Rk k=1

™M= T

consequently
A =23 pspr —2 D\ pspr €08 (@5 — 1),
8£t s#t

A =2 Z pspt {1- — COS ((PS_(Pl)} -:.4 Z pspt Sin‘Z (Ps;‘(Pt >0'
st s+t

4. Proved by a direct check, taking into consideration
that 2 = — ¢ — 1, & = 1.
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5. It is obvious that
a® 4+ 0 4 ¢ —ab — ac — be =
=(a 4 &b + &%) (a -+ &b -+ ec),
22+ + 22—y —az — yz =
= (z -+ ey + €%2) (z e’y + e2).
Therefore
(@®> + b + ¢® — ab — ac — be) (2* + y* + 2> —
—xy — 22 — y2) = [(ax + cy + bz) +
+ (cx + by + az) & + (bx +- ay -+ cz) %] X
X l(az + cy + b2) + (cx + by + az) e® +
+ (bx + ay + c2) €] =
— X* 4 Y24 22— XY — XZ —YZ,
where
X =ax +cy + bz, Y =cx + by + az,
Z =br + ay + cz.

6. 1° Solving the given system with respect to z, y and z,
we get :

. A+-B+C _ A-DBe24-Ce 7 A4 DBe4-Ce2
- 3 ’ - 3 ! - 3 *
2° We have

|A? + |BI* + |C|2 = A4 + BB + CC.
But

AA=@+y+9)E@E+y+9=
=z + |yl + 2P+ 2@y + 2 +
_ . tye+d+z@E+),
BB = (x + ye + ze?) (x + ye* + z¢) =
= |z P+ 1y P+ 1z +a(ye +2e) +
+ y (re? + ze) + z (ze + ye?),
CC = (z + ye® + ze) (z + ye + z¢%) =
= |z + |yI® + 21> + z (y&* + ze) +
+ ¥ (xe -+ z62) + 7 (re? + ye).
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Adding the three equalities term by term, we find
|[A]*? 4 |B|> 4+ |C|* = AA + BB + CC =
=3[z + |yl + |zPl + 2y (1 + e+ &) +
+z2(1+ e+ el +yle(+ e+ e +
+z(1+e+e)4+zlzd+ e+ e?) +
+y 1+ e+ ¢l

But since 1 4+ & + &2 = 0, the last three expressions in
square brackets are equal to zero and

AP+ |BIP+ | C* =3 [jz|* + |y* + |2].

7. On the basis of the result obtained in 1° of Problem 6,
we have
. AA BB 1 CC’ , AA' BB'¢24CC'e
x =_-_—§-—_- , y = 3 b
v AA'+BB's-+ CC'e2
2" = 5 .

Further
AA" + BB +CC' =(x+y+2) @ +y +72)+
+ (z +ye + z8) (@' + y'e + 2'e) +
+ (x + ye? + ze) (&' + y'e® + 2'e) =
= 3 (zz’ + 2y’ + yz').

And so z" = xzz’ + zy’ 4+ yz'. Analogously y" = yy' +
+ 22" + 22, 2" = 22" + y2' + a2y’ (the last two expres-
sions emerge from the first one as a result of a circular per-
mutation).

8. Though this formula was already proved (see Prob-
lem 2, Sec. 1), we are going to demonstrate here another

proof, using this time complex numbers.
We have the identity

(@b — By) (2’8" — B'Y') = (e’ + By’) (yB" + 88") —

— (ap” + p8) (ya' + 8y"),
let us put here
a=z+4yi, =241, y=—(2—1t), §=1z—yi
a =a-4 bi, B’ =c+di, yy = —(c —di), 8 = a — bi.
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Then
ad — By = 2* |- y* + 2t + £

W8 — Y =a bt P
an’ + By = (ax — by — ez = db) +
+ i(bx + ay + dz — c1),
vp' + 88" = By + aa” = (aa” + By)).

Therefore

(@a’ + BY') (yB' + 88") = (az — by — cz — dt)* +

+ (bx + ay + dz — ct)%
Further
af’ + P8’ = (cz — dy + az + b?) +

+ i (dz + cy — bz + at),
ya' + 8y = —(cx — dy + az + bt) +

4 i (dr 4 cy — bz + at),
1.e.
—(ap’ + BS) (ya' + 8Y) = (cx — dy + az + bt)* +

+ (dz + cy — bz + at)?.

Substituting the obtained expressions into the original
identity, we find

(a2+b2—|—02—I—d2)(x2+y2—|—z2+t2)=
= (ax — by — cz — dt)®> + (bx + ay + dz — ct)® +
+ (cx — dy + az + bt)* + (dz 4 cy — bz + at)?

Replacing in it d by —d and ¢t by —¢, we get the required
identity.

9. Expand the expression (cos ¢ 4+ isin ¢)*, by the
binomial formula. We have

(cos @ + isin @) = cos™ ¢ + ncos" ' ¢ isin ¢ +

42 (;l; D cosn @ (i sin @) 4 2= (n—1.12).(;_2) cos" @ X

X (isin@)’ 4 ...+ ncos g (isin @)* ™+ (i sin @)™
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Separating the real part from the imaginary one in this
expansion, and using de Moivre's formula, we find

cos n@ -+ i sin np = (cos" cp—n(+_2—1) cos" @ sin?g | .. .)+

, . 1) (n—2 .
—|—z(ncos ‘(psm(p—ﬁ(n—Fg.(g,—)cos" 3(psm3cp—|-...).
Hence
cosncp:cos"(p—%cos"'ztpsin%p—l—...,

sin ng = ncos™ ™ ¢ sin ¢ — f_(i—i_i_z)(Tn—i) cos"Posindo+ ... .

Taking into account the parity of n and dividing both
members of these equalities by cos” ¢, we get the required
formulas.

10. First prove case 1°. We have

cOS(P:(cosq)—+-i3m (p)q;(coscp——i sin (p).

Putcosg+isingp=-¢e. Thencos¢p—isingp=¢7!,

2m
gg1\2m 1 R _
cosz’"(pz( 3 ) = 2 Come—h.g2m=k,
k=0

Further

m—1 2m
22 cos?™ p= Y| Come™ M 1LCT + ) Chne®™ M,
K=0 h=m+1

In the second sum put m —k= —(m—k’). Then this
sum is rewritten in the following manner.

0 m-1
2m—hk’_—2(m-h’ R _—2m-k
Z Com " & )= 2 Come ).
R'=m-1 =0

And so
m—1
22" cos?™ p = k?o Cho (2P g™ 2m Ry 4

However,
g2(m=k) 4 g=2(m—-k) =2 cos 2 (m —k),
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Therefore,
m-1
22 cos?™ = D) 2C5, cos2(m—k) @+ Cow.
K=0

Replacing in this formula ¢ by~%—(p, we get formula 2°,

Formulas 3° and 4° are deduced as 1° and 2°.
11. Form the expression

U, + iv, = (cos @ + isin a) +
+ rlcos (@ + 0) + isin (¢ + 0)] 4+ ...+
+ r [cos (@ 4+ nB) + isin (@ + nO)] =
= (cosa + isina) {1 +r(cos® 4+ isinB) + ...+
+ r* (cos nO -+ isin no)}.

Put
cos O + isin 6 = e.
Then
U, + iv, = (cosa + isina) {1 +re + ...+ (re)n}=
n+l___
= (cos @ + isin @) m—f
Let us transform the fraction (r—e)—, separating the
re—1
real part from the imaginary one.
We have
(re)ntl— 1 [(re)ntl—1] [ra—— 1]
re—1 (re—1) (re—1)
__ r**2[cos nO--i sin nB]—r[cos 6 —isin 0] +
- —2rcos0+4r2

,—r"**1[cos (n+1) 0+ isin (n—+1) 0] 41
+ 1—2rcos 64r2 .
Multiplying the last fraction by cos @ + i sin @ and sepa-

rating the real and imaginary parts, we get the required
result

r"+2[cos (n@+ a) 4 isin (n@+4a)]
—2r cos 0+ r2 +
+—-r[cos(a 0) +i sin (o —0)] +
1-2rcos6-{-r2
—r**1 {cos [(n+1) O+ a]+i sin [(n+1)9+a]}+cosa+zsma
+ 1—2rcos0-}r2

Un+ vy, =




294 Solutions

Hence
cos a—r cos (& —0)—r**1 cos [(n+1) 0]+ r*+2 cos (nO+ o)

Un= 1—2rcos04-r2 ’
__sina—rsin (@ —0) —r**! sin {(n41) 064 a] 4 r*2 sin (n0-+a)
L 1—2rcos@-r2 :
Putting in these formulas =0, r=1, we find
sin n-;_i ecos-g()
1+cos0-4cos20+ ... +cosnb= 5 s
sin —
2
sin (n—El)O sin %9_
sin®-+sin204 ... +sinnh =
sin —+
2
12. We have

S+4-8'i =) Cn(cos kO + i sin k0) = ) Cr (cos O+ i sin 0)"

k=0 R=0.

:(1+cose—[—isi119)n: [2 0052%+2l sin %COS%Jn=

i

n
=2"cos"9-(cos (2—)—|—isin 2) =

2 2
_9n...n0 n® , . . nb\ -
=2"cos —2—(cos T—I—l 51n—2——).
Hence
0 nf 06 . nb
__9n n Y ny r__9on m 7 7
S_Z.coszcosz, S 2coszsm2.
13. Put

n
S =sin?® o0 +sin®” 20+ . .. +sin?® no = ) sin?® lot.

1=1
But (see Problem 10)

p~1
L, 1 . 1
sin® low == gy (—1)7 D) (—1)' Ch,cos2(p—Fk) It + 5 Cho,
h=0
therefore
p—-1

1 n
S= P S gyl ) cos 2(p— ) lat e Ch
h=0 I=1
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Put 2(p—Fk)a=E§. Then

. +1
smﬁ;’-cosnzl_ 13

dicos2(p—k)lo=cosE+ ...+ cosnt= E
=1 sin 5
(sec Lhe solution of Problemn 11).
Let us denote

. ng n+1
sin —= cos +

2 7 &
§

sin =

2

= Oy.

Then we can prove that o), = 0 if k is of the same parity as
p {k = p (mod 2)} and 6, = —1 if k and p are of different
parity {k =p + 1 (mod 2)}, and we get

p—1
—1\p+1 R R 1 P
= 22r‘)—1 D) (—1)" Cop+n 55 Cop
k=
h=p+41 8n0d 2)
Hence
p-1 1
1 Q R p
S = 92p—1 Z CZp +n 92p 2P
R=0
kh=p+1 (mod 2)
P B 2p—2
But we can prove that 2 C2p=2"P"" (see Pro-
=0

h5p+’; (mod 2)
blem 58 of this section) and our formula is deduced.
14. 1° Rewrite the polynomial as

a"— a"—nza" + na" = (z" —a")—na"t (z—a)=
— (x__a)(xn-l + axn—'l _I . + an—l __nall—l)'

At z == «a the second factor of the last product vanishes and,
consequently, is divisible by z — a; therefore the given
polynomial is divisible by (z — a)2

2° Let us denote the polynomial by P, and set up the
difference P, — P, _,. Transforming this difference, we
casily prove that it is divisible by (1 — z)%. Since it is true
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for any positive n, we obtain a number of equalities
Pn_Pn-i = (1 _'x)scpn (x)9
Pn—i — Pp,= (1 - x)s Pn -1 (JJ),

P; — P, = (1 — z)* 9, (2),
PZ—P1=(1——.1:)3(pi(x),
where @, (x) are polynomials with respect to .

Hence
P,— P =(1—2zPy ().

P1=(1-—$)3,

it follows that P, is divisible by (1 — )3 and our proposi-
tion is proved. '

15. 1° Considering the given expression as a polynomial
in y, let us put y = 0. We see that at y = 0 the polynomial
vanishes (for any z). Therefore our polynomial is divisible
by y. Since it is symmetrical both with respect to z and y
(remains unchanged on permutation of these letters), it is
divisible by x as well. Thus, the polynomial is divisible
by zy. To prove that it is divisible by = + y, let us put in
it y = —=z. It is evident that for odd » we have

(x —2)" — a2 — (—2)» = 0.

Consequently, our polynomial is divisible by z 4 y. It only
remains to prove the divisibility of the polynomial by

4 zy + y* = (y — xe) (y — z¢?),

e2+¢e¢-+1=0.

For this purpose it only remains to replace y first by ze
and then by ze? and to make sure that with these substitu-
tions the polynomial vanishes. Since, by hypothesis, n is not
divisible by three, it follows that n = 31 4+ 1 or 31 + 2.
At y = xe& the polynomial attains the following value

(x4 ze)" — 2" — (ze)" =" {e¥" -+ 14"} = 2" (1 + ¢ + &) =0.

Likewise we prove that at y = ze? the polynomial vanishes
as well, and, consequently, its divisibility by zy (z + y) x
X (* + zy + y?) is proved.

But since

where
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2° To prove this statement let us proceed as follows.
Let the quantities —z, —y and = 4+ y be the roots of a
cubic equation
a® —ra? — pa — g = 0.
Then, by virtue of the known relations between the roots
of an equation and its coefficients (see the beginning of
this section), we have
r=—z—y-+(@+y =0, ——p_-—-xy——x(x—l—y)—
—y @+ y),
q==zy (x+y).
Thus, —z,—y and z--y are the roots of the following
equation
al — pa —q =0,
where .
p=z+ay+y* qg=uay(x+y.
Put
(=2 + (=" +(z Ly =5,
Between successive values of S, there exist the following
relationships

Sniz=pSns1+q9Sn,

S being equal to zero. Let us prove that S, is divisible by
p? if n =1 (mod 6) using the method of mathematical
induction. Suppose S, is divisible by p? and prove that
then S,4¢ is also divisible by p2. We have

. Snie=PSnts+qSnssy  Snie= PSniz+9Sn4s
Therefore

Sn+(5 =p (pSn+2 + an-H) _}— q (pSu-H + an) =
= pzSn-l-Z + 2pan+l + qun'

Since, by supposition, §, is divisible by p?, it suffices to
prove that S,., is divisible by p. Thus, we only have to
prove that

(z+y)"+(—2)" -+ (—py)"

is divisible by 22 4+ zy + y® if n = 2 (mod 6). Proceeding
in the same way as in 1°, we easily prove our assertion. And
so, assuming that S, is divisible by p%, we have proved
that S,4¢ is also divisible by p% But §; = 0 is divisible
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by p®. Consequently,
Su=(+y)"— " —y"

is divisible by (2% 4 zy + y* at any n =1 (mod 6). 1t
only remains to prove its divisibility by = + y and by xy.

16. Equality 1° is obvious. From Problem 15 it follows
that (z + y)® — 2% — y® is divisible by zy (z + y) (2% +
+ 2y + y?). Since both the polynomials (z + y)® — 25 — y°
and zy (z + y) (#® + 2y + y?) are homogeneous with
respect to x and y of one and the same power, the quotient
of division (z + §)* — 2° — y® by zy (z + )@ + zy + ¥?)
will be a certain quantity independent of x and y. Let us
denote it by A. We then have

(x+yP —2°—y° =Ay (x +y) (=® + zy + y?).

Since this equality represents an identity and, hence,
holds for all values of x and y, let us put here, for instance,
z =1,y =1. We get

22 —1—-1=42.3.

Hence A = 5, and we finally get
(@ + y)* —2° — y° = Say (z + y) (* + 2y + ¥?).
Using the result of Problem 15 (2°), we can write similarly
@+’ —a" —y = Azy (x + y) (&® + 2y + ¥

Putting here z = y=1, we find A =7T.
17. It is known that

@+ty+2—22—pP -2 =3@+y @=+2H+2.

Let us prove that (x + y + 2)™ — 2™ — y™ — z™ is di-
visible by z + y. Considering our polynomial rearranged
in powers of z, we put in it x = —y. We have

(—y+y+2" — (=" —ym —z" =0,
since m is odd.

Consequently, our polynomial is divisible by (z 4 y).
Likewise we make sure that it is divisible by (x + 2) and
by (y + 2).

18. The condition necessary and sufficient for a polyno-
mial f (z) to be divisible by 2 — a consists in that f (a) =
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= 0. Put
f(zy = 2% + kyze = y® + 28,
For this polynomial to be divisible by =z 4+ y + z it
is necessary and sufficient that

f(=y —2 =0.
However

f(—y—2=—@w+2°—kyz(y+2+y° +2° =
= —(k+3)yz(y + 2),

wherefrom follows k& = —3. Thus, for z® 4+ y® + 22 4+
+ kxyz to be divisible by =z 4+ y 4 z it is necessary and
sufficient that k = —3.
19. Divide n by p. We get n = lp + r, where [ is a posi-
tive integer and 0 << r << p. Consequently,
" — "= xlpxr_alpar: xlpxr_alpxr+alpxr_alpar=.
=z (2'? — a'?) +-a'? (a" —a").
But z'? — a'? = (2P)! — (a?)! is divisible by aP — a7,
therefore for the divisibility z®» — a® by 2P — aP it is
necessary and sufficient that 2m — a” is divisible by 2p — aP.
But it is possible only when r = 0, and, consequently,
n = lp. Finally, for 2» — a™ to be divisible by 2P — aP it
is necessary and sufficient that n is divisible by p.
20. Putf (z) = ate 4 g4+ 4 gict2 L 24443 On the other
hand,
B+t t+1=(@+1)@+1)=
=@@+1)E+0)@—1.
It only remains to show that

f(=1) =1@) =/(=) =0

21. We have
. s 2n__q
1+22 42t ... 4 2° ‘=—-—22__1 ,
n —1

R T o A= -

. . z2n—1  zh—1
[t is required to find out at what n T
be a polynomial in z. We find
z2ne—1 = an—| an4-1

22—1 " zx—1 = zH1 "

— will
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For z» 4+ 1 to be divisible by  + 1 it is necessary and
sufficient that .(—1)» + 1 = 0, i.e. that n is odd.

Thus, 1 + 22 + ... + z*~% is divisible by 1 + z +
+ 224+ ... 4+ a2t if n is odd.

22. 1° Put

f (x) = (cos ¢ + z sin @)™ — cos ng — z sin ne.

But 2 4+ 1 =(c+ 9 —9 and f(i)=
= (cos'qp + isin ¢)» — (cos ngp + isin np) = 0 (by de Mo-
ivre’s formula). Likewise we make sure that f (—i) = 0, and
our supposition is proved.

2° Resolve the polynomial z%* — 2px cos ¢ 4+ p? into
factors linear in z. For this purpose find the roots of the
quadratic equation

22 — 2pxcos @ + p* = 0.
We get
z=pcos =+ ) p*cos?p— p?=p (cos @ = i sin @).
Let us denote
z" sin ¢ — p" 'z sin ng + p" sin (n — 1) ¢ = f (z).
We have to prove that
f [p(cos @ & isin @) = 0.
23. Suppose
'+ 1=+ pz+q @ +pz+q)=
=z*+(@+p)2+(@+4q +pp) 2+
+ (pq' + qp’) = + qq4'.

For determining p, ¢, p’ and ¢’ we have four equations

p+p =0, (1)
pp' H-4+4q'=0, (2)
Py’ +qp’ =0, (3)
9’ =1. (4)
From (1) and (3) we find p’ = —p, p (¢ — q) = 0.

1° Assume p = 0,p" =0,q+ ¢ = 0,99 =1, ¢* =—1,
q:_—ti, qlz'T—i-
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The corresponding factorization has the form
2t 41 = (2% 4- Q) (2% — Q).

2°q¢ =4q,¢* =1, q = 1.

Suppose first ¢ = ¢ == 1. Then pp’ = —2, p - p’ = 0,
pt=2, p=V2 p = $V7. The corresponding facto-
rization is

2t 1= (22 — V2 + 1) (2 + V 2z +1).

Assume then
g=q¢ =—1, p+p =0, pp =2, p= V2

p = FV 2.
The factorization will be
24+ 1 =@+ V2iz—1) (2 -V 2ix —1).

24, Put .
Va+tbi= x4 yi,
whence
a+ bi =2 — y? + 2ayi;
consequently,

22 — y? =a, 2zy = 0.

To find z and y it only remains to solve this system of
two equations in two unknowns.
We have

.1:2-+ 2)2 xz_yz 2+4x2y2=a2—}—b2, 2L 2 — az—}—b"";
y +Yy
therefore

P?=atV a®+4 b7 Y= —atVa b
= =+ l/ a+V a*4 b2, y=iV—a—|—l’ a®+- b,

the signs of the roots being related as 2zxy=0b. And so,
the following formula takes place

a-tbi= =+ (l/ a+Vy az—l—b"—|—i]/ —a+V a2—l—b2)

if >0 (since then the signs of x and y must be the
same), and

a-+bi= 4+ (l/ a+V a4+ 0*—i ]/ —a+V a‘3+()'2)

if b <CO0.
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25. The roots of the given equation are determined by
the formula

2k , . 2km
Ty = cos—n——|-zsmT———

(cos——|—zsm2—n) (k=0, 1, ..., n—1).

26. We have
n—1 n-1
— _ RDp
§= z 2y = Z €
k=0 k=0
where
21 . . 2m
= —_ n—.
€=C0S — +isl -
Thus

n—1 N
kzo aP=1+eP &P ... fen-Drp,
But

2pT . . 2pm
e”:cos%—!—zmn—i—.

It is obvious that e” =1 if and only if p is divisible by n.
In this case
s =n.

And if e?=£1, then s=14e? e .. .=

_enP—1 . np__
—sp—_l——(), since &"P =1.
Thus
n—1
Al . . o e .
héo 2P=n if p is divisible by n,
and
n—‘l
h;.o 2P=0 if p is not divisible by n.
27. We have

n—1

Z | Ay [?= Z ARA,.
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But

ApAy = (x4 yet + 28 4 . L we-DR) x
X (z-+yeh4ze~2k 4 ... 4 we—(n—Dk) =
=zztyy+ ... +wwtx(yettze-2k4 ..+
4 we— =Dk 4 yeh (r4Zze-2k | .. - we—(—DE)
4282k (x4 ye~h 4 ... 4-we——DR) 4

.....................

+ wem=DR (4 ye—F 4 ... 4 ue—(n—2k),

Therefore
n-1

D ApAp=n(|zP+|yP+ ... F|wp)+

k=0
n—1
+z D (ye R 42874 ... fwe—(—DR) |
h=0
n—1{
+y (zak‘i‘z_ﬁ_h—!—. ce +Ee—("—2)k)+ o+
R=0 -

n—1
+w D) (zem—DR fyem=2k 4 4 yek).
K=t

n—1

But ) e'®*=0 if I is not divisible by n (see Problem 26).
K=0

Therefore all the sums in the right member vanish and
we get

| Ao P+ AP+ . | A P=n{|zP+ |y P+ ... +]|w [}

28. 1° Denote the roots of index 2n from unity by z,
so that

x,zcosz—:"-—i—isin—n—n (s=1,2, ..., 2n).

Therefore
n—1 2n—1

2n
2 —1=[](@—z)=[](z—=) [ (z—xs)-(z*—1),

s=:1 s=1 s=n-+1
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since Zn= —1, Ty =1. Bul xop_s= ;s, consequently,
n-1
2 A== 1) ][] (@) (z—z5) =
s=1
n—-1
= (22— 1) [T (2*—2zcos S+ 1).
s=1
The rest of the cases are proved similarly.
29. 1° Rewrite the equality 1° of the preceding problem
y
in the following way
n-1
a?n=2fgn-bp 4221 =] (x2——2xcos%+ 1) .
s=1

Put in this identity- x=1. We have

n—1 n—1
STU . STU
_ . Sty 2 S __
n»_H(Z 2cosn) IT 4 sin -
s=1 s=1
- c e U 2n . n—1)n
=92 gira T e 2T gpe Lp= DA
n n n
Hence
.on . 2n . (n—1)=n "
sin —.sin =— ... sin ( ) =V_ .
n n n 2n-1

2° Solved analogously to 1°.
30. We have

2t —1=x—-1)(r—a)(z—PB)(z—7) ... (x—A).
Hence
UL b =(r—a)(x—Pp) ... (x—A).

Consequently

1—a)(1—B)...(1—N)=n.
31. Set up an equation whose roots are

x—1, x—1, ..., z.—1.

This equation has the form

(1) (2 1) (@ )+ 1=0,
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i.e.
(24—t @M1
z41—1 z -
Then set up an equation with the roots
1 1 1
—1" zo—1 ' 7 oz, —1"

It has the form
(__1_7*”.1)71—}—1__1

z — ('I + x)"H’l —gntl _ 0.

T =

z

Expanding the last expression in powers of z, we find

(n-i—1)x"—}-(n—;|—é)-f—x"'1+ co.=0

or

x"—{-—%—x"‘1—|— .

The sum of the roots of this equation is equal to ——;—.

Consequently
n

1 1 1
Py e s R wy B 2

32. Consider the equation (with ¢ as an unknown)

z2 y2 22
Tttt
By virtue of the given equations this equation has three
roots: p?, v%, p?.
Expanding the last equation in powers of ¢, we get
t(@E—0) (@ —c® —at(t— b (¢t — ) —

— 2t —ANt—22(t—0b)t =0,

B4+ a2+ ... =0,

where oo = —b% — ¢ — 2?2 — y? — 32

But as we know, the roots of this equation are p?,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>