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PROBLEMS 

1. WHOLE RATIONAL EXPRESSIONS 

The problems presented in this section are mainly on the 
identity transformations of whole rational expressions. 
These are the elementary operations we have to use here: 
addition, multiplication, division and subtraction of mono­
mials and polynomials, as well as raising them to various 
powers and resolving them into factors. As regards trigono­
metric problems, we take as known the definition of trigonc­
metric functions, principal relationships between these 
functions, all thJ properties connected with their periodi­
city, and all corollaries of the addition theorem. 

Attention should be drawn only to the formulas which 
enable us to transform a product of trigonometric functions 
into a sum or a difference of these functions. Namely: 

1 
cos A cos B=-:r[cos (A+B) +cos (A-B)], 

sin A cos B =+ [sin (A + B) + sin (A- B)]. 

sin A sin B = -} [cos (A - B) - cos (A + B)]. 

1. Prove the identity 

(a2 + b2) (x2 + y2) = (ax _ by)2 + (bx + ay)2. 

2. Show that 

(a2 + b2 + e2 + d2) (x2 + y2 + Z2 + t2) = 

= (ax - by - ez - dt)2 + (bx + ay - dz + et)2 + 
+ (ex + dy + az - bt)2 + (dx - ey + b~ + at)2. 

3. Prove that f~om the equalities 
ax - by - ez - dt = 0, bx + ay - dz + et = 0, 

ex + dy + az - bt = 0, dx - ey + bz + at = 0, 
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follows either a = b = e = d = 0, or x = y = z = t = O. 
4. Show that the following identity takes place 

(a2 + b2 + e2) (x2 + y2 + Z2) - (ax + by + ez)2 = 
= (bx - ay)2 + (ey - bZ)2 + (az - ex)2. 

5. Show that the preceding identity can be generalized in 
the following way 

(ai + a; + . . . + a;) (b~ + b; + . . . + b;) = 

= (atbt + a2b2 + ... + anbn)2 + (atb2 - a2bt)2 + 

+ (atb3 - a3bt)2 + ... + (an-1bn - anbn_t)2. 
6. Let 

n (a2 + b2 + e2 + ... + l2) = 

= (a + b + e + ... + l)2, 

where n is the number of the quantities a, b, e, ... , l. 
Prove that then 

a = b = e = ... = l. 

7. Prove that from the equalities 

a~ + a; + ... + a; = 1, bi + b: + ... + b; = 1 
follows 

-1 :::;;; atb1 + a2b2 + ... + anbn :::;;; + 1. 

8. Prove that from the equality 

(y _ Z)2 + (z - X)2 + (x _ y)2 = 

= (y + z - 2X)2 + (z + x - 2y)2 + (x + y - 2Z)2 

follows 
x = y = z. 

9. Prove the following identities 

(a2 _ b2)2 + (2ab)2 = (a2 + b2)2, 

(6az, - 4ab + 4b2)S = (3a2 + 5ab - 5b2)3 + 

+ (4a2 _ 4ab + 6b2)3 + (5a2 - 5ab - 3b2)3. 

10. Show that 

(p2 _ q2)" + (2pq + q2)" + (2pq + p2)" = 2 (p2+pq+ q2)". 
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1. Whole Rational Expressions 

11. Prove the identity 

X 2 -+ XY -+ y2 = Z3 

x = q3 -+ 3pq2 _ p3, Y = -3pq (p -+ q), 
Z = p2 -+ pq -+ q'::.. 

12. Prove that 
(3a -+ 3b)k -+ (2a -+ 4b)k -+ ak -+ bk = 

= (3a -+ 4b)k -+ (a -+ 3b)" -+ (2a -+ b)h 
at k = 1, 2, 3. 

13. 1° Show that if x -+ y -+ z = 0, then 

(ix - ky)n -+ (iy - kz)n -+ (iz - kx)n = 
= (iy - kx)n -+ (iz - kyt -+ (ix - kz)n 

at n = 0, 1. 2, 4. 
2° Prove that 

:.en -+ (x -+ 3)1t -+ (x -+ 5)n -+ (x -+ 6t -+ (x -+ 9t -+ 
-+ (x -+ 10t -+ (x -+ 12t -+ (x -+ 15t = 

= (x -+ 1t -+ (x -+ 2t -+ (x -+ 4t -+ (x -+ 7t -+ 
-+ (x -+ 8t -+ (x -+ 1ft -+ (x -+ 13t -+ (x -+ 14t 

at n = 0, 1, 2, 3. 

14. Prove the identities 

1° (a -+ b + e -+ d)2 -+ (a -+ b - e - d)2 -+ 
-+ (a -+ e - b - d)2 -+ (a -+ d - b - e)2 = 

= 4 (a2 -+ b2 -+ e2 -+ d2); 

2° (a2 - b2 -+ e2 - d2)2 -+ 2 (ab - be -+ de -+ ad)2 = 
= (a2 -+ b2 -+ e2 -+ d2)2 - 2 (ab - ad -+ be -+ de)2; 

3° (a2 - e2 -+ 2bd)2 -+ (d2 - b2 -+ 2ae)2 = 
= (a2 - b2 -+ e2 - d2)2 -+ 2 (ab - be -+- de -+ ad)2. 

15. Prove the identity 

(a -+ b -+ e)' -+ (b -+ e - a)' -+ (e -+ a - b)4 -+ 
-+ (a -+ b - e)' = 4 (a' -+ b4 -+ e') -+ 

-+ 24 (b2e2 -+ e2a2 -+ a2b2). 
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16. Let 8 = a + b + c. 
Prove that 

8 (8 - 2b) (8 - 2c) + 8 (8 - 2c) (8 - 2a) + 
+ 8 (8 - 2a) (8 - 2b) = (8 - 2a) (8 - 2b) (b - 2c)-'-8abc. 

17. Prove that if a + b + c = 28, then 

a (8 - a)2 + b (s - b)2 + C (8 - C)2 + 2 (s - a) X 

X (8 - b) (8 - c) = abc. 

18. Put 

28 = a + b + c; 2(}'2 = a2 + b2 + c2. 

Show that 
«}'2 _ a2) «}'2 _ b2) + «}'2 _ b2) «}'2 _ c2) + 

+ «}'2 _ c2) «}'2 _ a2) = 48 (8 - a) (8 - b) (8 - c). 

19. Factor the following expression 

(x + y + z)S - :r - y3 - zS. 

20. Factor the following expression 

xS + yS + zS - 3xyz. 

21. Simplify the expression 

(a + b + c)S - (a + b - C)3 - (b + c - a)3 -

- (c + a - b)s. 

22. Factor the following expression 

(b - c)S + (c - a)S + (a - b)s. 

23. Show that if a + b + c = 0, then 

as + b3 + c3 = 3abc. 

24. Prove that if a + b + c = 0, then 

(a2 + b2 + C2)2 = 2 (a" + b' + c'). 

25. Show that 

[(a- b)2 + (b - C)2 + (c _ a)2]2 = 

= 2 [(a - b)' + (b - c)' + (c - a)'J. 
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26. Let a + b + c = 0, prove that 

1° 2 (a5 + b5 + c5) = 5abc (a2 + b2 + c2); 

2° 5 (a3 + b3 + c3) (a2 + b2 + c2) = 6 (a5 + b5 + c5); 

3° 10 (a7 + b7 + c7) = 7 (a2 + b2 + c2) (a5 + b5 + c5). 

27. Given 2n numbers: ai' a2' ... , an; bl , b2, ... , b". Put 

Prove that 

albl + a2b2 + ... + anbn = (al - a2) s, + (a2 -- a3) S2 + 
+ ... + (an-I - an) Sn_1 + ansn• 

28. Put 

Prove that 

(s - al)2 + (s - a2)2 + ... + (s - an)2 = 

= a~ + a~ + ... + a~. 
29. Given a trinomial AX2 + 2Bxy + Cy2. 
Put 

x = ax' + ~y', y = yx' + fJy'. 

Then the given trinomial becomes 

A'X'2 + 2B'x'y' + C'y'2. 
Prove that 

B'l! _ A'C' = (B2 - AC) (afJ _ ~y)l!. 

30. Let 
Pi + qi = 1 (i = 1, 2, ... , n) 

and 

Pt+P2+··· +Pn 
P= n ' n 

Prove that 

Plq! + P2Q2 + ... + pnqn = npq - (PI - p)2_ 

-(P2-p)2_ ... -(Pn-p)2. 
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31. Prove that 
1 1 1 1 1 1 
T' 2n-1 + ""3' 2n- 3 + ... + 2n-1 . T = 

= ~ (1+ ~ +! + "'+2n~1)' 
32. Let Sn = 1 + ! + ~ + ... + ~. 
Show that 

1° Sn=n_(~+;+ ... +n:1); 

20 ( n - 1 11 - 2 2 1) 
nSn=n+ -1-+-2 - + '" + n-2+ n-1 . 

33. Prove the identity 
111 111 I 1 

1 -"'2 + ""3 - T + ... + 2n -1 - 2n" = n + 1 -;- n + 2 + " . i-

34. Prove 

(1 + a~1) ( 1 - 2a~1 ) ( 1 + 3a~1 ) X ... X 

X(1+ 1 )(1 1)_ (2n-1)a-1 - 2na-1 -

1 
+Tn' 

(n+1)a (n+2la. (n+n)a 
(n+1) a-1 (n+2) a-1 (n+n)a-1 

35. Let kd denote the whole number nearest to a which 
is less than or equal to it. Thus, [a] ~ a < [a) + 1. 

Prove that there exists the identity 

[x) + [ x + ~ J + [ x + ! ] + ... + [ x + n -:- 1 ] = [nx). 

36. Prove that 

cos (a + b) cos (a - b) = cos2 a - sin2 b. 
37. Show that 

(cos a + cos b)2 + (sin a + sin b)2 = 4 cos2 a;-b, 
(cos a - cos b)2 + (sin a - sin b)2 = 4 sin2 a;-b. 
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38. Given 

(1 -+ sin a) (1 -+ sin b) (1 -+ sin c) = cos a cos b cos c. 

Simplify 
(1 - sin a) (1 - sin b) (1 - sin c). 

39. Given 

(1 -+ cos a) (1 -+ cos p) (1 -+ cos y) = 

13 

= (1 - cos a) (1 - cos p) (1 - cos V). 

Show that one of the values of each member of this equal­
ity is 

sina sin p sin y. 
40. Show that 

cos (a -+ P) sin (a - P) -+ cos (P -+ y) sin (P - y) -+ 
-+ cos (y -+ 6) sin (y - 6) -+ cos (6 -+ a) sin (0 - a) = O. 

41. Prove that 

sin (a -+ b) sin (a - b) sin (c -+ d) sin (c - d) -+ 
-+ sin (c -+ b) sin (c - b) sin (d -+ a) sin (d - a) -+ 

-+ sin (d -+ b) sin (d - b) sin (a -+ c) sin (a - c) = o. 
42. Check the identities: 

1° cos (P -+ y - a) --L cos (y -+ a - ~) -+ 
-+ cos (a -+ ~ - y) -+ cos (a -+ ~ -+ y) = 4 cos a cos ~ cos y; 

2° sin (a -+ ~ -+ y) -+ sin (~-+ y - a) + sin (y-+a-p)­

- sin (a -+ ~ - y) = 4 cos a cos ~ sin y. 

43. Reduce the following ('xpression to a form convenient 
for taking logarithms 

sin ( A -+ ~ ) -+ sin ( B + ~ ) -+ sin ( C -+ : )-+ 
-+ cos ( A -+ ! ) -+ cos ( B -+ ~ ) -+ cos ( C -+ : ) 

if A -+ B -+ C = n. 
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44. Reduce the following expression to a form convenient 
for taking logarithms 

. A . B+. C+ A+ B+ C sm -+sm- sm- cos- cos- cos-4 4 4 4 4 4 

if A + B + C = n. 
45. Simplify the product 

cos a cos 2a cos 4a ... cos 2"-la. 

46. Show that 

n 2n 3n 4n 5n 6n 7n ( 1 ) 7 
cos 15 cos 15 cos 15 cos 15 cos 15 cos 15 cos 15 = "2 . 

47. Given sin B = + sin (2A + B). 

Prove that 

tan(A+B)= ~ tanA. 

48. Let A and B be acute positive angles satisfying the 
equalities 

3 sin2 A + 2 sin2 B = 1, 

3 sin 2A - 2 sin 2B=O. 

Prove that A + 2B = i. 
49. Show that the magnitude of the expression 

cos2 cp + cos2 (a + cp) - 2 cos a cos cp cos (a + cp) 

is independent of cpo 
50. Let 

a = cos cp cos'I\J + sin cp sin 'I\J cos 15, 
a' = cos cp sin 'I\J - sin cp cos'I\J cos 15, a" = sin cp sin 15; 

b = sin cp cos'I\J - cos cp sin 'I\J cos 15, 
b' = sin cp sin 'I\J + cos cp cos'I\J cos 15, b" = -cos cp sin 15; 

e = -Sill 'I\J sin 6, e' = cos'I\J sin 6, e" = cos 15. 



2. Rational Fractions 

Prove that 

a2 + a'2 + a"2 = 1, b2 + b'2+ b"2 = 1, 
c2 + C'2 + C"2 = 1, 

ab + a'b' + a"b" = 0, ac + a'c' + a"c" = 0, 
bc + b'c' + b"c" = O. 

2. RATIONAL FRACTIONS 

15 

Transformations of fractional rational expressions to be 
considered in this section are based on standard rules of 
operations with algebraic fractions. 

Let us draw our attention only to one point which we have 
to- use (see Problems 15, 16, 17). If we have a first-degree 
binomial in x 

Ax+ B 

and if we know that it vanishes at two different values of x 
(say, at x = a and x = b), then we may state that the 
coefficients A and B are equal to zero. Indeed, from the 
equalities 

Aa + B = 0, Ab + B = 0 
we get 

A (a - b) = 0 

and since a - b =1= 0, then A = O. Substituting this value 
into one of the equalities (*), we find B = O. Similarly, 
we may assert that if a second-degree trinomial in x 

Ax2 + Bx + C 

vanishes at three distinct values of x (say, at x = a, x = b 
and x = c), then A = B = C = O. 

Indeed, we then have 

Aa2 + Ba + C = 0, Ab2 + Bb + C = 0, 

Ac2 + Bc + C = O. 

Subtracting term by term, we have 

A (a2 - b2) + B (a- b) = 0, A (a2 - c2) + B (a - c) =0. 
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Since a - b =1= 0, a - c =1= 0, we have 

A (a + b) + B = 0, A (a + c) + B = O. 

Hence A = 0 (since b - c =1= 0), and then we find B = 0 
and C = o. 

Analogously, we can show that if a third-degree poly­
nomial 

Ai' + Bx2 + Cx + D 

vanishes at four different values of x, then 

A = B = C = D = 0, 

and, in general, if an nth-degree polynomial vanishes at 
n + 1 different values of x, then its coefficients are equal 
to zero (see Sec. 6). 

Finally, considered in this section are a number of pro­
blems pertaining finite continued fractions. We take as 
known the information on these fractions contained usually 
in elementary textbooks. 

The principal trigonometric relations used in solving 
triangles are also taken here as known. 

1. Prove the identity 

3_ ( pS-2q3 )3 (2 p3 _ q3 )3 3 
P .-- P p3 + q3 + q p3 + q3 + q . 

2. Simplify the following expression 

1 (1 1) 3 (1 1) 6 (1 1) 
(p+q)3 pa+qs + (p+q)4 p2+-q2 + (p+q)6 p+q- . 

3. Simplify 

1 (1 1) 2 (1 1) 
(p+q)3 Jj4-1j' + (p+q)4 7- qs + 

4. Let 
a-b 

x= a+b ' 

Prove that 

b-c 
y= b+c ' 

+ 2 (1 1) 
(p + q)6 Jli - ---;j2 • 

c-a 
Z=--. 

c+a 

(1 + x) (1 + y) (1 + z) = (1- x) (1- y) (1- z). 
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5. Show that from the equality 

(a+b+e+ d) (a -b-e+d) = (a -b+e-d) (a+b-c- d) 

follows 
a b 
7=(f' 

6. Simplify the expression 
ax2 + by2 + cz2 

bc (y-z)2+ca (z-x)2+ab (x-y)2 

if 

ax+by+ez=O, 

7. Prove that the following equality is true 
x2y2z2 (x2-a2) (y2_ a2) (z2_ a2) (x2_b2) (y2_b2) (z2-b2) 
a2b2 + a2 (a2_b2) + b2 (b2-a2) = 

= x2 + y2+ z2_ a2_b2• 

8. Put 
all b" cll 

~--;-:'-;----:-+ b + ( = 8 II' (a-b) (a-c) (b-a) ( -c) (c-a) c-b) 

Prove that 

80 =81=0,82 =1,8s=a+b+e, 

8, = ab+ae + be + a2 + b2 + e2 , 

85 = as + bS + eS +a2b+b2a+e2a + a2e + b2e + e2b + abc. 

9. Let 
all b" 

(a-b) (a-c) (a-d) + (b-a) (b-c) (b-d) + 
cll dll 

+ (c-a) tc-b) (c-d) + (d-a) (d-b) (d-c) = 8 11 , 

Show that 

80 =81 =82 =0,8s =1, 8 4 =a+b+e+d. 

10. Put 
m (a+b) (a+c) + bm (b+c) (b-l a) + m (c+a) (c+b) 

O'm = a (a-b) (a-c) (b-c) (b-a) e (c-a) (c- b)' 

Compute 0'1> 0'2, 0'3 and (J4' 
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(b-a)(b-p) (b-y) , 

11. Prove the identity 

be (a-a) (a-p) (a-y) + ea 
(a-b) (a-c) (b-a) (b-e) -r 

+ab 

12. Show that 

(e-a) (c-~) (c-y) 
(c-a) (c-b) 

a2b2c2 a2b2d2 

(a-d) (b-d) (e-d) + (a-c) (b-c) (d-e) + 

=abc-a~,\,. 

a2e2d2 b2c2d2 

+ (a-b) (e-b) (d-b) + (b-a) (c-a) (d-a) 

= abc + abd + acd + brd. 

13. Simplify the following expressions 

10 1 + 1 + 1_ 
a (a-b) (a-c) b (b-a) (b-c) e (c-a) (c-b) , 

20 1 1 + 1 a2 (a-b)(a-c)+ b2 (b-a) (b-e) e2 (c-a)(e--b)' 

14. Simplify the following expression 
aB. bB 

(a-b) (a-c) (x-a) + (b-a) (b-c) (x-b) + 

eh 

+ (c-a) (e-b) (x-c) , 

where k= 1, 2. 
15. Show that 

b+c+d c+d+a 
(b-a) (c-a) (d-a) (x-a) + «('-b) (d-b) (a-b) (x-b) + 

~ d+a+~ a+b+e 
I (d--c) (a-c) (b-e) (x-c) + (a-d) (b-d) (c-d) (x-d) 

x-a-b-c-d 
(x-a) (.x-b) (x-c) (x-d) • 

16. Prove the identity 

a2 (:l'-b) (x-c) + b2 (x-c) (x-a) + z (.x-a) (x-b) = x 2 • 

(a-b) (a-c) (b-c) (b-a) C (e-a.) (e-b) 

17. Prove the identity 

(x-b) (x-c) + (x-c) (.x-a) + (x-a) (x-b) = 1. 
(a-b) (a-c) . (b-c) (b-a) (C-Il) (e-b) 
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18. Show that if a + b + c = 0, then 

( a-b + b-c +~) (_c_+_a_+_'b_) =9. 
cab a-b b-c c-a 

19. Simplify the following expression 
a-b b-c c-a (a-b) (b-c)(c-a) 
a+b + b+c + c+a + (a+b) (b+c)(c+a) 

20. Prove that 
b-c c-a a-b 

(a-b) (a-c) + (b-c) (b-a) + (c-a) (c-b) 

19 

=_2_+_2_+~. 
a-b b-c c- a 

21. Simplify the following expression 

a2 -bc b2 -ac e2 -ab 
(a+b) (a+c) + (b+e) (b+a) + (c+a) (e+b) . 

22. Prove that 
dm (a-b) (b-e)+bm (a-d) (c-d) b-d 
em (a-b) (a-d)+am (b-e) (c-d) a-e 

at m= 1,2. 
23. Prove that 

{ 1_-=-+x(x-al) x(x-al) (X- a 2) + ... + 
al ala2 ala2a3 

+ (_1)n ~(x-al) (X- a2) '" (x-an_l) } X 
ala2a3 '" an 

X {1 +-=-+ x(x+al) + x(x+al)(x+a2) 
---'-----'--=:.:.....:--'---""- + . . . + 

al ala2 ala2aa 

+ x (x+al) (x+a2) ... (x+an_l) } = 
ala2a3 ..• an 

_ x2 x2 (x2 - a r) 
-1--2+ 2> - ... + a l ala2 

24. Given 
b2 +c2 _a2 + c2 + a2 _h2 a2 +b2 _e2 

2bc 2ac + 2ab = 1. 



20 

Prove that two of the three fractions must be equal 
to + 1, and the third to -1. 

25. Show that from the equality 
1 1 1 1 
a-+lJ+c= a-f b+c 

follows 

if n is odd. 
26. Show that from the equalities 

bz-j-cy _ cx+az _ ay-t bx 
x (-ax+by+cz) - y (ax-bu+cz) - z (ax+by-cz) 

follows 
x y z 

a (b2+ c2 -a2) 

27. Given 

Prove that 

28. If 

and 

then 

a+~+,\,=O, 

a+b+c=O, 

~+1..+:l=O. 
abc 

a3 +b3 +c3 = (b+c) (a+c) (a+b) 

x3 + y3 + Z3 = (x + y) (x + z) (y + z). 

29. Consider the finite continued fraction 

ao+""!"'+ 1 
a1 Ii;'" + . . 1 .+-. an 
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Put 
Po=ao, Qo=1, P 1=aoal+1. QI=al 

and in general 

Then, as is known, 

P Ml = ak+lPk + Ph-I> 

Qk+l = ak+1Qk + Qk-I' 

PQn =ao+-1 + (n= 0, 1, 2, 3, ... ). 
a' 1 n I .. +_ 

an 

Prove the following identities 

21 

1 ° ( Pn+2 _ 1) (1 _ Pn- I ) = ( Qn+2 _ 1) (1 _ Qn-I ); 
Pn Pn+1 Qn Qn+1 

20 Pn _.!..2... __ 1 ___ 1_+ + (-1)n-l. 
Q" Qo - QoQI QIQl . . . Qn-IQn' 

3° P n+2Qn-2 - p n-2Qn+2 -.= (an+2an+lan + a n+2 + an) ( - 1 )n; 

40 Pn 1 
--=an +--+ 
Pn-I an-I' • 1 

. +a;' 
~=a,,+_1_+ 
Qn-I an_I' •• + -.!.... 

al 

30. Put for brevity 

ao+_1_ + = (ao, at> ... , 'an) = PQnn ' al • • 1 .+-an 

and let the fraction be symmetric, i.e. 
ao = an, al = an_I> 

Prove that 
Pn-I=Qn. 

31. Suppose we have a fraction 
1 1 
a+-+ 1 

a a+. 1 
'.+-. a 
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Prove that 

32. Let 
1 x=-+ 1 
a T+. 1 

. ··+T+~ 1 
a+T+. 1 .. +-

1 

and let PQn and PQn- 1 be, respectively, the last and last 
n n-l 

but one convergents of the fraction 

Prove that 

P"Qn+ PnPn-l 
x= Q2 P . n+ nQn-l 

33. Consider the continued fraction 

bo-l-~+ a2 
'bl -+ b2 ' a 

Put 

'.+~ bn . 

Po=bo, Qo= 1, P 1=bob1 +ah Ql=bh ··· 

and in general 

Prove that 

P h+1 = bh+1P h + ak+1P k-h 

Qk+1 = bk+1Qk + ak+1Qk-l . 
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34. Prove that 

r r 
r+1 - 1'+1 r 

-r:tT 

(the number of lill ks ill the 
to n). 

35. Prove that 

1 1 1 -+-+ ... +-= 
Ul u2 Un 

1 
u 2 

Ul - 1 
ll~ 

Ul--t U2 -
U2+ U3 

36. Prove the equality 

r 
.- r+1 

rn+l_r 

- /,1'<+1-1 

continued fraction is 

U~_1 

U n-l+ Un 

where C" C2, ••• , Cn are arbitrary nonzero quantiLies. 
37. Prove the following iden ti ties 

sin (n+ 1) x 
sin nx 

=2cosx--1- 1 

23 

equal 

2cosx---
2cosx-' 1 

. -2cos x 

(a total of n links); 
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38. Prove that 

1 ° sin a + sin b + sin c - si n (a + b + c) = 
4 . a+u . a+c . b+c. 

= SIn -2- sm -2- sm -2-'- , 
J 

2° cos a+cos b+cosc + cos (a+ b + c) = 

a+b b+c a+c 
= 4 cos -2- cos -2- cos -2- . 

39. Show that 
sin (a+b+c) tan a + tanb + tan c- = tan a tan b tan c. cos a cos b cos c 

40. Prove that if A + B +C = n, then we have the fol-
lowing rE'lationships 

1c • A . B+ . C 4 ABC sm + sm sm = cos "2 cos "2 cos "2 ; 

2° cos A + cos B + cos C = 1 + 4 sin ~ sin ~ sin ~ ; 

3° tanA+tanB+tanC=lnn.llanBtanC; 
1 A B A C Be 

4 tan "2 tan "2 + tan "2 tan "2+ tan "2 tanT = 1; 

5° sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C. 

41. Find the algebraic relations between the quanti­
tiE'S a, band c which satisfy the following trigonometric 
equalities 

if 

10 b 1 4· a . b • c cos a + cos + cos c = + sm 2" SIn 2 sm 2" ; 

2° tan a + tan b + tan c = tan a tan b tan.e; 

3° cos2 a+cos2 b + cos2 c·-2 cos acos bC08C = 1. 

42.. Show tha t 

x _Y_ _z_ _ 4xys 
1-x2 + 1_y2 + 1_z2 - (1-x2) (1- y2)(1-z2 ) 

X!I+XZ+ liZ = 1. 
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43. Show that the sum of the three fractions 
b-c c-a a-b 

1 +bc ' 1+ac' 1 +ab 

is equal to their product. 
44. Prove that 

tan 3a = tan a tan ( ~ + a ) tan ( ~ - a ) . 

45. Prove that from the equality 

sin' a + cos' a 
a b 

follows. the relationship 

sinS a + coss a 
a3 b3 

1 

46. Suppose we have 

atcOSat+a2cosa2+"· +anCOSan=O, 

at cos (at + 8) + a2 cos (a2 + 8) + ... + an cos (an + 8) = ° 
(8 =i= kn). 

Prove that for any 'A 

at cos (at + 'A) + a2 cos (a2 + 'A) + ... + an cos (an + 'A) = O. 

47. Prove the identity 

sin (~-V) + sin (v-a) + sin (a-~) _ 0 
cos p cos V cos V cos a cos a cos ~ - . 

48. let in a triangle the sides be efJual to a, band c, 
and let 

s s s 
r=- r a =--, p , p-a r =--

c p-c' 

where s is the area of the triangle and 2p = a + b + c. 
Prove the following relationships 



26 Problems 

( a b + c ) _ 4. r;+r; r; - , 
40 be ac + 

(a-b) (a-c) r~ + (b-c) (b-a) r6 
ab 

+ (c-a) (c-b),.~ 
a2 

(a-b) (a-c) rbrc + 
b2 c2 1 

+ (b-c) (b-a) rera + (e-a) (e-b) rarb = fl ; 

50 ara brb + ere _ 
(a-b) (a-c) + (b-c) (b-a) (e-lI) (c-b)-

(b+c) ra (e+a) rb 
- (a-b) (a-c) + (b-c) (b-a) + 

(a+b) rc 
+ (e-a) (e-b) 

E 
r 

49. Prove the identiLy 

sin (a-c) sin (a-d) 
sin (a+b-c-d) = sin (a-b) + 

50. Given 

+ sin (b-c) sin (b-d) 
sin (b-a) 

abc 
cos e = b + e' cos cP = a + e' cos 'Ii' = a + b 

(e, cp and 'Ii' lie between 0 and n). 
Knowing that a, band c are the sides of a triangle 

whose angles are A, Band C, correspondingly, prove 
that 

.)0 f). IV ~, _ ABC 
... tall 2 tau Ttan 2 -tan 2 tan 2 tan -:2. 



2. Rational Fractions 21 

51. Prove that 

t 1 
sin (a-b) sin(a-c) + sin(b-a)sin(b-e) + 

t 
+ sin (e-a) sin (e-b) 

1 
a-b a-c b-c 

2 cos -2- cos -2 - cos -2-

52. Prove the identities 

10 sin a sin b 
sin (a-b) sin (a-c) + sin (b-a) sin (b-c) + 

sin c + =0; sin (e-a) sin (c-b) 

~ ~a ) ~b + 
sin (a-b) sin (a-c) + sin(b-a)sin(b-c) 

+ cose =0. 
sin (e-a) sin (c-h) 

53. Prove the identities 

1° sin a sin (b- c) cos (b+c-a) + 

+ sil). b sin (c- a) cos (c + a-b) + 

+ sin c sin (a-b) cos (a + b- c) = 0; 

2° cos a sin (b-c) sin (b + c-a) + 

+cos b sin (c-a) sin (c+ a-b) + 

+ cos (' sin (a - b) sin (a + b - c) = 0; 

3° sin a sin (b -c) sin (b+ c- a) + 
+sin bsin (c- a) sin (c+ a-b) + 

+ sin c sin (a - b) sin (a + b - c) = 
= 2 sin (b -c) sin (c- a) sin (a- b); 

4° cos a sin (b-c)cos(b+c-a}+ 

+cosbsin(c-a)cos(c+a- b)+ 

+ cos c sin (a - b) cos (a + b - c) = 

= 2 sin (b- c) sin (c -a) sin (a -- b). 
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54. Prove that 

1° sin3 A cos (B - C) + sin3 B cos (C - A)-1-

+ sin3 C cos (A - B) = 3 sin A sin B sill C; 

2° sins A sin (B - C) + sin3 B sin (C - A) + 
+ sins C sin (A - B) = 0 

if A + B + C = n. 
55. Prove the identities 

1° sin 3A sins (B - C) + sin 3B sins (C - A) + 
+ sin 3C sins (A - B) = 0; 

2° sin 3A coss (B - C) + sin 3B coss (C - A) + 
+ sin 3C coss (A - B) = sin 3A sin 3B sin 3C 

if A + B + C = n. 

3. RADICALS. INVERSE 
TRIGONOMETRIC FUNCTIONS. 

LOG~RITHMS 

The symbol ;Y A is understood here (if n is odd) as the 
only real number whose nth power is equal to A. In this 
case A can be either less or greater than zero. If n is even, 
then the symbol ;Y A is understood as the only positive 
number the nth ·power of which is equal to A. Here, neces­
sarily, A ~ O. 

Under these conditions, for instance, 

VA2=A if A>O, 

. VA2= -A if A<O. 

All the rest of the standard rules and laws governing the 
operations involving radicals, fractional and negative 
exponents are considered here to be known. Let us also 
remind of two formulas which sometimes turn out to be 
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rather useful in performing various transformations, namely: 

Y- V _1/ A+VA2_H -01" A-VA2_H 
A+ B-" 2 + V 2 ' 

V V .. I" A + V A2_H 
A- B= V 2 

As far as trigonometric functions are concerned, let us 
first of all consider the reduction formulas: 

1 ° The functions sin x and cos x are characterized by the 
period 2n, whereas tan x and cot x by the period n so that 
we may write the following equalities 

sin (x + 2kn) = sin x, cos (x + 2kn) = cos x, 

tan (x + kn) = tan x, cot (x + kn) = cot x, 

where k is any whole number (positive, negative or zero). 
2° For the functions sin x and cos x the quantity n is the 

half-period, i.e. the rejection of the quantity +n in the 
argument results in a change in the sign of a function. 
Consequently, 

sin (x + kn) =(_1)k sin x, cos (x + kn) = (_1)k cos x, 

where k is any whole number (positive, negative or zero). 
3° The functions sin x, tan x and cot x are odd functions, 

and cos x is an even function. Therefore 

sin (-x) = -sin x, tan (-x) = -tan x, 

cot (-x) = -cot x, cos (-x) = cos x. 

4° If x and yare two quantities entering the relationship 

then 
cos x = sin y, 
tan x = cot y, 

sin x = cos y, 
cot x = tan y. 

Using these remarks, we can always reduce sine or cosine 
of any argument to sine or cosine of an argument lying 

in the interval between 0 and ~. The same can be said 

about tangent and cotangent. 
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Indeed, any argument c.t can be written in the following 
form 

n 
c.t=s·-+c.to 2 - , 

where s is an integer, and 0 ~ c.to ~ ~, wherefrom follows 

the stated proposition. Let us also mention the following 
formulas (k an integer): 

sin kn = 0, tan kn = 0, cos 1m = (-1)", 

. kn 0 
Sill 2= 

kn "-1 
sin -2- = ( - 1) 2 

kn ~ 
cosT=(-1)2 

kn 
cos 2 =0 

if k is even, 

if k is odd, 

if k is even, 

if k is odd. 

Further, we use the symbol arcsin x to denote an arc 
whose sine is equal to x and which lies in the interval 

11: n 
between - 2 and + 2" . 

Thus, in all cases 

Similarly 

- ~ ~ arcsin x ~ + ~ . 

n n 
- 2 < arctan x < + 2" ' 

O~arccos x~n, 

0< arccotx < n. 

In this section we also give several problems on trans­
forming expressions containing logarithms. 

1. Prove tha t 

2+ V3 2-V3 2 

( 112 + V 2 + -Va + -V2-V 2 _ -V3 ) = 2. 
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2. Show that 

1° :-'V2-t = V{- Vi+ Vi; 
2° V,Y5 -;;4 =~ (Y2 +,YW-,Y25); 

3° V Y28-y-27 =! (~-.Y2B-I); 
1 

40 (3+2V5)T = V5'+1 . 
3-2t!5 V5-1 ' 

1 

.')0 (~/32_ ~127)3 = ~/'T ~/3 _ ~j!j"'-
V 5" V 5" V 2+ V 2il V ~, 

1 

~/1 !14)2 5 ..!.. 
W' ( V 5+ Y 5 =(1+Y2+YS) 5 = 

~/16 ~rs ~/T !/'T 
= V 125+ Y 125+ V 125- V 125' 

ABC D 3. Let -=-=-=-. 
abc d 

Prove that 

VAa+YBb+ycc +V Dd= 

if 

= V (a+b+c+d) (A+B+C+D). 

4. Show that 

5. Put 

:-' ax2 +by2+ cz2=ra+Yb +rc 

a,x3 = by3 = cz3 and .!. +i. +i. = 1. 
x y z 

all = ( 1 +- ~ ) n + (1- ~ ) n, 

h,,= (1 + ~ r - (1- 0 r· 
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Show that 

b b + bm_1I 
m+n=am II ~. 

6. Let 

U n = ~ [( 1+2V5 f - ( 1-2-v1 rJ 

at 

Prove the following relationshi ps 

1° U n+1=u n +u n-t; 
2° Un-l = UkUn-h -I- Uk-!Un-h-!; 

3° U2n-l =U~+U~_l; 

4° U3n=~+U~+1-uLl; 
5° u~ - Un-2Un-1Un+1Un+2 = 1; 

6° Un+1Un+2-UnUn+3=(-1t; 

7° U nU n+1- Un-2Un-l = U2n-t. 

7. Prove the following identities 

(n=O, 1,2, ::1, .•. ). 

1 1 1 

1° {2 [a2+b2)2 -a] [(a2+b2)2 -bll"z = 

1 

=a+b-(a2 +b2)2 (a> 0, b>O); 
I 1 1 

2° {3[(a3 +b3)3 -al [(a3 +b3)"7 -bJ}T = 
2 1 

=(a+b)3 --ta2-ab+b2)3. 

8. Compute the expression 
1 1 

(1-ax) (1 + axtl (1-+ bx)7 (1-- bx)-2 

1 

X = a-l (2 .~ _1)"'2 (0 < a < b < 2a). 
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9. Simplify the expressioll 

n3 -3n+(n2 -i) ~-2 
n3 -3n+(n2-i) Vn2-4+2 

10. Simplify the expression 

r ~ + i-a JX 
I -vn:a- -vr=a Vi-a2 -i+a 

X[Va~-1-!J (O<a<1). 

11. Prove that for x ~ 1 

Yx+2vx=t +V.r-2Vx 1 

is equal to 2 if .x~2, and to 2 Vx=T if x> 2. 
12. Compllte 

V a + b + e + 2 Y ae + be + Y a + b + e - 2 Y ae + be 

(a,O, b~O, e~O). 

13. Prove that the trinomial x3 + px + q vanishes at 

x= Y -t+ vi ~ + ~; + V - ~ -v' ~2 + ~; . 
14. Express x in terms of a new variable so that Y x+a 

and Vx+b become rational. 
15. Rationalize the denominator of the fraction 

1 

if 
a b c 

16. Prove that ~ cannot be represented in the form 
p + yq, where p and q are rational (q> 0 and is not 
a perfect square). 
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17. Prove the following identities 

10 tan ( 3; -a) cos ( 3; -a) 3t . 
(2) +cos (ex--2 )Slll (Jt-ex) + cos 3t-a 

+cns (n + ex) sin (ex- ~) =0; 

2° (1- sill (3n - ex) + Cos (:In t- ex») X 

X [ 1- siT! ( 323t - ex ) + cos ( 5211 - a ) ] + sin 2a = 0; 

3° (i-sin (n+ex) +cos (n + ex)]!! + 
+ [ 1- sin ( 323t + ex ) + 

+cos (_3; -ex)T=4-2sin2ex. 

18. Let ex = 2kn + exo, where O~exo < 2n. 
Prove that there exists the following equality 

.. a ( 1)",/1-cusa 
SJJlT= - V 2 . 

Let us assume then tha t ex = 2kn + exo, where - n ~ 
~exo < n. 

Show that then 

a_( 1)",/1+cosa 
cosT - - V 2 

19. If a whole number a is divisible by n leaving no 
remainder, we shall write this in the following way 

a == 0 (mod n) 

\\ Ilicli j~ read: a is comparable with zero by the modulus n. 
What n'mainders can a whole number leave when being 
ciivide(\ by the whole number n? 

J 1 is obvious, that being divided by n, any whole number 
can leave the following remainders 

0, 1, 2, 3, ... , n - 1. 

If as a result of dividing a by n we obtain a remainder k, 
then we shall wri te 

a == lr (I\lod n), 
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since in this case 

a - k = 0 (mod n). 

Thus, when dividing a by 2 only two cases are possible: 
either a is divisible exactly, or leaves a remainder equal to 1. 

In the first case we write a = 0 (mod 2), in the second 
a == 1 (mod 2). 

The division by 3 can also yield a remainder (0, 1, 2), 
and, consequently, only three cases are possible: a = 0 
(mod 3), a == 1 (mod 3), a == 2 (mod 3) and so on. 

Consider tho following problom. 
We have 

A1 = 1. 

A2 =cos nIt. 

A3 =-= 2 cos ( ; nIt - 118 It ) . 
A4 = 2 cos ( ~ nIt- ! It). 
As = 2 cos ( ~ nIt - ~ It) + 2 cos : nIt. 

A6 = 2 cos ( ~ nIt - 158 :n:). 

A7 = 2 cos ( ~ nn - 1~ :n:) + 2 cos ( ; nIt- 1~ It) + 
-i 2 cos ( f n:n: + 1~ It). 

As = 2 cos ( ! nIt - 176 :n:) + 2 cos ( ! n:n: - 11(j :n:). 

A9 = 2 cos ( ~ n:n: - ~; :n:) + 2 cos ( ~ nIt - ~ :n:) + 
-I- 2 cos ( ~ n:n: + 2; It). 

( 1 3) 3 A,o = 2 cos 5"nIt-"5:n: +2 cos "5 n:n:. 
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( 2 15 -) ( 4 [:») Au = 2 cos 1fnn-22 n + 2 cos .1fnn - 22 n -+-

+ 2 cos ( 161 nn - :2 n) + 2 cos ( 1~ nn - 232 n) + 
+ 2 cos ( !~ nn + :2 n) . 

A12 = 2 cos ( ! nn - ~~ n) + 2 cos ( ~ nn + 7~ n). 

Al3 = 2 cos ( 123 nn- ~! n) + 2 cos ( 1~ nn- 1~ n) + 

+ 2 cos ( 163 un - 1~ n) -I- 2 cos ( 1~ nn + 1~ n) -+-

2 10 I 2 . ( 12 + 4 ) + cos 13 nn, cos 13 nn - -13 n . 

( 1 13) ( 3 3) A 14 = 2 cos 7 nn -14 n 1- 2 cos "7 nn -14 n + 
~ 3 +2 cos ( ; nn-14 n). 

All; = 2 cos ( 125 nn - 9~ n) -+- 2 cos ( 1; nn - 178 n) + 
+ 2 cos ( 185 nn - !~ n) -+- 2 cos ( :! nn + :8 n). 

AI6 = 2 cos ( ! nn -+- ;; n) -+- 2 cos ( ~ nn-+- ;~ n) + 

+ 2 cos ( ~ nn + 352 n) + 2 cos ( ~ nn + 332 n). 

An = 2 cos ( 127 nn + :; n) -+- 2 cos ( 1~ nn - 187 n) -1-

+ 2 cos ( if; nn - 157 n) -+- 2 cos 1H7 nn-+ 

+ 2 cos ( !~ nn - ;7 n) + 2 cos (!~ nn - 157 n) + 
( 14 1) ( 16 8) -+-2cos T7nn-17n -+-2cos T7nn+T7n . 

/1 18 = 2 cos (.!.nn+~ n) -t- 2 cos (~nn-~ n)--'--
9 27 9 27 ' 

-+- 2 cos ( ~ nn +- :7 n). 
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Prove that 

A5 = 0 if n = 1, 2 (mod 5), 

A7 = 0 if n = 1, 3, 4 (mod 7), 

A lo = 0 if n = 1, 2 (mod 5), 

Au = 0 if n = 1, 2, 3, 5, 7 (mod 11), 

AI3 = 0 if n = 2, 3, 5, 7, 9, 10 (mod 13), 

Au = 0 if n=1, 3, 4 {mod 7), 

AI6 = 0 if n = 0 (mod 2), 

A17 = 0 if n==:=1, 3, 4, 6, 7, 9,13,14 {mod 17), 

and that A 2, A 3 , A 4 , An' A R, A g , A 12 , .A 15 and AI8 never 
vanish for any whole n (S. Ramanujan. Asymptotic formulae 
in combinatory analysis). 

20. Let 

p(n)=A(n+3)2+B+C(-1t+Dcos 2~n (nan integer). 

Prove that thorp exists the following relationship 

p (n) - p (n - 1) - p (n - 2) + p (n - 4) + 

21. Sho\v that 

1° sin 15° = V6- V2 
4 

20 sin 180= -1+ V5 
4 

22. Show that 

+ p (n - 5) - p (n - 6) = O. 

cos 15° _ VB -1 V2 ; -- 4 

cos 18°= ! V 10+2 V5. 

. 60 _ V 30-6 V5 - V 6+2 V5 
sm - 8 ' 

23. Show that 

cos (arcsin x) = V 1- x 2 , sin (arccos x) = V 1- x 2 • 

1 1 
tan (arccot x) = - , cot (arctan x) = - . x x 
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cos (arctanx)= ,/ ' 
V 1+x2 

1 sin (arctan x) = 11 X 
1+x2 

cos (arccot x) = 11 x ,sin (arccot x) = 11 1 
1~~ 1~~ 

24. Prove that 

11 • + :rt arc tan x + arccot x = 2" ' arCSIn x arccos x = 2" . 

25. Prove the equality 

x+y 
arctanx+arctany=arctan 1-xy +en, 

where e = 0 if xy < 1, 

e = -1 if xy > 1 and x < 0, 

e = + 1 if ,xy> 1 ancI x> o. 

1 1:rt 
26. Show that 4 arctan "5- arctan 239 = T . 

111 
27. Show that arctan 3" + arctan "5+ arctan 7+ 

1 11 
+ arctan "8 = T . 

28. Show that 2 arctan x+ arcsin 1 ~x 2 =n (x> 1). 
IX 

29. Prove that 

1 11 
arctan x+ arctan x= 2 if x> 0, 

arctan x+ arctan ! = - ~ if x < o. 
30. Prov9 that 

arcsin x + arcsin y = 'I'J arcsin (x V 1-y2 + y V 1-x2) + en, 

where 'I'J== 1, 8==0 if xy < ° or x"+y2~1, 

'I'J == -1, 8 == -1 if ,-,;2 + y" > 1, x < 0, 11 < 0, 
'I'J= -1, 8== +1 if r+y"> 1, ,-,;>0, y>O. 
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31. Check the equality 

arccosx+arccos (; +} V3-3x2) = 11 

if 

32. If 
j t 

A = arctall'f amI B = arctan 3 ' 

then prove that cos 2A = sin 4B. 

33. Let a2 + b2 = 7ab. 

Prove that 
a+b 1 

log -3 - = 2" (loga+ log b). 

log(J n 
34. Prove that I = 1 + loga m. 

Og'am n 

35. Prove that from the equalities 

x(y+z-x) _ y(z+x-y) 
log x - log y 

follows x Y • yX = zY • yZ = X Z • Z ~ • 

36. 1° Prove that 10gb a.loga b = 1. 
2° Simplify the expression 

log(log a) 

a log a 

z(x+y-z) 
log z 

(logarithms are taken to one and the same base). 

37. Given: y=10 1- 10g :x, 
taken to the base 10). 

Prove that 

z = 10 I-log Y (logarithms 

x= 10 l- IOi%. 

38. Given. 

are 
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Prove that 

logb+e a + loge_I, a = 2 loge+/, a loge_Ii a. 

39. Let a>O, c>O, b=l/ac, a, c and ac*1, N>O. 
Prove that 

40. Prove that 

log" N 
loge N 

loga N --Iog/) N 
10gb N -loge N 

41. Given a geometric and an arithmetic progression 
with positive terms 

The ratio of the geometric progression and the common 
difference of the arithmetic progression are positive. Prove 
that there always exists a system of logarithms for which 

log all - bn c= log a - b (for any n). 

Find the base ~ of this system. 

4. EQUATIONS AND SYSTEMS 

OF EQUATIONS 

OF THE FIRST DEGREE 
The general form of a first-degree equation in one un­

known is 
Ax + B = 0, 

where A and B are independent of x. To solve the first­
degree equation means to reduce it to this form, since then 
the expreS$ion for the root becomes explicit 

B 
x = - A' 
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Therefore the problem of solving the fust-degrre equation 
is one of transforming the given exprpssion to the form 
Ax + B = O. In doing so great attention should be paid 
to make sure that all the equ<1tions involved are equivalent. 
The prc,blem of solving a system of rquations also consists 
to a considerable extent in transforming a system into 
an equivalent one. 

This section deals not only with equations of the first 
degree in the unknown x, but also with the equations which 
can be reduced to them by means of appropriate transforma­
tions (such are equations involving radicals, trigonometric 
equations and ones involving exponential and logarithmic 
functions). Here and in the following section we consider 
a trigonometric equalion solvrd if we find the value of one 
of the trigonometric functions of an expression linear in x. 

I ndeed, if it is known that 

tan (mx + n) = A, 
then we flOd 

mx + n = arctan A + kn, 

where k is any intl'ger. 
Consequently, all the required values of x are given by 

formula 
arctan A - n -l kn 

x -= -----'--
m 

Likewise, if it is found that 

cot (mx+ n) = A, 
then 

mx+ n = arccot A + kn and arc cot A - n + kn 
x = ------'--

But if it is known that 

sin(mx+n)=A, 

m 

then all the values of x satisfying the last equation are 
found by the formula 

mx + n = (_1)11 arcsin A + kn, 

where k, as before, is any integer. 
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Analogously, fl'Orn the equatioll 

cos (rnx + n) = A 
follows 

rnx + n = +arccos A + 21m. 

When solving exponential equations one should remembe 
that the equation 

aX = 1 (a> 0 and iH 1101, equal 10 1) 

has the only solution x = o. 
1. Solve the equation 

,/ 
x-ab + x--ac +- .r-be __ t- b--j -- -- -- a- -c a+b a-I e bTc -- . 

2. Solve the equation 

3. Solve the equation 

6x -+ 2a + 3b 1- e 2.c + (ja + b + :k 
6x,-2a-3b-e = 2x+6a-b-3c· 

4. Solve the equation 

a+b-x + a+~-x + b+e-x + ~ 1. 
c a a+ +c 

5. Solve the equation 

V-b+x {yb+x e{Yx 
b + =--. X IJ. 

X 6. Solve the equations 

, 1° Vx+1+Vx-1=1j 
2° Vx+1-Vx-1= 1 
7. Solve the . equation 

Ya+Vx+Ya-Vx=~b. 
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X 8. Solve the equation 

V' -1-V---=X=4 =X=2 = x-1. 

9. Solve the equation 

v'ii -t v'X-b .. fa 
v'a+v'x-a V b' 

10. Solve the equation 

v'a:t=X+ v'a=; = V b (a> 0). 
v'a+x- v'a-x 

11. Solve the system 

x+y+z=a 

x+y+v=b 

x+z+v=c 

y + z + v = d. 

12. Solve the system 

Xl + X2 + Xa + X, = 2al 

Xl + X2 - Xa - X4 = 2a2 

Xl - X2 + Xa - X4 = 2aa 

Xl - X2 - Xa + X4 = 2a4' 

13. Solve the system 

ax + m (y + z + v) = k 

by + m (x + z + v) = l 
cz + m (x + y + v) = p 

dv + m (x + y + z) = q. 

14. Solve the system 

%t-at :e.-a. :ep-ap 
-==--= ... 

mt mil mp 

Xt+X2+'" +xp=a. 
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if 

15. Solve the system 
1 1 1 
-+-+-=a x Y z 

~+~+i-=b 
v x Y 

1 1 1 
V-+Z-+-;=e 

16. Solve the system 
ay + bx = e 

ex+az=b 

bz + ey = a. 

17. Solve the system 

ey + bz = 2dyz 

az + ex = 2d'zx 

bx + ay = 2d"xy. 

18. Solve the system 

xy =e, xz =b _y_z_=a. 
~+~ u+=' ~+~ 

19. Solve the system 
xyz 

y+z-x=/i2 

xyz 
z+x-y=/j2 

xyz 
x+y-z=-;;2 . 

20. Solve the system 

(b + e) (y + z) - ax = b - e 

(e + a) (x + z) - by = c - a 

(a + b) (x + y) - cz = a - b 

a + b + c::p O. 



if 
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21. Solve the system 

(c + a) y + (a + b) z - (b + c) x = 2a3 

(a + b) z+ (b + c) x - (c + a) y = 2b3 

(b +c) x + (c +- a) y - (a + b) z = 2c3 

b+c=;bO, a+c=i=O, a+b=;bO 

22. Solve the system 

x y + z 1 
a-\-A. + b-l-A. c-\-A. = 

_x_+_y_ 1 __ z __ 1 
a+ ft b+ft"l c+ft -

_x_ __y_ __z __ = 1 
a+v + b+v + c+v . 

23. Solve the system 

z -1- oy+a2x+ a3 =0 

z+by+b2x+b3 = ° 
z+cy+c2x +c3=O. 

24. Solve the system 

z + ay + a2x -I- a3t + a4 = ° 
z+ by+b2x+ b3t + b4 = ° 
z+cy + c2x+ c3t + c4 = ° 
Z + dy + d2x + d3t + d4 = 0. 

25. SolvA the syst8m 

x+y+z+u=rn 

ax + by + cz -\- du = n 

a2.1; + b2y+ c2z+d2u = If 

a 3x -\- b3y + c3z + d3u = l. 

26. Solve the system 
Xl + 2X2 + 3X3 + ... -l- nXn = at 

X2 + 2X3 + 3x~ + ... -;- nXt = a:! 
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27. Solve the system 

Xl-X2 - X3-

-.1',+3.1'2- X3-

-:C1 - .1'2+ 7.1'3-

-x!- X2- X3-

28. Solve the system 

Xl+ X2+ X3+ 
,rl +X3+ 

Xj + :1'2 ,- X~ + 

" . 
... 
... 

-xn=2a 

-,Tn =4a 

-:1'n = 8a 

+xn =1 

+Xn =2 
+Xn =3 

Xj + X2 + ... + Xn -! = n. 

29. Show that for the equations 

ax + b = \." a'x + b' = O. 

to be compatible it is necessary and sufficient that 

ab' - a'b = O. 

30. Show that the systems 

and 

ax + by + c = 0 
a' x + b' y + c' = 0 

l(ax+by+c) + l' (a'x +b'y +c) =0 

m(ax+by+c) + m' (a'x+ b'y+c')=O 

are equivalent if 

lm' -l'm =1= O. 

31. Prove that the system 

ax+by +c =0 

a'x+b'y+c'=O 

has one allfl only one solution if 

ab' - a'b =1= O. 
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32. Prove that from the equations 

ax+by =0 

a'x+b'y=O, 

if ab'-a'b=l=O, follows 

x=y=o. 

33. Show tha L the following three equa Lions are compatible 

ax+by +e ~~O, 

a'.c+b'y+e' =0, 

a"x "t b"y + e" =--= ° 
if a" (be' - b'e) + b" (ea' - e'a) + e" (ab' - a'b) = 0. 

34. Let a, b, e be distinct numbers. Prove that from 
the equations: 

follows 

x + ay + a2z = 0, 

x -1- by + b2z = 0, 

x + ey -t e2z = ° 
x = y = Z = o. 

35. Prove that from the equations 

Ax+By +Cz =0, 

Atx+Bty+Cjz=O 

follows 
x y z 

CIB-CHIO= CAl-CIA = AHj-AjB 

if not all of the denominators are equal to zero. 
36. Prove that the elimination of x, y, Z from the equations 

yieJd~ 

ax + ey + bz = 0, 

ex + by + az = 0, 

bx + ay + ez = ° 
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37. Given the system 

: -+- : =A (1 + ~) 

:-:=~(1-~) 
-+-=~ i--x z ( y ) 
a c b 

~-~~"'~(1+JL) . 
a C It b 

Prove that the equations are compatible and determine x, 
y and z. 

38. Det.ermine whether the equations of the system 

(a+b).c +(ap-~ bq)y=ap'!.+bq? 

(ap + hq) J:' + ((I p2+ hq~) y= ap3 -1- bq;l 

are compa tible. 
39. Solve the system 

XI + X 2 = al 

X 2 + ,1'3 =a2 

x;) + X4 = a3 

Xn-I-/-,Cn=an_1 

;,l.'" + XI = an 

40. Solve the system 

a2J' b2y c2z 
a-i-~- b-d + c-d =0 

ax by cz 
a-d + b-d + c--d =d(a-h)(b-c)(c-a). 
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41. Solve tho system 

(x + a) (y +- l) = (a - n) (l - b) 

(y + b) (z + m) = (b - l) (m - c) 

(z + c) (x + n) = (c - m) (n - a). 

42. Determine k for the system 

x + (1 + k) y = 0 

(1 - k) x + ky = 1 + k 

(1 + k) x + (12 - k) y = -(1 + k) 

to be compatible. 
43. Solve the system 

x sin a + y sin 2a + z sin 3a = sin 4a 

x sin b + y sin 2b + z sin 3b = sin 4b 

x sin c + y sin 2c + z sin 3c = sin 4c. 

44. Show that from the equalities 
abc 

sin A = sin B = sin G' A + B + C = n 

follows 
a = b cos C + c cos B, 

b = c cos A + a cos C, 

c = a cos B + b cos A. 

45. Show that from the given data 

a = b cos C + c cos B, 

b = c cos A + a cos C, 
c = a cos B + b cos A, 

o < A < n, 0 < B < n, 0 < C < n, a > 0, 
b > 0, c > 0, 

foJ]ows 
abc 
~-= sin/J = sinG and 
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46. Given 

a -=0 b cos C + c cos B 

b = c cos A + a cos C 

c = a cos B + b cos A 

a2 = b2 + C2 - 2bc cos.A 

(1) b2 = a2 + c2 - 2ac cos B (2) 

c2 = a2 + b2 - 2ab cos C. 

Show that systems (1) and (2) are equivalent, i.e. from 
equations (1) follow equations (2) and, conversely, from 
equations (2) follow equations (1). 

47. Given 

cos a = cos b cos c + sin b sin c cos A, 

cosb = cosacosc + sinasinc cosB, (*) 

cos c = cos a cos b + sin a sin b cos C, 

where a, b, c and A, B, C are between 0 and 11:. 

Prove that 
sin A sinE sinG 
sina = sinb = sinc-· 

48. Prove that from the conditions of tne preceding 
problem follows 

10 cos A = -cos B cos C + sin B sin C cos a, 

cos B = -cos A cos C + sin A sill C cos b, 

cos C = -cos A cos B + sin A sin B cos c; 

0, 1 -, / p p-a. p-b p-c 2 Lan"4 e = V tan T tan-2- tan -2- tan -2-

if e = A + B + C - 11: and 2p = a +- b +- c. 
49. Solve the equation 

(b - c) tun (.1' + a) + (c - a) .tan (x + ~) + 
+ (a - b) tan (x + y) = O. 

50. Prove that sin x and cos x are rational if and only if 

tan ~ is rational. 

51. Solve the equation 

sin4 x + cos4 X = a. 
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52. Solve the following equations 

1° sin x + sin 2x + sin 3x = 0; 

2° cos nx + cos (n - 2) :t - cos x = o. 
53. Solve the equation 

1° m sin (a - x) = n sin (b - x); 

2° sin (x + 3a:) = 3 sin (a: - x). 

54. Solve the equation 

sin 5x = 16 sin5 x. 

55. Solve the equation 

sin x + 2 sin x cos (a - x) = sin a. 

56. Solve the equation 

sin x sin ('Y - x) = a. 

57. Solve the equation 

sin (a: + x) + sin a: sin x tan (a: + x) = m cos a: cos x. 

58. Solve the equation 

cos2 a: + cos2 x + cos2 (ci + x) = '1 + 2 cos a: cos (a:+x) 

59. Solve the equation 

(1 - tan x) (1 + sin 2x) = 1 + tan x. 

60. Show that if 

tan x + tan 2x + tan 3x + tan 4x = 0, 

then either 5x = kn, or 8 cos 2x = 1 ± V 17. 
61. Given the expression 

ax2 + 2bxy + cy2. 

Make the substitution 

x = X cos e - Y sin e, 
y = X sin e + Y cos e. 
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I t is required to choose the angle e so that to ensure tho 
identity 

axZ + 2bxy + cy2 = AX2 + BYz. 

62. Show that from the equalities 
x y z 

tan (8+ a.) = tan(8+~) = tan (!:I+y) 

follows 

x+y sin2(a-~)+ y-j-z sin2(~-'V)+ z+x sin2(I'-a)=-O. 
x-y y-z z-x 

63. Solve the systems 
10 sin x = sin y = 9in z 
abc 

x+y-t z=n; 
20 tan x =-0 tan y = tan z 
abc 

x+y+z=n. 
64. Solve the system 

tanx tany= a 
x+y=2b. 

65. Solve the equation 

x'-~ x+! 
4x-3 2=3 2_22X- 1 • 

66. Find the positive solutions of the equation 
xX+l = 1. 

67. Solve the system 
aXbY=m 

x+y=n(a>O, b>O). 
68. Solve the system 

69. Solve the system 

(ax)IOg a = (by)log b 

blog x = a10g y. 
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70. Solve the system 

5. EQUATIONS AND SYSTEMS 

OF EQUATIONS OF THE SECOND DEGREE 
The present section contains mainly problems on solving 

quadratic equations and using the properties of the second­
degree trinomial. 

I t should be remembered that if the roots of the trinomial 
ax? + bx +" c* are imaginary, then this trinomial retains 
its sign at any real values of x. As is easily seen in this 
case the sign of the trinomial coincides with that of the 
constant term (i.e. with the sign of c). Thus, if c > 0 and 
the roots of the trinomial ax2 + bx + c are imaginary, then 

ax? + bx + c > 0 
for any real x. 

When solving systems of equations the following proposi­
tion should be taken into account. Let a system of m equa­
tions in m unknowns be under consideration, the degrees 
of these equations being, respectively, 

kj, k2' ... , k m • 

Then our system, generally speaking, allows for k t k 2 . .. k.n 
solution sets. To be more precise, the product of the degrees 
of the equations is the maximal number of solutions. 
Sometimes this limit is reached (see Problem 23), but some­
times it is not. Nevertheless, this proposition is of impor­
tance, since it prevents the loss of solutions. 

1. Solve the equation 

x2 (b+x)(x+c) +b2 (b+c) (b+x) +c2 (c+x)(c+b) -_(b+C)2 
(x-b) (x-c) (b-c) (b-x) (c-x) (c-b) ~ . 

• In this section the letters a, b, c, p. q and other constants in 
the equations denote real numbers. 
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2. Solve the equation 

a3 (b-c) (x-b) (x- c) + b3 (c-a) (x- c) (x- a) + 
+c3 (a-b) (x-a) (x--b)=O 

and show that if the roots of this equation are equal, then 
exists one of the following equalities 

1 1 1 
Va + Vii + Vc =0. 

3. Solve the equation 

(a-x) Va=x-(b-x) V x-f} b 
Va-x+Vx-b =a-. 

4. Solve the equation 

V 4a+b-5x+V4b+a-·-5x-3 Va+b-2x=O. 

5. Prove that the roots ot the equation 

(x - a) (x - c) + A (x - b) (x - d) = 0 

are real for any "A if a < b < c < d. 
6. Show that the roots of the equation 

~-~~-~+~-~~-~+~-~~-~=O 
are always real. 

7. Prove that at least one of the equations 

x 2 + px + q = 0, 
x2 + PiX + ql = 0 

has real roots if PiP = 2 (ql + q). 
8. Prove that the roots of the equation 

a (x - b) (x - c) + b (x - a) (x - c) + 
+ c (x - a) (x - b) = 0 

are always real. 
9. Find the values of p and q for which the roots of the 

equation 
x2 + px + q = 0 

are equal to P and q. 
10. Prove that for any real x, y and z there exists the 

following inequality 

x2 + y2 + Z2 - xy - xz - yz ~ O. 
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11. Let 
x + y + z = a. 

Show that then 
a2 

x 2 + y2 + Z2 ~"3 . 
12. Prove the inequality 

x + y + z ~ V 3 (x2 + y2 + Z2). 

13. Let ex and ~ be the roots of the quadratic equation 

x 2 + px + q = O. 
Put ex/< + ~/< = S/<. 

Express Sk in terms of p and q at k = ±1, +2, +3, +4, 
±5. 

14. Let ex and ~ be the roots of the quadratic equation 

x 2 + px + q = 0 (ex > 0, ~ > 0). 

Express Vcx+n in terms of the coefficients of the equation. 
15. Show that if the two equations 

Ax2 + Bx + C = 0, A'x2 ,+ B'x + C' = 0 

have a common root, then 

(AC' - CA')2 = (AB' - BA') (EC' - CB'). 

16. Solve the system 
x (x + y + z) = a2 

y (x + y + z) = b2 

Z (x + y + z) = c2• 

t 7. Solve the system 

x (x + y + z) = a - yz 

y (x + y + z) = b - xz 

z (x + y + z) = c - xy. 

18. Solve the system 

y + 2x + z = a (y + x) (z + x) 

z + 2y + x = b (z + y) (x + y) 

x + 2z + y = c (y + z) (x + z). 
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19. Solve the system 

y + z + yz ... a 

x+z+xz-=b 

x + Y + :l'y == c. 

20. Solve the syst~1ll 

yz = ax 

z.x = by (a > 0, b > 0, C > 0). 

xy = cz 

21. Sol ve the system 
.1:2 -I- 1/ = c.ryl 

x2 + Z2 = b.1'1Iz 
y2 + Z2 = axyz. 

22. Solve the system 

x (y + z) = a2 

11 (.1' + z) __ b2 

Z (x + y) = c2 • 

23. Sol ve the system 

:i1 = ax + by 

y3 = bx + ay. 

24. Solve the system 
x2 = a + (y _ Z)2 

y2 = b + (x _ Z)2 

Z2 = C + (x _ y)2. 

25. Solve the system 
b(x+y) c(z-J x) 

x+y+cxy + x+z-J bxz - a 

c (y + z) a (x + y) _ b 
y+z+ayz + x+y+cxy -

a(x+z) ...I- b(y+z) =C. 
z+z+bxJ I v+a+av, 



5. Equations and Systems of l!.'Quationl of the Second Degree 57 

26. Solve the system 
Xl - yz = a 

y2 _ xz = b 

Z2 - xy = e. 
27. Solve the system 

y2 + Z2 - (y + z) x = a 

x2 + Z2 - (x + z) y = b 

x2 + y2 - (x + y) z = e. 

28. Solve the system 

x2 + y2 + xy = e2 

Z2 + x2 + XZ = b2 

y2 + Z2 + yz = a2. 
29. Solve the system 

x3+y3+z3=a3 

x2 + y2 + Z2 = a2 

x + y + z = a. 
30. Solve the system 

x' + y' + Z4 + u' = a' 
x3 + y3 + Z3 + u3 = a3 

x2 + y2 + Z2 + u2 = aZ 

x + y + z + u = a. 

31. Prove that systeII).s of equalities (1) and (2) are equi­
valent, i.e. from existence of (1) follows the existence of (2) 
and conversely. 

a2 +b2 +e2 =1, aa' +bb' +ee' =0, 
a'2 + b'2 + e'2 = 1, 
a"2 + b"2 + e"2 = 1, 

a2 +a':I+ a-2= 1, 

bl + b'2 + b"" = 1, 
eZ +c'z+C-I = 1, 

a' a" + b' b" + e' e" = 0, 
aa" + bb" +ee" =0; 

ab+a'b' + a"b" = 0, 
be+b'e' +b"e" =0, 
ea+e'a' +e"a" ... 0. 

(1) 

(2) 
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32. Eliminate x, y alld z from the equalities 

x2(y+z)=a3, y2(x+z)=b3, Z2(X+y)=c3, xyz=abc. 

33. Given 

Eliminate x, y and z. 
34. Eliminate x, y, z from the system 

y2 + Z2 - 2ayz = 0 

Z2 + x2 - 2bxz = 0 

x2 + y2 - 2cxy = O. 

35. Show that the elimination of x, y and z from the system 

y2 + yz + Z2 = a2 

Z2 + XZ + x2 =---= b2 

x2 + xy + y2 = c2 

xy + yz + xz = 0 
yields 

(a + b + c) (b + c - a) (a + c - b) (a + b - c) = O. 

36. Eliminate x and y from the equations 

x + y = a, x2 + y2 = b, x3 + y3 = c. 

37. Eliminate a, b, c from the system 

38. Given 

x y z 
(;=7}=c 

a2 + b2 + c2 = 1 
a+b+c=1. 

( ; + ; ) ( ; + ~ ) ( ~ + = ) = y. 
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Eliminate x, y and z. 
39. Prove that if 

x+y+z+w=O 

aJ; + by + cz + dw = 0 
(a - d)2 (b - p)2 (xw + yz) + (b - d)2 (c - a)2 (yw -+ zx) t­

+ (c - d)2(a - b)2(ZW + xy) = 0, 
then 

x _ y _ 
(d-b) (d-c) (b-c) - (d-c) (d-a) (c-a) -

40. 1° Let 

and 

Prove that 

and 

Prove that 

41. Let 

z w 
= (d-a) (d-b) (a-b) = (b-c) (c-a) (a-b) . 

:; 
cos a + cos ~-cos (a +~) = 2. 

1 
cos acos ~ cos (a+~) = -S. 

cos e + cos cp = a, sin 8 + sin cp = b. 
Compute 

Cos (8 + cp) and sin (8 + cp). 

42. Given that a and ~ are different solutions of the 
equation 

a cos x + b sin x = c. 
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Prove that 
2 a-~ C2 

cos -2-= a2+b2 • 

43. Let 
sin (O--a) a 
sin (e-~) =0 b ' 

CO!! (O-a) c 
cos (8-~) = (j' 

Prove that 

44. Given 

1 +2e cos a-t-e2 

Prove that 

10 e2 -1 _ e + ens ~ 
1+2ecosa+e2 - e+eosa 

20 a ~ 1+e 
tan 2' tan 2" = ± I-e' 

45. Prove that if 
cos x-cos a sin2 a cos ~ 
cos x-cos ~ = sin2 ~ cos a ' 

then one of the values of tan ; is tan ~ . lan ~ . 
46. Let 

cos a = cos ~ cos cp = cos l' cos a, sin a = 2 sin ~ sin ~. 
Prove that 

tan2 ~ = tanS ~ . tan' ~ . 

47. Show that if 

(x - a) cos 9 + y sin 9 = (x - a) cos 91 + Ii sin 91 = a 
and 

e 1ft 2l tan2"- tan T= , 
then 



,$. Equations anti Sylltl'ms 01 Equations of tilt' Second Degree (It 

48. Prove that from the equalities 

x cos 6 + y sin 6 = x cos cp + y sin cp = 2a 
and 

2 sin ~ sin ~ = 1 

follows 

49. Let 
cos 6 -= cog a cos ~. 

Prove that 
8+ex 8-ex 2 ~ 

tan -2-· tan -2-=tan 2' 

50. Show that if 

cos x cos (x+6) 
-a-= b 

cos (x + 26) cos (x + 38) 
- c = d 

then 
a+c b+d 
-b-=-c-' 

51. Let 

26 cos ex 
cos = cos~ , 

2 cos Y tan 8 tan ex 
cos cp = cos ~' tan cp = tan y • 

Prove that 

tan2 ~ • tan2 ~ = tan2 ~. 

52. Prove that if 
e CjI ~ 

cos 6 = cos a cos~, cos cp = cos at cos~, tan 2" tan 2" = tHn 2' 

then 

sin2A=(_f -1) (_1 __ 1) 
t' cos ex cos ext . 

53. Let 
.r cos (a +~) +cos (a - p) = xcos (P +y) -\- cos (p -y) = 

= x cos (y+a) + cos (v-a). 
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Prove that 

tan a tanB tany 
1 = 1----'--· 

tan 2" (a+ y) tan 2" (rJ. + B) 
1 

tan 2 (B+ y) 

51. Prove that if 

sill(H-~)c()~a + c05(a+e)~inB =0 
sin(rp-a)co~~ CfJs(c:p-~)Sina . 

and 
tan fl t.an a + cos (a-r.) = 0, 
lall If lall ~ cos (a+~) 

then 
1 1 

tan e = 2" (tan ~ -/-cotex), tan <p = 2" (tall ex - cot ~). 

55. Given 

n2 sin2 (ex +~) = sin2 ex + sin2 ~ - 2 sill ex sin ~ cos (ex - ~). 

Prove that 
1+n 

tan rx -= 1 = -tan~. 
+n 

;)6. Eliminate e from the equations 

cos (ex - 38) = m cos~ e, sin (rx - ~O) = m sina fl. 

57. Eliminate 0 from the' eqllations 

(a - b) sin (8 + (p) = (a + b) si n (8 - cr), 

a tan ~ - b tan t = c. 

58. Show that the reslllt of eliminat.ion of 0 an(l cp from 
lhe C'qllaLions 

:<iu ~ 
cos 0=-,- , 

illn a 
sin Y A 

COS(P=sina' c()s(fl-(I')=sinl-'~inl' 

is 
tan2 ex = tan2 ~ + tan2 y. 

59. Eliminate e and <p from the equations 

a sin2 0 + b cos2 e = a cos2 (P + b sin2 <p = 1, 

a ta 11 8 = b ta n (p. 
60. Prove that if 

Cos (8 - rx) = a, sin (8 - ~) -= b, 
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then 
a2 - 2ab sin (ex - ~) + b2 = cos2 (ex - ~). 

61. Solve the equation 

cos 3x coss x + sin 3x sin3 x = O. 

62. Solve the equation 

sin 2x + cos 2x + sin x + cos x + 1 = O. 

63. Solve the equation 

t 2 _ i-cos x 
an x - 1-sin x • 

6~. Solve the equation 

32 ,cos6 x - cos 6x = 1. 

65. Solve and analyze the equation 

sin 3x + sin 2x = m sin x. 

66. 'Solve the equation 

(1 . k) cos x cos (2x-a) =1+k 2 
T . cos (x-a) cos x. 

67. Solve the equation 

sin'x+cos'x-2sin2x+! sin2 2x=O. 

68. Solve the equation 

2 logx a + logax a + 3 loga2x a = O. 

69. Find the positive solutions of th,e system 
xx+y=ya, yX+ Y =x4a (a>O). 

70. Find the positive values of the unknowns x, y, u and 
v satisfying the system 
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6. COMPI.JEX NUMBERS AND 
POL YNOMIALS 

We proceed here from the assumption that the principal 
operations with complex numbers (i.e, addition, multipli­
cation, division and evolution) are already known to t.he 
reader. Likewise, we take as known the trigonometric form 
of a complex number and de Moivre's form1lla. III factoring 
polynomials and solving cel'tain higher-degree equations an 
important role is played by the so-called remainder theorem 
(stated by the French mathematician Bezout), usually 
considered in textbooks of elementary algebra. Let us 
recall it: if f (x) is a polynomial in x and if f (a) = 0, then 
f (x) is exactly divisible by x-a. Hence (assuming that 
the polynomial has one root) follows the possibility of 
resolving an nth-degree polynomial into n, equal or unequal, 
linear factors as well as the following propositio,n used here 
repeatedly: if it is known that a certain nth-degree polyno­
mial ill x vanishes at n + 1 different values of x, then such 
a polynomial identically equals zero. Consequently, if two 
polynomials of the nth degree oi x attain equal values at n + 1 
different values of x, then such polynomials are identically 
equal to each other, that is, the coefftcients of equal powers 
of x coincide. Finally, let us mention the relationship bet­
ween the roots of an nth-degree equation and its coeffi­
cients. Let the polynomial 

Xll + p/xll - 1 -1. P2Xn-2 + . , . + Pn-IX + pn 

have the roots Xl, X2, ••• , Xn , so that there exists the facto-
rization ' 

X n + PIXn - 1 + P2x'H + ... + pn = (X-Xl} (X-X2)' • • (X- x n ). 

We then have the relations: 

Xl + X2 + ... + Xn = -PI, 

X I X2 + XIX3 + ... + XIXn + X2X 3 + ... + Xn -IXn = P2' 

XIX2X 3 + ... + X n -2X n-IXn = -P3, 
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1. Let x and y be two complex numbers. 
Prove that 

1 x + y 12 + 1 x - y 12 = 2 {I X 12 + 1 y 12}. 

65 

The symbol 1 cx 1 denotes the modulus of the complex num­
ber cx. 

2. Find all the complex numbers satisfying the following 
condition 

1° x = X2; 

2° x = x3. 
The symbol x denotes the number conjugate of x. 
3. Prove that 

V(aj + a2+ ... +an)2+(b j +b2 + ... +bn)2:::;;;Va;+b~+ 

+ -V ai+bi+ ... + Va~ +b~, 
where ai and bi are any real numbers (i = 1,2,3, ... , n). 

4. Show that 

(a + b + c) (a + be + ce2) (a + be2 + ce) = 

= a3 + b3 + c3 - 3abc 
if 

e2 + e + 1 = o. 
5. Prove that 

(a2 + b2 + c2 - ab - ac - bc) X 

if 

6. Given 

X (x2 + y2 + Z2 - xy - xz - yz) = 
= X 2 + y2 + Z2 - Xy - Xz - YZ 

x = ax + cy + bz, 

y = cx + by + az, 

Z = bx + ay + cz. 

x+y +z =A, 

x+ ye +ze2 =B, 

.T + yf2 + ze = C. 
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Here and in the next problem e is determined by the equa 
lity 

e2 + e + 1 = O. 

1° Express x, y, Z in terms of A, B, and C. 
2° Prove that 

1 A 12 + 1 B 12 + 1 C 12 = 3 {I .r 12 + 1 y 12 + 1 Z 12}. 

7. Let 

A =x+y+z, A' =x' +y' +z', AA' =x" + y" + Z", 

B =X + ye +Ze2, B' = x' + y'e + Z'e2, BB'=x" + y"e+Z"1::2: 
C = x+ye2+ Ze, C' = x' +y'e2+Z'e, CC' = x" + y"f,2 + z"e .. 

Express x", y" and z" in terms of x, y, Z and x', y', z'. 
8. Prove the identity 

(ax - by - ez - dt)2 + (bx + ay - dz + et)2 + 

+ (ex + dy + az - bt)2 + (dx - ey + bz + at)2 = 

= (a2 + b2 + e2 + d2) (x2 + y2 + Z2 + (2), 

9. Prove the following equalities 

10 cos ncp -.1 (n ) t 2 + ( n ) t 4 + A cos" cp - - 2 an cp 4 an cp - • . . , 

where 
n 

A = (_1)2 tan" cp if n is even, 

A = (_1)n;1 ( n ) tann-1 cp if n is odd; 
n-1 

2° ~O~'~: = ( ~ ) tan cp - ( ; ) tan3 cp + ( ~ ) tan5 cp + ... + A, 

where 

A=(_1)n;2 (,L':1) tall"-lcp if n is even, 

n-1 
A = (- 1)-2- tan" cp if n is odd. 
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Hero and in the following problems 

( n ) = c~ = n (n - 1) .: . (n - k + 1) • 
k 1·2·3 .... ·k 

10. Prove the following equalities 

I<=m-l (2 ) 2 ) 
1° 22mcos2mx= ~ 2 : cos2(m-k)x+ ( :: ; 

1<=0 

I<=m-l 2m 
2° 22m sin2m X = ~ ( -1 )m+h 2 ( k ) cos 2 (m - k) X + 

1<=0 

I<=m 2m+ 1) 3° 22m COS2m+1 X = ~ (k cos (2m - 2k + 1) X; 

h=O 

I<=m (2m+ 1) 
4° 22m sin 2m+1 X= ~ (_1)m+h k sin(2m-2k+1)x. 

1<=0 

11. Let 
U n = cos a+r cos (a -+ 0) -+ r 2 cos (a -+ 20) + .... + 

-+ rn cos (a -+ nO). 

Vn = sin a + r sin (a -+ 0) -+ r2 sin (a + 20) -+ ... -+ 
-+ rn sin (a + nO). 

Show that 
_ cos a- r cos (a- 0) - rn+1 cos [(n + 1) O+al + /,1>+2 cos (nO + a) 

un -- 1 _ 2r cos 8 + 1'2 ' 

V _ sina rsin(a-8)-rn +1 sin [(n+1)O+al+rn+2 sin(nO+a) 
n - 1 - 21' cos H + /,2 

12. Simplify the following slims 

S n(n-1) 
1 ° = 1 + n cos e + 1.2 cos 20 + ... = 

I<=n 

= ~ C~ cos kO, (C~ = 1); 
1<=0 
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h=n 

20 c" " 0+ /I (n-1) " 28 - '" Ch " /:'0 ,) =11 SlIl 1.2 SIll + ... - LJ "SIll t • 

h~-O 

13. Prove the identity 

sin2P a + sin2P 2a + Sill2fl 3a + ... + sin2P na = 
1 r 1·3·5, .. , '(2p--l) 

-- - T 12 ~~--;-;----'--';;----':' 
- 2 2·4-(j, , , _ ·2p 

if a= 2: and p < 2n (pa positivp integpr). 

14. Prove that 
1 ° The polynomial x (X'>-l - nan-I) + an (12 - 1) is divi­

sible by (x - a)2. 
2° The polynomial (1 - xn) (1 + x) - 2nxn (1 - x) -

- n2xn (1 - X)2 is divisible by (1 - X)3. 
15. Prove that 
1° (x + y)n - xn - yn is divisible by xy (x + y) X 

X (x2 + xy -+- y2) if n is an odd number not divisible by 3. 
2° (x + yt - xn - yn is divisible by xy (x + y) X 

X (X2 + xy + y2)2 if n, when divided by 6, yields unity 
as a remainder, i.e. if n = 1 (mod 6). 

16. Show that the following identities are true 

1° (x + y)3 - r - y3 = 3xy (x + y); 

2° ~x + y)5 _ x5 _ y5 = 5xy (x + y) (x2 + xy -+- y2); 

3° (x -+- y)' - x7 - y7 = txy (x + y) (x2 + xy -+- y2)2. 

17. Show that the expression 

(x + y + z)m - xm _ ym - zm (m odd) 

is divisible by 
(x -+- y + Z)3 _ x3 _ y3 _ Z3. 

18. Find the condition necessary and suffIcient for x!l -+­
+ y3 -+- Z3 + kxyz to be divisible by ,r + y + z. 

19. Deduce the cOTuliton at which xn - an is divisible 
by x1' - aT' (n and p positive integers). 

20. Find out whether the polYllomial x 41l + X4b+1 + 
+ X 4N2 + X4<1+:! (a, h, c, d positive illleg'{'fs) is divisible by 

x3 -+- x 2 + X -+- 1. 
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21. Find out at what n the polynomial 1 + x2 + X4 + 
+ ... + X 2n - 2 is divisible by the polynomial 1 + x + x2 + 
+ ... + xn-l. 

22. Prove that 
1 ° The polynomial (cos cp + x sin cp)n - cos ncp -

- x sin ncp is divisible by x2 + 1. 
2° The polynomial xn sin cp - pn-l X sin ncp + 

+ pn sin (n - 1) cp is divisible by x 2 - 2px cos cp + p2. 
23. Find out at what values of p and q the binomial 

X4 + 1 is divisible by x2 + px + q. 
24. Single out the real and imaginary parts in the expres-

sion V a + bi, i.e. represent this expression in the form 
x + yi, where x and yare real. 

25. Find all the roots of the equation 

xr• = 1. 

26. Find the sum of the pth powers of the roots of the 
equation 

xn = 1 (p a positive integer). 
27. Let 

2n +. . 2n ( . t" ) e = cos n ~ SID n na POSl lYe IDteger 

and let 

Ak = x + yell. + Ze2k + ... + Wem - ll k 

(k = 0, 1, 2, ... , n - 1), 

where x, y, z, ... , u, ware n arbitrary complex numbers. 
Prove that 

k=n-l 

~ I Ak 12 = n { I x 12 + 1 y 12 + I z 12 + ... + I W 12} 
k=O 

(see Problem 6). 
28. Prove the identities 

k=n-l 

1° x2n_1=(x2_1) ~ (x2-2xcos k: +1); 
k=1 

k=n 

2° x21l+1_1=(x_1) II (x2 -2xcos 2!~t +1); 
k=1 
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k=n 

3° X 2n+l_1=(x+1) II (x2 +2xcos 2!~1 +1); 
k=1 

k=n-l 

( (2k -l- 1) n: ) 4° x2n + 1 = II x2 -2xcos 2n + 1 . 
k=O 

29. Prove the identities 

10 • n: . 2n: . (n-l)n: Vii. 
SlIl 2n SID 2n ... SID 2n = 2n-1 ' 

1< 

° ,2n: 4n: . 211n: ( _1)2 
2 cos 2n+1 cos 2n+1 '" cos 2n+1 = -2-"-

if n is even. 
30. Let the equation x" = 1 have the rools 1, a, ~, y, ... , I,. 
Show that 

(1 - a) (1 - ~) (1 - y) ... (1 - A) = n. 

31. Let 
XI, X2' ••• , Xn 

be the roots of the equation 

xn + xn - 1 + ... + X + 1 = O. 

Compute the expression 

1 1 1 
XI -1 + X2 - 1 + ... + ..e 11 - 1 . 

32. Without solving the equations 

find 
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33. Prove that if cos a: + i sin a: is the solution of the 
equation 

xn + PIXn- 1 + ... + Pn = 0, 

then PI sin a:+P2 sin 2a:+ .. . +Pn sin na: =0 (PI, P2' ... , 
Pn are real). 

34. If a, b, e, ... , k are the roots of the equation 

xn + PIXn - 1 + P2Xn-2 + ... + Pn _IX + Pn = 0 

(PI, P2, ... , Pn are real), then prove that 

(1 + a2) (1 + b2) ••• (1 + k 2) = 

= (1 - P2 + P4 - .. .)2 + (PI - P3 + P5 - ... )2. 

35. Show that if the equations 

x3 + px + q = 0 
x3 + P' X + q' = 0 

have a common root, then 
(pq' _ qp') (p _ p')2 = (q _ q')3. 

36. Prove the following identities 

10 V 2n if 4n Vo 8n cos -7-+ cos -7-+ cos -7- = 

= V {(5-3i!7); 

if 2n 2 ~ if 8n if 1 ( 3/0 2° cosg+V cos g + cos g = 23119-6). 

37. Let a+b+e=O. 
Put 

an + bl! + eh = Sh' 

Prove the following relations (see Problems 23, 24, 26 
of Sec. 1) 

2s4 = s;, 

6s7 = 7S3S4 , 

25S7S3 = 21s~, 

6s5 = 5S2S3 , 

10s7 = 7S2S5 , 

50s~ = 49s4s;, 
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38. 1° Given 

Prove that 

for any n. 
2° Given 

Prove that 

for any n. 
39. Let 

x + y = u + V, 

X 2 + y2 = U2 + V2. 

x + y + z = U + v + t, 
x2 + y2 + Z2 = u2 + v2 + t2, 

x3 + y3 + Z3 = u3 + va + t3 • 

A = Xi + X2e + X3e2, B = Xi + x 2e2 + X3e, 

where 
e2 + e + 1 = 0, 

and Xi, X2, X3 are the roots of the cubic equation 

X3 + px + q = O. 

Prove that A 3 and B3 are the roots of the quadratic equa­
tion 

if 

Z2 + 27qz - 27p3 = O. 

40. Solve the equation 

(x + a) (x + b) (x + c) (x + d) = m 

a + b = c + d. 

41. Solve the equation 
(x + a)4 + (x + b)4 = c. 

42. Solve the equation 

~+b+~~+a+~~+a+~~+b+~_ 

- abcx = O. 
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43. Solve the equation 

x3 + 3ax2 + 3 (a 2 - be) x + a3 + b3 + e3 - 3abe = O. 

44. Solve the equation 

ax4 + bx3 + ex2 + dx + e = 0 

a + b = b + e + d = d + e. 

45. Solve the equation 

(a + b + X)3 - 4 (a3 + b3 + r) - 12abx = O. 

46. Solve the equation 
a2x2 

x2 + (a+x)2 ~ m (a and m > 0). 

Deduce the condition under which all the roots are real, 
and determine the number of positive and negative roots. 

47. Solve the equation 

(5x4+ 10x2+ 1) (5a4 + 10a2 + 1) 
(x4+ 10x2+ 1) (a4+ 10a2+5) = ax. 

48. Solve the equation 

49. 1° Solve the equation 
x3 + px2 + qx + r = 0 

if xi = XZ:'c3· 

2° Solve the equation 

x3 + px2 + qx + r = 0 if Xi = X2 + X3. 

50. 1 ° Solve the system 

y3 + Z3 + a3 = 3ayz 

Z3 + r + b3 = 3bzx 

x3 + y3 + e3 = 3exy. 
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2° Solve the system 

X4 - a = y4 - b = Z4 - C = u4 - d = xyzu 

if a + b + c + d = O. 
51. In the expansion 1 + (1 + x) + ... + (1 + x)n in 

powers of x find the term containing x". 
52. Prove that the coefficient of ox' in the expansion in 

powers of x of the expression {(s - 2) x2 + nx - s} (X+1)1I 
is equal to 

CS - 2 n n • 

53. Prove that for x> 1 pX'1 ~ qxP - P + q > 0 (p, q 
positive integers and q > p). 

54. Let x and a be positive numbers. Determine the 
greatest term in the expansion of (x + a)n. 

55. Prove that 

1° im-i(i-1)m+ i(~~1) (i-2)m+ ... -!-(_1)i-1i.1m=0 

if i> m. 

2° mm-m(m-1)m+ m(~.;-1) (m-2)m+ ... + 

(i and m positive integers). 
56. Prove the identity 

+( _1)"'-1 m= m! 

(x2 + a2)" = {X"l - C~x"-2a2 -/- C;x "-4a4 - ••• }2-/-

+ {C!xll- 1a _ C~xn-3a3 -/- ... }2. 

57. Determine the coefficient of xl (l=O, 1, ... , 2n) in 
the following products 

1° {1-/-X-/-X2+ ... +xn} {1-/-X-/-X2+ ... -/-x"}; 

2° {1 +X+X2+ .,. +xn} {1-X+X2_X3 + ... -1-
+(_1)nxn}; 

3° {1+2x+3x2+ ... +(n+1)x"}{1+2x+3x2-/- .. , + 
-/-(n+1)xn}; 

4° {1+2x+3x2+ ... +(n+1)x"}{1-2x+3x2- .. , + 
+(-1)"(n+1)xll}. 
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58. Prove that 

1° l+C;+C~+ ... =cA+c!+ ... =2n- 1 ; 

2° C~n+dn+ ... +C~;1 = 2210-2 if n is even; 

3° 1 +C~n+ '" +C~;1 = 22 -2 if n is odd. 

59. Prove the identities 

10 CO , C3 + C6 + 1 (2" 2 nrc \. n Inn - ... = "3 + cos 3) , 

20 Ci C4 7 __ 1 ( , (n-2)rc). 
n+ n+Cn+··· -"3 2 +2cos 3 ' 

30 C2 +C5+C8 + __ ~(?n'_2 (n-4)rc) n n n ... - 3 ~ -, cos 3 . 

60. Prove thaL 
ft 

1o CO C4 C8 1 (2'-1 22 ,nrc). 
n -t- n + n + ... ="2 + co~ T ' 

n 

20 Cl+C5+C9+ 1 (2"-1+22. nrc '). n n n ... = 2" S1l1"""4 ' 

n 

3° C2 + C6 + CiO + -! (2n-1 _22 ~). n _ n n ... - 2 cos 4 " 

n 

40 C3 + C7 + Cl1 1 (21-1 22. nrc) n n n + ... ="2 - SIn"""4' 

61. Prove the equality 

t2+22 + .... + n2 =C;'+1 + 2 (C;' +C;-1 + '" + C~). 
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62. If at. a2, a3 and a4 are four succes~ive coefficients ill 
the expansion of (1 +x)" in powers of x, then 

at + a3 _ 2a2 
at + a2 a3 + a~ - a2 + a3 . 

63. Prove the identity 

1 1 1 
1 (n-l)! + 3! (n-3)! + 5! (n-5)! 

1 
+ ... + (n-1)! 1! 

(n even). 
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64. Find the magnitude of the sum 

s=C;'-3C~-+32C~-33C~+ .... 

65. Find the magnitudes of the following sums 
2 4 f; 

(J= 1-Cn -+Cn -Cn-+ ... , 

, C1 C3 -+ (,5 C' -+ (J = n - n ,,-- n •.• 

66. Prove the identities 

1° C?,-+2C;'-+3e;'+4C~,+ ... +(n-+1)C~=(n--l--2)2n-1; 

2" e;' - 2C;, -1- 3C:, + ... + (_1)"-1 nC~ = O. 

67. Prove that 
1 1 1 2 1 3 ( -1 ),,-1 n n 
2Cn-"3Cn+"4Cn-1 ... + n+1 Cn = n+1 . 

68. Prove tha t 

10 1 1 1 2 1 n 2n+1_1 
1-+ 2 Cn +3'Cn +- ... --j-- n+1 Cn = n+1 ; 

22C 1 23C2 24C3 2n+1C~ 
2° 2C~-+T tT-+T-+ ... + n+l 

69. Prove the identity 

e;'_~e~-+~e~+ ... -+( __ !)n-l e~=1-+~-+;+ ... +!. 
70. Prove tha t 

10 Cn I rm -+ (,n -+ en Cn+1 . 
n r vn+1 'n+2 + . " n+h = n+k+1, 

2° C~ - C;. -1- C~ + ... -f--( _1)h e~ = (_1)h C~-1' 

71. Show that t~e following equalities exist. 

10 cOep -+ C1Cp- 1 , -+ cpeo c P 
n m n m .-... n m = m+n; 

20 COCr C1.er+1 rm-ren 2n! 
n n -+ n n -+ ... -+ vn n = ( _ )' ( + )' . n r. n r. 

72. Prove the following identit.ies 

1 ° (e~)2 + (C~)2 -+ (C~)2 + ... + (e~)2 = C2n; 

2° (egn)2-(Cin)2+(C~n)2- ... +(C~~)2=(-1)ne2n; 
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3° (C~n+d2--(C~n+t}2+(C~n+t}2- ... -(C~~ti)2=O; 

40 (C1)2 2 (C'2)2 +- (C!!)2 _ (2n --i)! 
n + n + ... - n n - (n-i)! (n-i)! . 

73. Let f (x) be a polynomial leaving the remainder A 
when divided by x - a and the remainder B when divided 
by x - b (a =1= b). Find the remainder left by this polyno­
mial when divided by (x-- a) (x - b). 

74. Let f (x) be a polynomial leaving the remainder A 
when divided by x - a, the remainder B when divided by 
x - b and the remainder C when divided by x-c. Find 
the remainder left by this polynomial when divided by 
(x - a) (x - b) (x - c) if a, band c are not equal to one 
another. 

75. Find the polynomial in x of degree (m - 1) which 
at m different values of x, Xb X2, ••• , x m , attains respecti­
vely the values YI, Y2' ... , Ym' 

76. Let f (x) be a polynomial leaving the remainder Al 
when divided by x - at. the remainder A 2 when divided 
by x - a2' ••• , and, finally, the remainder Am when divi­
ded by x - am' Find the remainder left by the polynomial, 
when divided by (x - al) (x - a2) ••• (x - am). 

77. Prove that if Xl, X2, ••• , Xm are m different arbitrary 
quantities, f (x) is a polynomial of degree less than m, 
then there exists the identity 

78. Prove that if f (x) is a polynomial whose degree is 
less than, or equal to, m - 2 and Xl, X2, ••• , Xm are m 
arbitrary unequal quantities, then there exists the identity 

f (Xl) + f (:r2) + 
(XI-X2) (Xl-xa) '" (xl-xm) (x2-Xll (X2- xa) ... (X2- Xm) 

+ ... + (t (xm) = O. 
(xm-XI) Xm - X2) .,. (Xm-Xm-l) . 
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79. Put 

Xn 
+ ... + ( )( ') ( Xm-Xt Xm -X2 ..• Xm-Xm-t) 

(Xl. X2, ••• , Xm are m arbitrary unequal quantities). Show 
that sn=O if O:::;;;n<m-1, and sm-t=1, and compute 
Sn if n~m. 

80. Compute the following 
X-n x-n 

S n= 1 + ~ + 
- (Xt- X2) (Xt - X3) ••• (Xt- Xm) (X2 - Xt) (X2 - X3) • •• (X2 + Xm) 

x-n + ... +( ( m ( (n=i,2,3, ... ). 
Xm-Xt) Xm -X2)'" xm-Xm-t) 

81. ShGW that if f (x) is a polynomial whose degree i., 
less than m, then the fraction 

f (x) 

(X-Xt) (x-x2)'" (x-xm) 

(Xt, X2, ••• , Xm are arbitrary quantities not equal to each 
other) can be represented as a sum of m partial fractions 

At + A2 + ... + Am , 
X-Xt X-X2 x-xm 

where At. A 2, ..• , A m are independent of x. 
82. Solve the system of equations 

Xl + X2 + + Xn ='1 
al-bt at -b2 at-bn 

Xt + X2 + + Xn =1 
a2- bl a2 -b2 a2 - bn 

.Tl + .1'2 + + ,Tn 
=1. 

an-bl a n -b2 an-bn 

83. Prove tha t the following identity is true 

n! =~_ 2q, + 
'( .1'-+-;-;17") '( x-+~2):--.-. -. '(.1'-+;--11)'- X + 1 .1'+ 2 

+ 3C~ _ ... + (-it+1 nC~ . 
x+3 x+n 
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In particular, 

84. Prove the identity 

(_ it ala2"· an + (al-b1)(a2- bt) ... (an-b t ) + 
btb2 ... hn bl (b t - b2 ) ••• (b t - bn ) 

+ (al~b:)(a~-b2) '(b' (a~)b2) + ... + 
2 ( 2- t).·· 2- n 

+ (at-bn) ... (an-b n) =(-1t· 
bn (b n - btl ... (b n - bn- t ) 

85. Prove the identity 

(x+~) ... (x+n~) -1 = 
(x-~) ... (x-n~) 

86. Given a series of numbers Co, Cb C2, ... , Ck, CUt, ..•. 

Put /1Ck = CHI - Ck, so that using the given series we can 
form a new one 

We then put 
/1 2Ck = /1Ck+t - /1ck 

so as to get one more series: /1 2co, /1 2c" /1 2C2' ... and so 
forth. 

Prove the following formulas 



80 Problems 

87. Show that if f (x) is any polynomial of nth degree 
in x, then there exists the following identity 

f(x)=f(O)+ ~ ~f(O)+ x(~:;1) ~2f(0)+ .,. + 
+x(x-1) .. ~!(x-n+12~nf(0), 

where M (0), ~2f (0), ... , ~nf (0) are obtained, proceeding 
from the basic series: f (0), f (1), f (2), . . . . 

88. Show that if 

n A At 1 A2 ( 2 x = 0+-1 (x- )+21 x-1)(x- )+ ... + 
+ ~i (x-i) (x-2) .. , (x-n), 

then As=(s+1)"-C!sn+C!(s-1)n+ ... +(-1)sC~.1n. 

89. Prove the identity 

nl { 1 1 1 } 
x(x+1) '" (x+n) -X+x+1+' "+x+n = 

1 Ch + q + (1)n 1 
=-;2- (x+1)2 (x+2)2 ... + - (x + n)2 . 

90. Let 

C(lh (x)=x (x-i) (x-2) ... (x-k+ 1). 

Prove that the following identity exists 

C(ln (x + y) =C(ln (x) + C~C(ln-l (x) C(lt (y) + C~,C(ln-2 (x) C(l2 (y) + .. , + 
+ C~-lC(ll (x) C(ln-1 (y) + C(ln (Y)· 

91. Prove the following identities 

10 xn+yn=pn_.!:..pn-2q+n(n-3) p"-4q2_ '" + 
1 1·2 

+( _1\rn(n-r-1)(n-r-2) ... (n-2r+1) n-2r r+ . 
J r! p q ... , 

20 xn+t_ yll-lt 

x-y 
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where 

P=X+y, q=xy. 

92. Let x+y= 1. 
Prove that 

xm (1 + C~y + C~l+ ly2 + .. , + C~';;~2ym-l) + 

+ ym (1 + C;'x + '" + C~~2Xm-l) = 1. 

93. Prove that the following identity is true 
1 

cat+! CV;:;:!.2 } + (x-a)m 2 (b-a)2 + ... + (x-a) (b-a)m 1 + 
1 { 1 ~ + + + (b-a)m (x-b)m + (x-b)m 1 (a-b) ... 

CTm!'2 } + (x-b) (a-b)m 1 • 

94. Show that constants Ai> A2, A3 can always be chosen 
so that the following identity takes place 

(x + y)n = xn + yn + AIXy (xn-2 + yn-2) + 

+A2X2y2 (xn-4+ yn-4 ) + 

Determine these constants. 
95. Solve the system 

XI +x2 =al 

X1Yl + X2Y2 = a2 

X1Y~ + X2Y~ = a3 

XIY~ + X2Y~ = a4• 

Show how the general system is solved 

Xl+ X2+ X3+ ... +Xn-l+ Xn=al 

XIYl + X2Y2 + ... + XnYn·= ~ 

XIY~ + X2Y~ + .. , + xnY~ = a3 

(1) 
(2) 

(3) 
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96. Solve the system 

x+y+z+u+v=2 

px + qy + rz + su + tv =-- i3 
p2x+q2y+r2z+s2u + f2v= 16 

p3X + q3y + r3z + sau + t 3v =-= 31 

p4X + q4y + r4z + S4U + t 4v =_c 10:1 

p5X -+ q5y + r5z + S5U + t5v = 235 

p6X + q6y + r6z +S6U + tilv = 674 

P'x+ q7y + r7z + S7U + t7v = 1 669 

p8X + q8y + rHz +S8U +t8v = 4 526 

p9X + q9y + r9z + S9U + t9v = 1159.5. 

97. Let m and f-t be positive integers (f-t:::;;; m). Put 

(i-xm)(i-xm-i) ... (1_.rm- I1+1) 
=(m, f-t). 

(i-xl (i-.r2) •.• (1-:r I1) 
Prove that 

1° (m,f-t)=(m,m-f-t); 

2° (m,. f-t+1)=(m-1, f-t+1)+Xn-I1-1 (m-1, f-t); 

30 (m, f-t+ 1) =(f-t, f-t)+x(f-t+ 1, f-t)+X 2 (f-t+ 2 , f-t)+ ... +­
+Xm -I1- 1 (m-1, f-t); 

4° (m, f-t) is a polynomial in x; 

5° 1- (m, 1) + (m, 2)- (m, 3) + ... is equal to 

(1-x)(1-x2) ... (1-xm- 1) if m is even, 

o if m is odd. 

(Gauss, Summatio quarumdam serierum singularium, 
Werke, Bd. II). 

98. Prove that 

1° (1+xz)(1+x2z) ... (1+x"z)= 
R.=n R.(k+1) 

1 ~ (f-xn)(f-x1l-t) ... (1-xn- k +i ) -2- k = +. x z' (i-xi) (1-x2) .,. (1-xk) , 
k=l 
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k=n 
(i-x2n) (i_x2n- 2) ... (1_x2n-2k+2) Xk2Zk• 

(i-x2) (i-x4) ••• (i-x2k) 

99. Let 

Prove that 
n(n+l) 

x x3 x~ --+ - ... +--=1. 
Pn P1Pn-l P2Pn-2 Pn 

tOO. Determine the coefficients Co, C., C2 , ••• , Cn in the 
following identity 

(1+xz)(1+xz-l)(1+x3z)(1+~3Z-1) ... X 

X (1 + X 2n- 1Z) (1 + X2n- 1Z-1) = Co+ C1 (z + Z-l) + 
+ C2 (Z2 + Z-2) + ... + Cn (zn + z-n). 

tot. Let 
sin2nxsin(2n-1)x ... sin(2n-k+1) x 

Uk = sin x sin 2x .' . sin kx • 

Prove that 

10 1-Ut + U2 - U3 + ... + U2n = 
= 2n.(1-cosx) (1-cos3x) ... [i-cos (2n-1) x]; 

20 1-u:+u~-u~+ ... +u~n= 

= ( _ 1)n sin (2n + 2) x sin (2n + 4) x •.. sin 4nx 
sin 2x sin 4x ... sin 2nx • 

7. PROGRESSIONS AND SUMS 

Solution of problems regarding the arithmetic and geo­
metric progressions treated in the present section requires 
only knowledge of elementary algebra. As far as the summing 
of finite series is concerned, it is performed using the method 
of finite differences. Let it be required to find the sum 
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f (1) + f (2) + ... + f (n). Find the function F (k) which 
would satisfy tbe relationship 

F (k + 1) - F (k) = j-(k). 

Then it is obvious that 

f (1) + f (2) + ... + f (n) = [F (2) - F (1)] + 
+ [F (3) - F (2)] + ... + [F (n + 1) - F (n)] = 

= F (n + 1) - F (1). 

1. Let a2 , b2 , c2 form an arithmetic progression. Prove 
h h ·· 1 1 1 I f ·h t at t e quantities b+c' c+a' a+b a so orm an ant -

metic progression. 
2. ~rove that if a, band c are respectively the pth, qth 

and rth terms of an arithmetic progression, then. 

(q '- r) a + (r - p) b + (p - q) c = o. 

3. Let in an arithmetic progression ap = q; aq = p 
(an is the nth term of the progression). Find am. 

4. In an arithmetic progression Sp = q; Sq = P (Sn 
is the sum of the first n terms of the progression). Find Sp+q. 

5. Let in an arithmetic progression Sp = Sq. Prove 
that Sp+q = O. 

Sm m2 
6. Given in an arithmetic progression -S = -2 . Prove 

n n 
th t am _ 2m-1 

a -- . an 2n-1 
7. Show that any power nil (k ~ 2 an integer) can be 

represented in the form of a sum of n successive odd num­
bers. 

8. Let the sequence at. a2, ... , an form an arithmetic 
progression and at = O. Simplify the expression 

9. Prove that in any arithmetic progression 
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+ 1 n-1 
-Van-t + -Van - -Vat + Van 

10. Show that in any arithmetic progression 

we have 
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11. Let 8 (n) be the sum of the first n terms of an arithme­
tic progression. 

Prove that 

1° 8 (n + 3) - 38 (n + 2) + 38 (n + 1) - 8(n) = o. 
2° 8 (3n) = 3 {8 (2n) - 8 (n)}. 

12. Let the sequence at, a2, ... , an' an+l, . .. be an 
arithmetic progression. 

Prove that the sequence 8 I, 82, 8 3, •.• , where 

8 1 = al + a2 + ... + an' 
82 = an+! + ... + a2n' 8 3 = a2n+1 + ... + a3n' ... , 

is an arithmetic progression as well whose common diffe­
rence is n2 times greater than the common difference of the 
given progression. 

13. Prove that if a, b, c are respectively the pth, qth and 
rth terms bot h of an ari thmetic and a geometric progres­
sions simultaneously, then 

ab- c • bG - a • ca- b = 1. 
14. Prove that 

(1 + x+x2+ ... +xn)2_xn = 

= (1 + x + x2 + ... + x n-1) (1 + x + x2 + ... + xn+1). 

15. Let 8 n be the sum of the first n terms of a geometric 
progression. 

Prove that 8 n (8 3n - 82n) = (8211 - 8 n)2. 
16. Let the numbers ai, a2, a3, ... form a geometric 

progression. 
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Knowing the sums 

find the product P = ata2 ... an' 

17. If ab a2, ... , an are real, then the equality 

(a~+a~+ ... +a~_1)(ai+a:+ ... +a~)= 

= (ata2 +- a2a3 + ... + an_lan)2 

is possible if and only if ab a2, ... , an form a geometric 
progression. Prove this. 

18. Let at, a2, ... , an be a geometric progression with 
ratio q and let Sm = at + ... + am' 

Find simpler expressions for the following sums 

1° St+S2+'" +Sn; 

20 1 1 1 
a2 _a 2 + a2 _a2 + ... + a2 -aZ 

1 2 2 3 n-l n 

30 1 1 
ak+ak + ak+ak + ... + ak +ak . 

2 3 n-l n 

19. Prove that in any arithmetic progression, whose 
common difference is not equal to zero. the product of two 
terms equidistant from the extreme terms is the greater 
the closer these terms are to the middle term. 

20. An arithmetic and a geometric progression with 
positive terms have the same number of terms and equal 
extreme terms. For which of them is the sum of terms grea­
ter? 

21. The first two terms of an arithmetic and a geometric 
progression with positive terms are equal. Prove that all 
other terms of the arithmetic progression are not greater 
than the corresponding terms of the geometric progression. 

22. Find the sum of n terms of the series 

S n = 1· x + 2x2 + 3x3 + . . . + nxn. 

23. Let at, a2, ... , an form an arithmetic progression 
and Ut, U2, ... , Un a geometric one. Find the expression 
for the sum 
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24. Find the sum 

( x + + ) 2 + ( x2 + :2 ) 2 + ... + ( 3;" + x1n ) 2 

25. Let 

Prove that 

S _ n (n+ 1) 
1- 1.2 ' 

C' _n(n+1)(2n+1) 
""2 - 6 ' 

26. Prove the following general form ula 

(k -I-1) S + (k+1)k S -t-- (k+1)k(k-1) S -t-- + 
I " 1.2 It-! 1.2.3 "-2'" 

+ (k-I-1)S1 + So = (n + 1)"+1_1. 

27. Put 

1"+2"+ ... +n"=S,,(n). 

Prove the formula 

nS" (n) = S,,+dn) + S,.(n -1) + S,.(n - 2) + ... + 
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+ S" (2) + S" (1). 
28. 1° Prove that 

1"+2"+3"+ ... +n"=An"+1+Bn"+Cn"-1+ ... +Ln, 

i.e. that the sum S" (n) can be represented as a polynomial 
of the (k + 1)th degree in n with coefficients independent 
of n and without a constant term. 

2° Show that A = k!1 ' and B= ~ . 

29. Show that the following_ formulas take place 
S _ n (n-I-1) (2n+1) (3n2+3n-1) 

4 - 30 ' 

S _ n2 (n + 1)2 (2n2+ 2n-1) 
<i- 12 ' 

S _ 6n7 +21n6 +21n&-7n3 +n_ 
6- 42 -

n (n+ 1) (2n+1) [3n2 (n+1)2-(3n2+3n-1)] 
= 42 
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8 7 = 3n8 -j12n'+14n6 -7n4 +2n2 = 
24 

n2 (n + 1)2 [3n2 (n + 1)2_2 (2n2 + 2n -1)) 
= 24 

30. Prove that the following relations take place 

8 3 = 8i, 48: = 8 3 + 385 , 28d- 8 3 = 3S;, 8 5 + 8 7 = 28;. 

31. Consider the numbers Bo, B I , B 2 , B 3 , B 4 , ••• deter­
mined by the symbolic equali ty 

(B + 1)h +1 - Bh +1 = k + 1 (k = 0, 1, 2, 3, ... ) 

and the initial value B o = 1. Expanding the left member 
of this equality according to the binomial formula, we have 
to replace the exponents by subscripts everywhere. Thus, 
the above symbolic equality is identical to the following 
common equality 

B k+1 +Ck+1Bk+cL1Bk-I+" ,+C~+lBl+Bo-Bk+.l=k+1. 
1 ° Com pu te Bo, B I! B 2 , •••• B 10 with the aid of this 

equality. 

2° Show that the following formula takes place 

1h+2h+3h+ ... +nh= 

= k!1 {nk~ 1 -j-Ck+1B1nh-l-CL1B2nh-l + ... -I- C~+lBkn}. 
32. Let XI! X2, ••• , Xn form an arithmetic progression. 

It is known that 

XI + X2-1- ... + xn=a, x~+x~-I- ... + x;,=b2 • 

Determine this progression. 
33. Determine the sums of the following series 

1° 1 -I- 4x-I- 9X2 + ... -I-n2xn-1; 

2° P-l-23x-j-33 x2 -1- ... +n3 x n - 1 • 

34. Determine the sums of the following series 

10 1 3 5 7 2n-1 
+2+4+8+'" + 2n- 1 ; 

20 1 3 5 7 + (1 n-l 2n-1 - 2 -I- "4 - "8 ' .. + -) 2n-t' 
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35. Determine the sums of the following series 

1 ° 1- 2 + 3 - 4 + ... + ( -1 )n-l n; 

2° 12-- 22 + 32- ... + (_1)n-l n2; 

3° 1-32+52-72+ ... -(4n-1)2; 

4° 2.12+3.22+ ... +(n+1)n2. 
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36. Find the sum of n numbers of the form 1, 11, 111, 
1111, .... 

37. Prove the identity 

X4n+2 + y4n+2 = 

= {x2n+l_ 2x2n-ly2 + 2XZn-3y4_ ... + (-it 2xy2n}2+ 

= {y2n+l_ 2y2n-lx2 + 2y2n-3x4_ ... + (-it 2yx2n}2. 

38. Find the sum of products of the numbers 1, a, 
a2, ... , an-I, taken pairwise. 

39. Prove the identity 

( X"-1 + x!-I) + 2 ( xn- 2 -+- X!-2) + ... + (n -1) ( x -\- ! ) +n= 

= xLI (X;-=-n 2 • 

n (n+1) 
=2(2n+1)(2n+3)· 

41. Compute the sum 
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42. Let at. a2, ... , an be an arithmetic progression 
Prove the identity 

_1_+_1_+ ... +_1_= ~ (_1 +_1 + ... +~). 
atan a2an-t anat at an at a2 an 

43. Prove that 

10 n n+1 n+p 
(n+1)!+(n+2)!+ ... + (n+p+1)! =-;;y-- (n-tp-I-1)!' 

20 1 + 1 + + 1 < 
(n+1)! (n+2)! ... (n+p+1)! 

1 [ 1 1 J < -; nr- (n+p+1)! 

(n and p any positive integers). 
44. Simplify the following expression 

1 2 4 2n 
x+1 + x2+1 + x4+1 + ... + x2n-+ 1 

1 1 1 
45. Let Sn=1+ T +3"+ .. . +-;. 

Prove that 

n+p+1 {n- p n-p-1 1 } 
n-p+1 n(p+1)+(n-1)(p+2)+ ···+n(p-j1) =S,,-SJI" 

46. Let 
1 1 1 

Sn=1+ T +3"+ ... +-;. 

S._n+1_{ 1 -I-- 2 _ n-2} 
n- 2 n(n-1) , (n-1) (n-2) + ... t- 2.3 . 

Prove that S; = S n. 

47. Let Sk be the sum of the first k terms of an arithme­
tic progression .. What must this progression be for the 

ratio ~~ to be independent of x? 
48. Given that at. a2, ••. , an form an arithmetic pro­

gression. Find the following sum: 

S=~ 
i=1 

aia i+ta i+2 

ai + ai+ll 
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49. Find the sum 

1 1 
cos a cos (a-t ~) + cos (a+~) cos (a+ 2~) + ... + 

1 
+ cos [a+ (n -1) ~J cos (a +- Il~) 

50. Show that 

1 a 1 a 1 a 
tan a + 2 tan 2" + 4" tan T + ... + 2n- 1 tan 2n - 1 = 

1 a 2 = 2n- 1 cot 2n- 1 - 2 cot a. 

51. Prove the following formulas 

1° sina+sin(a+h)+ ... +sin[a+(n-1)hl= 

. nh . ( n-1 h) sm-rsm a+-2-

. h 
sm 2 

2° cosa+cos(a+h)+ .. . +cos[a+(n-1)hl= 

. nh ( n-1) sm -rcos a+-:r- h 

. h 
sm 2 

52. Find the following sums 

S . 1t + . 21£ + +. (n -1) 1t = sm n sm n . . . sm n ' 

I 1t 21t (n-l) 1t 
S = cos - + cos - + ... + cos -"---'-n n n 

53. Show that 
sina+sin3a+ ... +sin(2n-l)a t 
cos a+-cos 3a+- ... +cos (2n-l) a = an na. 

54. Compute the sums 

Sn = cos2 X + cos2 2x + ... + cos2 2n.r, 

S; = sin2 x f- sin 2 2x )- ... + sin2 2n.c. 
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55. Prove that 

i=p 
"" . m1ti • n1ti 
LI sm p+ 1 sm p+ 1 = 
i=l 

56. Find the sum 

Problems 

- Pt 1 if m + n is divisible 

by 2(p+1); 
P! 1 if m - n is divisible 

by 2(p+1); 
o if m:f= n 

and if m + nand m - n are 
not divisible by 2 (p + 1). 

x x 
arctan 1+t.2x2 +arctan 1+2.3x2 + ... + 

x + arctan 1+n (n+1) x2 (x> 0). 

57. Find the sum 

if at. a2, '" form an arithmetic progression with a common 
difference r (a1 > 0, r > 0). 

58. Compute the sum 

59. Solve the system 

.1t+ '21t X1Sill- X2 sm -+ n n 

.21t . 221t x1sm-+x2sm -+ n n 

+ '321t+ .( 121t X3 sm n ... -t- Xn-1 sm n - ) n = a2, 
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.3n .2311:+ xlsm-+x2 sm -n n 

L .3 311: + .( 1,)311: -r-x3S1n ---j-... Xn_ISln n- -=a3, 
n n 

. (n -1) 11: • 2 (n -1) 11: • 3 (n -1) 11: 
XI sm + X2 sm + X3 sm + ... + n n n 

. (n-1)11: + Xll_1 sm (n -1) = an-I. n 

8. INEQUALITIES 

Let us recall the basic properties of inequalities. 

1° If a> band b > c, then a> c. 

2° If a > b, then a + m > b + m. 

03 

3° If a> b, then am> bm for m > ° and am < bm for 
m < 0, i.e., when multiplying both members of the inequa­
lity by a negative number, the sign of the inequality is 
reversed. 

4° If a> b > 0, then aX> bX if X> 0. 

This last inequality is readily proved for a rational x. 
Indeed, let us first assume that X = m is a whole positive 
number. Then 

am - bm = (a- b) (am-1 + am-2b + ... + bm - 1). 

But either of the bracketed e4pressions on the right 
exceeds zero, therefore am_bm > ° and am> bm . We now 
put x=~. Then aX-bx=r;/li-y/"b. 

m 
We have 

(a- b) = (';Ili-y/b) (';I am-1 + ... +y/bm - 1). 

Hence, actually, it follows that 
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Let, finally, x=.!!.... We have 
q 

p p 

aX_bx=aq -bq =YaP-YbP• 

But aP > bP (as has been proved), consequently, YaP> 
> ;Y bP • To prflve this inequality for an irrational x we may 
consider x as a limit of a sequence of rational numbers and 
pass to the limit. 

5° If a > 1 and x > y > 0, then aX > aY; but if ° < 
< a < 1 and x> y > 0, then aX < aY. The proof is 
basically reduced to that of aU- > 1 if a> ° and a> 1 
and can be obtained from 4°. 

6° log" x > log" y if x > y and a > 1; and loga x < 
< log" y if x > y and ° < a < 1. 

Out of the problems considered in this section, utmost 
interest undoubtedly lies with Problem 30 both with 
respect to the methods of its solution and to the number 
of corollaries. Problem 50 should also be mentioned with 
its inequalities useful in many cases. 

1. Show that 
1 1 +1>1 ( ... ) n+ 1 + n+2 + . . . 2n 2" n, a posItive mteger . 

2. Let nand p be positive integers and n;;;::: 1, p;;;::: 1. 
Prove that 

1 1 1 1 1 
n+1- ni-p+1 < (n-+ 1)2 + (n+2)2 + ... + (n+p)2 < 

1 1 
<n--n+p· 

3. Prove that the sum of any number of fractions taken 
f h i 1 1 ·1 I rom among t e sequence 22 J 32' 42' ... IS a ways ess 
than unity. 

4. Prove that 

;I;-;i~-Vn. 
5. Show that if a is a defective value of V A to within 

unity (a<VA<a+1), then 
A-a2 V- A-a2 1 

a+ 2a+1 < A < a+ 2a+1 + 4(2a+1) • 
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6. Prove that 

1 1 1 V--
1 + V2 + V3 + ... + Vli < 2 n + 1- 2. 

7. Prove that 

8. Prove that 
8 

cot2~1 + cote (0 < e < n). 

9. Show that if A+B+C= n(A, B, C>O) and the 
angle C is obtuse, then 

tan A tan B < 1. 

10. Let tan e = n tan cp (n > 0). 
Prove that 

11. Show that if 
1 

-----nR + tan a: tan ~ = tan i', then cos 2i' -< O. cos a cos p 

12. Let us have n fractions 

(i=1,2, ... ,n). 

Prove that the fraction ~~ !~:t::: !:: is contained bet­
ween the greatest and the least of these fractions. 

13. Prove that m+n+ ... +Vab ... l is contained between 
the. greatest. and the least one of the quantities 

m/- n/- p/­
-V a, -V b, "', -V l. 

14. Suppose 0 < a: < ~ < i' < ... < A < ~ . 
Prove that 

t < sin a + sin ~ + sin y + ... + sin A. < ta ~ an a: n "'. cos a+cos ~+cos y+ ... +cos A. 
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15. Let x 2 = y2 + Z2 (x, y, Z > 0). 
Prove that 

x'A. > y'A. + z'A. if ').. > 2, 

x'A. < y'A. + z'A. if ').. < 2. 

16. Prow that if 

a2 + b2 = 1, m2 + n2 =1, 

then\am + bn\ ~ 1. 
17. Let a, b, c and a + b - c, a + c - b, b -t- c - a 

be positive. 
Prove that 

abc ~ (a + b - c). (a + c - b) (b + c - a). 

18. Let 
A + B + C = n. 

Prove that 

19. Let 
A + B + C = n (A, B, C > 0). 

Prove that 

20. Given 
A + B + C = n (A, B, C > 0). 

Prove that 
3 

10 cos A + cos B + cos C ~ 2" ; 

o ABC 3 Y3 
2 cosTcosTcos-Y:S:;-8-' 

21. Prove that 

V(a+c) (b+d)~ -V ab+ V cd (a, b, c and d> 0). 

22. Prove that 

a3 +b3 (a+b)3 
2 ~ 2 (a> 0, b> 0). 
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23. Prove that 

1° at b ~Vab (a b>O); 

20 ..!..(a-b)2_a+b_-Vab_~(a-b)2 'f ""'--b 
~ a "'::::: 2 "'::::: 8 b I a~ . 

24. Prove that 

a+b+c '- a/-b ( b > 0) 3 ~y a c a" c . 

25. Prove that 
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Vaja2+ Vajll3+'" + -v~<n;-1 (aj+ a2+'" +an) 
(ai>O; i=1, 2, ... , n). 

26. Let ai > 0 (i = 1, 2, ... , n) and aja2' .. an = 1. 
Prove that 

(1 + aj) (1 + a2) ... (1 + an) ~ 2n. 

27. Prove that 

1° (a+b)(a+c)(b+c)~8abc (a, b, c>O): 

20 _a_+_b_+_C_ 2 ! 
b+c a+c a+b ?" 2 • 

28. Prove that 

y(a +k) (b+ l) (c+ m)~t/"abc+ :I"klm 

(a, b, c, k, l, m > 0). 

29. Prove that 

~ ..L ~ + i. ""'-- 9 (b > 0) a I b c ~ a+b+c a" c . 

(Xi> 0; i = 1, 2, ... , n), 

the equality being obtained only in the case 

Xl =X2= ... =Xn • 

31. Let at, a2, ... , an form an arithmetic progression 
(Oi > 0). 
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Vn<Yn!<nt1 • 

32. Lel a, b, and c bp pOHitive integerH. 
a lJ c 

Prove that aa+b+C.ba+b+c.ca+b+C~-}(a+b-f-c). 
33. Prove thaL if a, b, c are positive, rational and such 

that the Hum of every two IlUmberH exceeds a third one, then 

( b-C)"( c-a)u(1 a--b)" 1+- 1+- +- <;1. abc 
34. Let a, b, c, ... , l be n positive numbers and 

s= a+b+c+ ... + l. 
S,S S n2 

Prove that --i--b + ... +--l ~--1' s-a s- s- n-
35. Prove the inequality 

( b + b I . b )2_ ( 2, 2 t 1 2) al I a2 2 , ..• -t- an n '::::::: all a2 ••• -,- an X 

X (b~+b;+ ... -1 b~). 

36. Prove the inequality 

ad-az-l- . .. + an::::;;; Vn(a;+ a~+ ... +-a~). 

37. Prove that 

(Xl+X2 t- ... +Xn)(_1_+_1_ t ... +_1_)~n2. 
XI X2 Xn 

38. Let 

,XI + X2 -1- ... -1- Xn = p, 

XI X2 -t XI.1'3 -1- ... + XIX n + :r2X3 + ... -t Xn_IXn = q. 
Prove that 

.L n-1 II 2_~ >-x_::::;,.L_n-1-.1 2_~ 
n+ n V p n-1q~ l"""n n V P n-1 q· 

39. Let a, b, c, ... , l be n real positive numbers and 
let p and q be alHo two real numbers. 
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Prove that if p and q are of the same sign, then 

n (a p+q -f bp+q + ... + lp+q) > (aP +- bP -t ... -+ lP) X 

X (aq +bq + ... -+ lq). 

And if p and q have different signs, then 

n (a p +q +- bp+q +- ... -+ lp+q)~ (aP +- bP +- ... +- lP) X 

X (aq +- bq +- ... +- lq). 

40. Prove that 
1° (1 +- IX)"- > 1 +- IX'A (IX is any positive number; 'A> 1 

is rational). 

2° (1 +- IX)"- < 1-~A (IX > 0 real, 'A rational and posi­
tive, IX'A < 1). 

41. Let Un = (1 +- ~ r, n is a positive integer. 

1 ° Prove that 

2° Prove that Un is a bounded quantity, i.e. there exists 
a constant (independent of n) such that Un is less than this 
constant for any n. 

42. Prove that 

V2>'y3>Y4>~5>y6 > ... >y-n> 
n+l/--> 11' n+ 1 > ... 

43. Prove tb.at 

2> V3>~4 >~5 > ... > n-'yn> Yn-+ 1> ... 
44. Let us have 

al1X t +- a12X 2 +- ... +- alnX n = Yl 

a21x l +- a22x 2 +- ... +- a2nX n = Y2 

a n l X l +- a n 2X 2 +- ... +- annXn = Yn' 

where aij > 0 and rational, Xi] > O. 
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Furthermore, it is given that 

akl + ak2 + ... + akn = 1, 
alk + a2h + ... + anh = 1 (k = 1,2, ... , n). 

Prove that 

45. Let 

ai > 0, bi > 0 (i = 1,2, ... , n). 

Prove that 

;Y(a, + bl ) (a2 -1- b2) ... (an t bn)~;Y ala2 ... all + 
+;Y b1b2 ••• bll • 

46. Prove that 

(£1+'<2+ ... -1 Xn)h~ £~+x~+ ... +X~ 
n --=:::: n ' 

nand k are positive integers, Xi > o. 
47. Let the function cp (t) defined in a certain interval 

possess the following property 

cp ( !.! 1 t2 ) < cp (tlHn cp (t2) 

for any two tl and t2 not equal to each other. 
Then 

where tj, t 2 , ••• , tn are n arbitrary values from the given 
interval not equal to one another. 

if 

48. Find the greatest value of the sum 

S = sin al + sin a2 + . . . + sin an 

ai > 0 and al + a2 + ... + an = ll. 

49. Let X, p and q be positive, f.! and q being integers. 
Prove that 
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if p > q (x =1= 1). 
50. Let X> 0 and not equal to 1, m rational. 

Prove that 

mxm-1 (x - 1) > xm - 1 > m (x - 1) 

if m does not lie between 0 and 1. 
But if 0 < m < 1, then 

mxm-1 (x - 1) < xm - 1 < m (x - 1). 

51. Prove that 

(1 + x)m ~ 1 + mx . 
if m does not lie in the interval between 0 and 1; 

(1 + x)m ~ 1 + mx 

if 0 ~ m ~ 1 (m rational, x > -1). 
52. Prove that 

1 1 

( xf + x~ ~- ... + x~ ) P ~ ( xi + x~ : ... + x~ ) q, 

q ~ p, both q and p being positive integers. 
53. Find the value of x at which the expression 

(x - XI)2 + (x - X2)2 + ... + (x - X n )2 

takes on the least value. 
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54. Let XI + X2 + ... -I- Xn = C (C constant). At what 
XI, X2, ••. , Xn does the expression x~ + xi + . . . + x~ 
attdin the least value? 

55. Let XI > 0 (i = 1, 2, ... , n) and XI + X2 + 
+ ... + Xn = C. 

At what values of the variables Xl, X2' ••• , Xn does the 
expression 

>.. >.. "-
,Xi + X2 + ... + Xn 

(A. rational) attain the least value? -
56. Given Xi > 0 (i = 1,2, ... , n) and the sum Xl + 

+ X2 + ... + Xn = C = const. Prove that the produ.ct 
XlX2 ••• Xn reaches the greatest value when Xl = Xa = 

C 
= ... = Xn =-;. 
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57. Given Xi > 0 (i = 1, 2, ... , n) and the product 
XtX2X3 ••• xn is constant, i.e., XtX2 ••. Xn = C. 

Prove that the sum Xt + X2 + ... + Xn attains the 
least value when 

Xt=X2= •.• =Xn=;tC. 

58. Let Xi> 0 (i = 1,2, ... , n) and the sum Xt + 
+ X2 + ... + Xn = C = const. 

Show that 

X~IX~2 '" x~n 

takes on the greatest value when 

Xt X2 Xn C 
=== ••• ==-= 

ftt f12 ftn ftt + ft2 + ... + ftn ' 

~i > 0 (i = 1, 2, ... , n) and rational. 
59. Let 

ai > 0, xi> 0 (i=1,2, ... ,n) 
and 

atXt + a2x2 + ... + anXn = C. 
Prove that the product XtX2' •. Xn attains the greatest 

value when 

(Ai> 0 and rational). 
Prove that 

takes on tho greatest value when 

= - -- ... --

61. Let X11X~2 ••• x~n = C = const. 
Show that 

ftn 
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attains the least value if 

xJl.! XJl.2 . -t; = -,,,22 = ... 
- -

xJl.n 
n 

~ 
aiftl a2ft2 anftn 

{ai, Xi > 0; Ai and !-ti > 0 are rational). 
62. Find at what values of X, y, z, ... , t the sum 

X2 + y2 + Z2 + ... + t2 

takes on the least value if 
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ax + by + ... +kt = A (a, b, ... , k and A constant). 

63. At what values of x, y does the expression 

u = (alx + bly + CI)2 + (a2x + b2y + C2)2 + ... + 
+ (anx + bny + Cn)2 

take on the least value? 
64. Let xo, Xi, •.• , Xn be integers and let us assume 

Xo < XI < X2 < ... < Xn· 

Prove that any polynomial of nth degree xn + alxn - 1 + 
+ ... + an attains at points xo, Xi, •.. , Xn the values at 

least one of which exceeds or equals ;~ . 

65. Let 0 ~ X ~ ~. At what value of X does the product 

sin X cos X reach the greatest value? 
66. Let 

1t 1t 1t 3T 
x+y+z'--=:r; 0~x~2' 0~y~2' 0~z~2' 

At what values of x, y and z does the product tan X tan y X 
X tan z attain the greatest value? 

67. Prove that 
1 1 1 

n + 1 + n + 2 + ... + 3n + 1 > 1 

(n a positive integer). 
68. Let a > 1 and n be a positive integer. 
Prove that 

n+l n-l 
an_1~n (a-2--aZ ). 
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69. Prove that 
n 111 2< 1 +2+3+··· +2n-1 < n 

(n a positive integer). 
70. Prove that 

1 1 1 
1 1+1 1~1 1 
-a+T c+/f a+c+b+d 

(a,b,c,d>O). 

9. MATHEMATICAL INDUCTION 
This section contains problems which are mainly solved 

using the method of mathematical induction. A certain 
amount of problems is dedicated to combinatorics. 

1. Given 

and 
Vo = 2, Vi = 3. 

Prove that 

2. Let 

and 
Uo = 0, Ui = 1. 

Prove that 
Un = 2n - 1. 

3. Let a and A > 0 be arbitrdry given numbers and let 

... , 

Prove that 
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for any whole n. 
4. The series of numbers 

is formed according to the following law. The fust two 
numbers ao and al are given, each subsequent number being 
equal to the half-sum of two previous ones. Express an in 
terms of lZo, al and n. 

5. The terms of the series 

are determined as follows 

al = 2 and an = 3an -1 + 1. 

Find the sum 
al + a2 + ... + an· 

6. The terms of the series 

are connected by the relation 

an = kan-l + I (n = 2,3, ... ). 

Express an in terms of al, k, land n. 
7. The sequence al, a2, ... satisfies the relation an+l -

- 2an + an -1 = 1. 
Express an in terms of al, a2 and n. 
8. The tern • ., of the series 

a~, a2, aa, . 

are related in the following way an+3 - 3an+2+ 3anH-an = 1. 
Express an in terms of al, a2' aa and n. 
9. Let the pairs of numbers 

(a, b) (ai. b1) (a2. b2) ••• 

be obtained according to the following law 

a+b 
41-=-2-' 
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Prove that 

2 1 ) a,,~a+3(b-a)(1-4'7" ' 

bn=a+~ (b-a) (1-+ 2.~n). 
10. The terms of the series 

are determined by the relations 

Xn = Xn -I + 2Yn -I sin2 a, Yn =- Yn -1 + 2.£" -1 cos2 a. 

Besides, it is known that Xo = 0, Yo = cos a. 
Express Xn and Yn in terms of a. 
11. The n urn bers 

are related as follows 

Xn = aXn_1 + ~Yn-I' 
(a6 - ~y =1= 0). 

Yn = YXn -I + 6Yn-1 

Express Xn and Yn in terms of xo, Yo Rnrl n. 
12. The terms of the series 

are determined by the relation 

Xn = aXn -I + ~Xn -2. 

Express Xn in terms of xo, Xl and n. 
13. The terms of the series Xo. XI! .•• are connected by 

the relation 

P.xn-l + qXn-2 
Xn= p+q . 

Express Xn in terms of Xo. orl and n. 
14. The terms oro. Xl. X2 • ••• are determined by the equa­

lity 
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Express Xn in terms of Xo and n. 
Consider the particular cases 

X n -l 

x n =2 +1' Xn-l 

15. The numbers: 

are determined by the following law 
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ao and bo are given, and ao> bo > O. Express an and bll 

in terms of ao, bo and n. 
16. Prove the identity 

n 1 1 1 1 1 
2n+1 -I- 23_2 + ... + (2n)3-2n = n-I-l + n+2 + ... + 2; . 

17. Simplify the expression 

(1 - x) (1 - x2) ... (1 - xn) + x (1 - x2) (1 - x3) ••• x 
X (1-xn)+x2 (1-x3 ) '" (1-xn )+ ... + 

+ xh (1- xh+l) ... (1- xn) + ... + xn-1 (1- xn) + x" 

18. Prove the identity 

x x 2 x4 x zn- 1 1 x_x2n 

1 - x 2 + 1 - x4 + 1 - xS + ... + 1 2n = 1 - x· 1 2. '< 
-x -x 

19. Check the identity 

(1+x)(1+x2)(1+x4) ,., (1 + X2n- 1) = 

= 1 + x + x2 + x3 + ... + ,1'2 n - 1 

20. Prove the validity of the identity 

1+.!.+a+1+(a+l)(b+1)+ •.. + 
a ab abc 

+ (a+1) (b+l) ... (8+1) (k+1) = (a+1) (b+1) ... (k+l) (1+1) 
abc ... skl abc ... kl 



f08 Problems 

21. Prove the identity 

b+c+d+ ... +k+ lb. -I c++ 
a (a+b+ c+ ... +k+l) a (a+b) (a+b) (a+b+c) ... 

d 

+ (a+b+c) (a+b+c+d) + ... + 
+ 1 

(a+b+ ... +k) (a+b+ ... +k+l) . 

22. Let 

1 q q (1 - z) + 1 q2 q2 (1 - z) (1 - qz) + ... + 

+-1 qn (1-z)(1-qz) ... (1- qn-1z)=F n (z). _qn 

Prove the identity 

1+Fn (z)-Fn (qz)=(1-qz)(1- q2z) ... (1-q"z). 

23. Prove that 
k=n 
" (1-an) (1-an- 1) ••• (1-an- k+l) 
..6 i-a" =n. 
k=1 

24. Compute the sum 
S a a (a-1) a (a-1) (a-2) f- a (a-i) ... (ll-n+ 1) 

n=T+b(b-1)+ b(b-1)(b-2) b(b-1) ... (b-n+1) 

(b is not equal to 0,1,2, ... , n-1). 
25. Let 

Sn=aj + (aj + 1) a2+ (aj + 1) (~+ 1) a3+ ... + 
+(aj+1)(~+1) ... (a n-l + 1) an. 

Prove that 

S n = (at + 1)( ~ + 1) ... (an + 1) - 1. 

26. Prove the following iden ti ties: 
x=n 

1° ~ x(x+1) . ... (x+q)= q!2 n(n+1) .. . (n+q+1); 
x=l 
x=n 

2° ~ $($+1) ~ .. ($+q) ; {:I-(n+1)(n+i) ... (n+qJ· 
x-l 

I 
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27. Prove the identity 

( 1 1) (1 1 1) 1-2 -7; + 3-6"-8 + ... + 

+ (2n 1 1 - 4n ~ 2 - :n ) = 

1( 1 1 1 1 1) 
=2 1-2 +3 -7;+ '" +2n-1 -2n" . 

28. Let us have a fequence of numbers (Fibonacci's series) 

0, 1, 1, 2, 3, ;), 8, 13, 21, ., .. 

This sequence is determined by the following condi tions 

Un+! = Un + U n _! 

and Uo = 0, U! = L 
Show that there exist the following relatioIls 

1 ° U n+2 = Uo + U! + U2 + ... + Un + 1; 

2° U2n+2 = Ut + Ua + U5 + ... + UZ n+!; 

3° U2n+I=1+U2-1-u4+'" +uzn ; 

4 ° - U2n-t + 1 = Ut - 112 + Ua + ... + U2n-t - U2n: 

5° U2n-2+1=Ut-U2+Ua-U4+ ••. +uzn-t; 

6° UnUn+t = u; + u~ + ... + u~; 
7° u~n = UtU2 + U2U3 + ... + U2n-t U2n; 

8° Un+1Un+2- UnUn-ta= (_1)n; 

9° u~, - Un+tUn-l = (-1r+l; 

10° u~ - Un-2U,,-IU,,+tUn+2 = 1. 

29. Compute the sum 
1 2 Un +2 

iT + --r:3 + ... + -u n-+-"'I-'-U=-n +-3-

30. Prove the relations 

1° Un+p-t = Un-tUp-l + UnU p ; 

2° U2n-l = U~ + U~_l; 
3° U2n-1 = UnUn+i- U n-2Un-!' 
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31. Prove that u:. + U;'+l- U~_l = U3n· 

k~, [~] 
2 k 

32. Prove that U n = 2: en k~l· 
k~O 

33. Find the number of whole positive solutions of the 
equation XI + X2 + ... + Xn = m (m a positive integer). 

34. Prove that the total number of whole nonnegative 
solutions of the equations 
X + 2y = n, 2x + 3y = n - 1, ... , nx + (n + 1) y = 1, 

(n + 1) X + (n + 2) y = 0 
is equal to n + 1. 

35. Show that the total number of whole nonnegative 
solutions of the equations 

x + Ijy c~ 3rt - 1, 4x + 9y = 5n - 4, 9x + 16y = 
~ 7n - 9, ... , n2x + (n + 1)2 y = n (n + 1) 

is equal Lo n. 
36. There are n white and n black balls marked 1,2,3, ... , 

n. In how many ways can the balls be arranged in a row 
so that all neighbouring balls were of different colour? 

37. I Il how many ways is it possible to distribute kn 
distinct objects into Ie groups, each consisting of n elements? 

38. How many permutations can be made up of n ele­
ments in which the two elements a and b never stand side 
by side? 

39. Find the number of permutations of n elements in 
which none of the elements occupies the original position. 

40. In how many ways can n distinct letters be arranged 
in r squares (first, second, ... , rth square) so that each 
square contains at least one letter (the order of the letters 
inside the squares is disregarded)? 

10. LIMITS 
We take as known the concept of a variable and its limit, 

as well as the basic theorems on limits which are usually 
treated in elementary textbooks of algebra (the limit of a 
S11m, product and quotient). Let us here remind the reader 
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of one of the indications for a limit to exist: if a variable 
increases but remains smaller than a certain constant, then 
such a variable has a limit (likewise, a variable which, 
when decreasing, remains greater than a certain constant 
also has a limit). When dealing with an infinitely decreasing 
geometric progression and, in general, with simple i nfmite 
series, one should bear in mind that the symbolic notation 

Ut + U2 + U3 + ... + un + .. . 
denotes none other than lim (Ut + U2 + ... + un) if 

n-->oo 

such a limit exists. If there is no limit, then the series 

Ut + U2 + U3 + ... + Un + ... 
is said to be divergent, and it is useless to speak of its nume­
rical value. 

1. Let Xn = an and I a I < 1. Prove that lim Xn = O. 
n->oo 

2. Prove that 
an 

lim """";iI = 0 
n-+oo . 

for any real a. 
3. Find 

4. Let 
23_1 33 -1 n3 -1 

P n = 23 + 1 . 38-; 1 .., n3 +- 1 . 

Prove that lim P" = ~ . 
n-+oo 

5. Prove that 

]' 1k~2k+ ... +nk_~_1_ 
1m nk+t - k +1 

H--..OO 

(k a positive integer). 

n } 1 
k+l "~2 
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(k a positive integer). 
7. Let us have a sequence of numbers Xn determined by 

the equality 

xn-l +xn -2 
xn= 3 

and the values Xo and Xl' 

Prove that 

XO+ 2Xl 
lim X" = 3 
n+oo 

8. Let N > O. Let us take an arbitrary positive num­
ber Xo and form the following sequence 

XI = -} ( Xo + ~ ). 
Xz= ; (XI+ ~). 

Xp= 21 (Xp -l + ~). x p _l 

Prove that lim Xn = V N. 
n~oo 

9. Generalize the result of the preceding problem for the 
extracting a root of any index from a positive number. 

Prove that if 

then 

m-t N 
Xl=-m- XO + mxm 1 • 

o 
m-t N 

X2=-m- X1 + mxm 1 • 
1 

m-1 N 
:r:p =--Xp _l+ mI' m mXp _1 

1· nl/N 1m Xn=y . 
n~oo 
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10. Prove that 

11. Let 
k= n 

S II = ~ (V 1 + 1~2 - 1 ) . 
k=! 

Find 

12. Let the variable Xn be determined by the following 
law of formation 

xo=Va, 
Xl= Va + Va, 

x2=Va+Va+va. 
X3 = Va + V a + V a + Va, 

Find 
lim X n • 
n-->oo 

13. Prove that the variable 
1 1 1 1r:: 

xn = 1 + V2 + V3 + ... + Vn - 2 y n 

has a limit as n -+ 00. 

14. Let us be given two sequences 

Xo, Xl, X2' ... , 

Yo, Yl, Y2, . .. (Xo > Yo > 0), 

where each subsequent term is formed from the preceding 
ones in the following manner 

.1"n-l + Yn-l 
xn= 2 Yn = V x n -1Yn-l· 
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Provo that X Il and YIl have limits which are equal to each 
other. 

15. Let 
S 1 = 1 + q + q2 + .. . 1 ql < 1, 
S = 1 + Q + Q2+ .. . 1 QI < 1. 

Find 
1 + qQ + q2Q2 + .... 

16. Let s be the sum of terms of an infinite geometric 
progression, a2 the sum of squares of the terms. Show that 
the sum of n terms of this progression is equal to 

{ _ [ s2 - (J2 ] n } 
S 1 s2+ 0 2 • 

17. Prove that 

1° lim nhx"= 0 if I x 1< 1 and k [is a positive integer; 
n~oo 

18. Find the sums of the following series 

10 1 + 1 --L 1 + + l + . n 2·3' 3·4 ... n(n+1) '" , 

20 _1_+_1_+ + 1 + .... 
1·2·3 2·3·4 '" n(n+1)(n+2) 

19. Prove that the series 
111 1 

1 +"2+""3+4+·" +n+ ... 
is a divergent one. 

20. Prove that the series 
1 1 1 t 

1 +-a+-a+-a+ ... +-a+ ... 
234 n 

is a convergent one if ex> 1. 
21. Find the sums of the following series 

1 ° 1 + 2x + 3x2 + ... + nxn - 1 + ." .. ; 
2° 1+4x+Hx2 + ... -+ n2x l1-l+ ... ; 
3° 1 + 23.1"+ 33 x2+ ... +n3x"-1 + ... (l:rl<1). 
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( 1 )n 22. 1° Prove t.hat the variable 11" = 1 I n (n = 1, 2, 

3, ... ) has a limit. 

2° Denoting the limit Un by e so that lim (1 + i..)n = e, 
n-oo n 

prove that 
1 1 1 

e=1+1+ n +1.2 .3+ ... + 1·2·3 ... k 

(0 < 0 < 1). 

23. Let 0 < x < ~ . 
Knowing that lim sin x = 1, prove that 

x-+o x 
. _ 1 3 

x-slllx::::::::::llx. 

24. 1° Prove that the series 

is a convergent one. 

+ e 
1·2·3 ... k·k 

2° Prove that for any real number CJ) (0 < CJ) <1) it is 
always-possible to find, and in the unique way, aj (0 ~ aj ~ 
~ 9; aj being integers), such that 

(i.e. to expand the real number in decimal fractions). 
3° Show that if a decimal fraction 

is ftnit'.:l or periodic (i.e .• for instance. an+1 = at. an+2 = 
= a2, ...• a2n = an • ... , so that the period contains n 
digits: ah a2, ...• an), then CJ) is a rational nnmb{'r. 

25. Prove that the number~ determined by the following 
series are irrational ones 

l' 1 -t 1 + 1 + 1 t 1 
(,)= T -"""'iT 19 /1il+... [1l2 + ... , 
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where 1 is any positive integer. 

20 W _ ~ + _1_ 1 _ 1 
- 1 11.2 + 11.2.3 -1 11.2.3.~ + 

+ ... + 11 • 2 .! ... n + ... , where 1 is any positive integer. 

26. Prove that e is an irrational number (see Problem 22). 
27. Let 

1 1 1 1 
W=-I + -1-1-+-1-11-+ '" + II I + ... , 1 12 123 12"'n 

where 1<l1 ~ l2 ~ l3 ... and Ii are integers. Prove that 
W s rational only when lk (beginning with a certain k) 
are all equal to one another. 

28. Prove that the variable 
111 

un = 1 + '"2 + 3" + ... + n -log n 

has a limit. 
29. Prove the following formula: 

1t 1 

'"2= V~.V~+~ V~· V~+~ V~+~V~+ ... 



SOLUTIONS 

SOLUTIONS TO SECTION 1 

1. Proved immediately by a check. 
2. If we remove the brackets from the right member 

and apply the formula for a square of a polynomial, then 
it is easily seen that all the doubled products are cancelled 
out, and we get the required identity. 

3. If the identity of the preceding problem is used, then 
from the condition of our problem it follows that 

whence either a2 + b2 + c2 + d2 = 0, or x2 + y2 + Z2 + 
+ t2 = 0. 

But the sum of the squares of real numbers equals zero 
only when each of the numbers is equal to zero. Therefore, 
from t~e equality a2 + b2 + c2 + d2 = 0, we get a = b = 
= c = d = 0, and from the equality x2 + y2 + Z2 + t2 = 

= ° we have x = y = z = t = 0. 
Hence follows the required result. 
4. This identity can be checked directly, and also can 

be obtained from identity (2) if we put in it d = t = ° 
and replace y by -y and z by -z. 

5. If we expand the right member of the equality, then 
all doubled products are cancelled out and the validity of the 
identity becomes obvious. 

6. Put in identity (5) al = a2 = a3 = ... = an = 1, 
bl = a, b2 = b, ... , bn - I = k, bn = I. 

We then get 

n (a2 + b2 + c2 + ... + k2 + 12) = 
= (a + b + ... +/)2 + (b _ a)2 + 

+ (c - a)2 + ... + (k - 1)2. 
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But since by hypothesis 

n (a2 + b2 + ... + k2 + 12) = (a + b + ... + k + l)2, 

we have 

(b - a)2 + (c - a)2 + ... + (k - 1)2 = O. 

Hence a = b = c = . . . = k = l. 
7. Make use of identity (5). By hypothesis 

a; + a~ + ... + a; = 1, b: + b; + ... + b; = 1. 

Therefore we have 

(atb! + a2b2 + ... + a"b,,)2 = 

= 1 - (a!b 2 - a2bl)2 - (a 1b3 - a3bl)2 - ... -

- (an-Ibn - anb,,_!)~. 

Whence 

o ~ (atbt + a2b2 + ... + a"b,,)2 ~ 1. 
Thus, 

-1 ~ atb! + a2b2 + ... + anb" ~ +1. 
8. We have 

(y + z - 2X)2 - (y - Z)2 + (z + x - 2y)2 - (z - X)2 + 
+ (x -+ y - 2Z)2 - (X-y)2=O. 

But 
(y + z - 2X)2 - (y - Z)2 = 4 (y -- x) (z - x) 

(using the formula for a difference of squares). 
Likewise we find 

(z + x - 2y)2 - (z - X)2 = 4 (z - y) (x - y), 

(x + y - 2Z)2 - (x - y)2 = 4 (x - z) (y - z). 

Consequently, 

4 (y - x) (z - x) + 4 (z - y) (x - y) + 
-+ 4 (x - z) (y - z) = 0 

Removing the brackets, we get 

2x2 + 2y2 + 2Z2 - 2xz - 2yz - 2xy = 0 
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or 
(x - y)2 + (x _ Z)2 + (y _ Z)2 = 0, 

whence 
x = y = Z = o. 

9. The first identity is obvious. Let us rewrite the second 
one in the following way 

(6a2 - 4ab + 4b2)3 - (4a2 - 4ab + 6b2)3 = 

= (3a2 + 5ab - 5b2)3 + (5a2 - 5ab _ 3b2)3. 

Applying the formula for a difference of cubes to the left 
member and the formula for a sum of cubes to the right 
member, we find that it suffices to prove tho following iden­
tity 

(3a2 - 2ab + 2b2)2 + (3a2 - 2ab + 2b2) (2a2 - 2ab +3b2) + 
+ (2a2 - 2ab + 3b2)2 = (5a2 - 5ab _ 3b2)2 -
- (5a2 - 5ab - 3b2) (3a2 + 5ab - 5b2) + 
+ (3a 2 + 5ab - 5b2)2. 

This identity is proved by directly removing the brackets. 
10. To see whether the identity under consideration is 

valid, we may rewrite it as 

(p2 _ q2)4 = (p2 + pq + q2)4 _ (2pq +q2)4 + 

+ (p2 + pq + q2)4 _ (2pq + p2)4. 

It remains to simplify tho right member and to show that 
it is equal to the left one. 

Using the formula A 4 - B4 = (A + B) (A - B) (A 2+B2), 
we get the following expression for the right member 
(p2 + 3pq + 2q2) (p2 _ pq) [(p2 + pq + q2)2 + 

+ (2pq + q2)2] + (2p2 + 3pq + q2) (q2 - pq) X 

X [(p2 + pq + q2)2 + (2pq + p2)2] = (p + 2q) X 

X P (p2 _ q2) [(p2 + pq + q2)2 + (2pq + q2)2] + 
+ (2p + q) q (q2 _ p2) [(p2 + pq + q2)2 + 
+ (2pq + p2)2] = (p2 _ q2) {(p2 + pq + q2)2 X 

X [p2 + 2pq2_ 2pq _ q2] + (p2 + 2pq) (q2 + 2pq) X 
X [2pq + q2_ 2pq _ p2]} = (p2 _ q2)2 {(p2 + pq+q2)2 _ 
_ (p2 + 2pq) (el + 2pq)} = (p2 _ q2)4. 
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11. Check by direct substitution. 
12. Check by substitution. 
13. 10 The cases n = 0, 1, 2 are readily checked directly. 

At n = 4 let us rewrite the identity in the following way 

(ix - ky)4 - (ix - kZ)4 + (iy - kZ)4 -

- (iy - kX)4 + (iz - kX)4 -

- (iz - ky)4 = 0. 

Transform the first two terms 

(ix - ky)4 - (ix - kZ)4 = [(ix - ky)2 + 
+ (ix - kZ)2] (2ix - ky - kz) k (z - y). (1) 

By virtue of the equality x + y + z = 0, we get 

2ix - ley - kz = (2i + k) x. 

The expression in square brackets can be rewritten as follows 

(2i2 + 2ik) x2 + k2 (y2 + Z2). 

Thus, we have 
(ix - ky)4 - (ix - kZ)4 = 

= k (2i + k) (y2 - Z2) [(2i2 + 2ik) x2 + k2 (y2 + Z2)J. (1') 

I t remains to transform the following expressions 

(iy - kZ)4 - (iy - kx)4, (2) 
(iz - kX)4 - (iz - ky)4. (3) 

But it is easily seen that expression (2) is obtained from the 
first one, already considered, by means of a circular permu­
tation of the letters x, y and z, i.e. when x is replaced by 
y, y by z, and z by x. Expression (3) is obtained from (2) 
also through such a permutation. Therefore, there is no 
need to repeat computations for simplifying expressions (2) 
and (3); it is sufficient only to apply appropriate permuta­
tions to the result obtained. We then have 

(iy - kZ)4 - (iy - kX)4 = 
= k (2i + k) (Z2 - x2) [(2i2 + 2ik) y2 + 
+ k2 (Z2 + x2»), (2') 
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(iz - kX)4 - (iz - ky)4 = 
= k (2i + k) (x2 - y2) [(2i2 + 2ik) Z2 + 
+ k2 (x2 + y2)1. 

And adding expressions (1'), (2') and (3'), we get 

k (2i + k) {(2i2 + 2ik) [(y2 - Z2) x2 + (Z2 _ x2) y2 + 
+ (x2 _ y2) Z2] + 
+ k2 (y4 _ Z4 + Z4 _ X4 + 
+ X4 _ y4)} = O. 
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(3') 

2° At n = 0 the relation is obvious. Let us denote, for 
brevity, the sum in the left member of the equality by 

2: (x + k)n, 

and the sum in the right member by 

~ (x + l)n. 

At n = 1 we have to prove that 

8x + ~ k = 8x + 2: l, 
i.e. we have to prove that 

Lk = h l. 
Finally, we have to check that 

But 
2}k = 2} l. 

L k = 3 + 5 + 6 + 9 + 10 + 12 + 15 = 60, 

2: 1 = 1 + 2 + 4 + 7 + 8 + 11 -+ 13 + 14 = 60. 

At n = 2 we have to prove that 

~ (x + k)2 = ~ (x + l)2, 
i.e. that 

8x2 + 2x L k + L k2 = 8x2 + 2x L 1 + L l2. 

And so, it remains to prove that 

~k2 = ~ l2, 
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which is easily checked directly. 
Likewise, to prove the last case (n = 3) we have only to 

show that 

14. The first idenLity is proved in the following way 

(a + b + c + d)2 + (a + b - c - d)2 + 
+ (a + c - b - d)2 + (a + d - b - C)2 = 
= [(a + b) + (c + d)12 + [(a + b) - (c + d)12 + 
-+ [(a - b) + (c - d)12 -+ [(a - b) - (c - d)J2 = 

= 2 (a + b)2 + 2 (c -+ d)2 + 2 (a - b)2 + 2 (c - d)2 = 

= 2 [(a + b)2 + (a - b)2] -+ 2 [(c -+ d)2 + 
+ (c - d)2] = 4 (a2 + b2 + c2 + d2). 

The second and third identities are also proved by a direct 
check with some preliminary transformations. 

15. Rewrite our equality as follows 

[(a -+ b -+ C)4 - (a4 -+ b4 + c4)] -+ [(b + c - a)4 -

- (a4 +- b4 -+ c4)] + [(c -+ a _ b)4 -

- (a4 + b4 + c4)] + [(a + b - C)4 -

- (a4 -+ b4 + c4)] = 24 (a 2b2 + a2c2 + b2c2). 

Consider the first term. 
'Ve have 

(([2 + b2 + c2 -1- 2ab -+ 2ac + 2bc)2 _ a4 _ b4 _ c4 = 
= (ja2b2 + 6a2c2 +- Gb2c2 + 4ac (a2 -+ c2) + 
+ 4ab (a 2 + b2) + 4bc (b2 + c2) -I- 12a2bc + 

-+ 12b2ac + 12c2ab. 

The remaining terms are obtained from the first one by 
means of successive substitutions: -a for a, -b for b, 
-c for c. Adding the terms, we make sure that our identity 
is valid. 
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16. We have 

s (s - 2b) (s - 2e) + s (s - 2e) (s - 2a) + 

+ s (s - 2a) {s - 2b) = (s - 2a) (s - 2b) (s - 2e) + 

+ 2a (s - 2b) (s - 2e) + s (s - 2a) (2s - 2e - 2b) = 
= (s - 2a) (s - 2b) (s - 2e) + 2a (s - 2b) (s - 2e) + 

+ s (s - 2a) 2a. 
Transform the sum 

2a (s - 2b) (s - 2e) + s (s - 2a) 2a = 
= 2a [(s - 2b) (s - 2e) + s (s - 2a)] = 
= 2a [(s - 2b) (s - 2e) + (s - 2a) (s - 2b) + 

+ 2b (s - 2a)] = 2a [(s - 2b) (2s - 2e - 2a) + 

+ 2b (s - 2a)] = 2a [(s - 2b) 2b + 2b (s - 2a)] = 
= 2a ·2b [s - 2b - 2a] = 4ab ·2e = 8abe. 

17. Expanding the expression in the left member in 
powers of s, we get 

0+b+~~-~~+~+~+~+~+~+ 
+ 2,il - 2S2 (a + b + c) + 

+ 2s (ab + ae + be) -- 2abe. 

Since a + b + e = 2s, we have 

2,il - 28 (a2 + "b2 + e2) + a3 + b3 + e3 +- 283 - 4.il + 
+2s (ab + ae + be) - 2abe = -28 (a2 + b2 + e2) + 

+ a:l + b:l + e:l + 2s (ab + ae + be) - 2abe = 
= a3 + b3 + e3 + (a + b + c) (ab + ae + be -
- a2 _ b2 - e2) - 2abe. 

Directly transforming the last expression, we make sure 
tha tit is equal to abc (see also Problem 20). 

18. We have 
(202 _ 2a2) (202 _ 2b2) = (a2 + e2 _ b2) (b2 + e2 _ a2) = 

= e4 _ (a2 _ b2)2, 
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Using a circular permutation, we obtain 

(202 _ 2b2) (202 _ 2c2) = a4 _ (b2 _ C2)2, 

(202 _ 2c2) (202 _ 2a2) = b4 _ (C2 _ a2)2. 

Hence 

4 [(02 - a2) (02 - b2) + (02 - b2) (02 _ C2) + 

But 

+(02 _ C2) (02 _ a2)] = a4 + b4 + C4 _ (a2 _ b2)2 _ 

_ (b2 _ C2)2 _ (C2 _ a2)2 = -a4 _ b4 _ C4 + 

-+ 2a2b2 + 2a2c2 -+ 2b2c2 = _[a4 _ 2 (b2 + c2)a2 -+ 
+ (b2 _ C2)2] = _[a4 _ 2 (b2 _ c2) a2 + 

-+ (b2 _ C2)2 _ 4a2c2] = 4a2c2 _ (a2 _ b2 + C2)2 = 

= (2ac + a2 - b2 + c2) (2ac - a2 + b2 _ c2) = 

= (a + b + c) (a + c-=- b) (b - a + c) (b + a - c). 

a -+ b + c = 28, a + b - c = 2 (8 - c), 

a + c - b = 2 (8 - b), b + c - a = 2 (8 - a) 

and we see that the identity is valid. 

19. We have: 

(x + y + Z)3 = x3 + y3 + Z3+ 3x2 (y + z) + 

+ 3y2 (x + z) + 3z2 (x + y) + 6xyz. 
Hence 

(x + y -+ Z)3 - x3 - y3 _ Z3 = 3 {X2y -+ x2z + y2x -]_ y2z + 

-+ Z2X -+ Z2 y + 2xyz} = 3 {z (x2 + y2 + 2xy) + 

+ Z2 (x + y) + xy (x + y)} = 3 (x + y) {z (x + y) -+ 
+ Z2 + xy} = 3 (x + y) (x + z) (y + z). 

Thus, 

(x + y + Z)3 - x3 - y3 - Z3 = 3 (x + y) (x + z) (y + z). 
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20. We have 

(x + y + Z)3 = X3 + y3 + Z3 + 3xy (x + y + z) + 

Consequently 

+ 3xz (x + y + z) + 3yz (x + y + z)­

- 3xyz. 

3-3 + y3 + Z3 - 3xyz = (x + y + Z)3 - 3 (x + y + Z) X 

X (xy + xz + yZ) = (x + y +.z) X 

X (X2 + y2 + Z2 - xy - XZ - yz). 

21. Put a + b - c = x, b + c - a = y, c + a - b = 
= z. It is readily seen that x + y + z = a + b + c and, 
hence, we have to simplify the following expression 

(x + y + Z)3 _ x3 _ y3 _ Z3. 

On the basis of Problem 19 we have 

(x + y + Z)3 - x3 - y3 - Z3 = 3 (x + y) (x + z) (y + z) 

But x + y = 2b, x + z = 2a, y + z = 2c, therefore, 

(a + b + C)3 - (a + b - C)3 - (b + c - a)3 -

- (c + a - b)3 = 24abc. 

22. On the basis of Problem 19 we have 

x3 + y3 + Z3 = (x + y + Z)3 - 3 (x + y) (x + z) (y + z). 

Putting here x = b - c, y = c - a, z = a - b, we find 

x + y + z = 0, x + y = b - a, 
x + z = a - c, y + z = c - b. 

Hence 

(b - C)3 + (c - a)3 + (a - b)3 = 
= 3 (a - b) (a - c) (c - b). 

23. Readily obtained from Problem 20. But it is possible 
to use the following method 

(a + b + c) (a2 + b2 + c2) = 0. 
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since 
a + b + e = 0. 

Hence, 

a3 + b3 + e3 + ab (a + b) + ae (a + e) + be (b + e) = 0. 
But 

a + b = -e, a + e = -b, b + e = -a. 

Now the required identity is obvious. 
24. We have 

(a + b + e)2 = 0, 

a2 + b2 + e2 = -2 (ab + ae + be). 

Squaring both members of the latter equality, we get 

(a 2 + b2 + e2)2 = 4 [a2b2 + a2e2 + b2e2 + 2a2be + 
+ 2b2ae + 2e2abJ = 4 [a2b2 + a2e2 + b2e2 + 

+ 2abe (a + b + e)J = 4 [a2b2 + a2e2 + b2e2J. 

On the other hand, 

(a2 + b2 + e2)2 = a4 + b4 + e4 + 2 (a 2b2 + a2e2 + b2e2). 

Hence 

4 (a2b2 + a2e2 + b2e2) = 2 (a2 + b2 + e2)2 _ 

- 2 (a4 + b4 + e4). 

Comparing it with the equality 

4 (a 2b2 + a2e2 + b2e2) = (a2 + b2 + e2)2, 

we get the required result. 
25. Since 

(a - b) -+- (b - e) + (e - a) = 0, 

the result follows immediately from Problem 21. 
26. 1° We have (see Problem 23) 

a~ -+- b3 + e3 = 3abe. 
Whence 

(a3 + b3 + e3) (a 2 +- b2 + e2) = = 3abe (a 2 + b2 + e2). 
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Then, transforming the left member, we obtain 

a5 + b5 + e5 + a2b2 (a + b) + a2e2 (a + c) + 
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+ b2e2 (b + c) = 3abe (a 2 + b2 + e2) 

or 
a5 + b5 + e5 _ a2b2e _ a2e2b _ b2e2a =3abe (a2 + b2 + e2). 

IIence 

a5 + b5 + e5 - abc (ab + ae + be) = 3abe (a 2 + b2 + e2). 

But 
-2 (ab + ae + be) = a2 + b2 + e2 • 

Hence follows the final result. 
2° The answer follows immediately from Problem 23 and 1 0. 

3° Let us write the relations 

2 (a4 + b4 + e4) = (a2 + b2 + e2)2 (Problem 24), 

a3 + b3 + e3 = 3abe (Problem 23). 

Multiplying these equalities, we fwd 

2 [a7 t- b7 + e7 + a3 b3 (a + b) + a3e3 (a + c) + 
+ b3eS (b + e)l = 3abe (a 2 + b2 + e2)2. 

Hence 

2 [a7 + b7 + e7 - a3 b3e - a3eSb - b:1e3al = 
= 3abe (a2 + b2 + C2)2 

or 
2 (a7 + b7 -\- e7) - 2abe (a 2/)2 + a2e2 + b2e2) = 

= Babe (a2 + /)2 + e2)2. 

But 

a2b2 + a2e2 + b2e2 = 1 (a 2 + b2 +- e2)2 (Problem 2,'J). 

Therefore 
7 

2 (a7 + b7 + e7) =-= ~ abc (a 2 + b2 + e2)2. 

Using the result of 1°, we tinally get the required relation 
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27. For the sake of convenience let us introduce the sum­
mation symbol. And so, we put 

k=n 

al+az+··· +an = ~ ak· 
k=1 

Using this symbol, we can now write 
k=n k=n 

a lb l + a zb2 + ... + allbn = ~ akbk = alb l + ~ akbk • 
k=1 k=2 

But it is obvious that 

b k = (b l + b 2 + ... + b k) - (b l + b 2 + ... + b k - l ) = 

therefore our sum takes the following form 

k=n k=n-l k=n 

albl + ~ -ak (Sk - Sk-l) ~ alb l + ~ aksk - ~ akSk-1 + 
k=2 k=2 k=3 

h=n-l 

+ anSn -azsl = (al- a2) SI + anSn + ~ a"sk­
h=2 

h=n-l ~n-l 

- ~ ak+Js" = (al - a2) SI + ~ (ak - ah+l) Sh + a"Sn = 
k=2 k=2 

= (aJ - az) SI + (az - a3) S2 + ... + (an-t - an) S,,_I + ans". 

28. Readily proved if we remove the brackets in the 
left member and use the relation 

n 
al + a2 + ... + an = 2 ,s. 

29. Substituting into the given expression x' and y' 
for x and y, we find that 

A' = Aa2 + 2Bay + Cy2, 

C' = A~2 + 2B~ll + Cll2, 

B' = Aa~ + B (all + ~y) + Cyll. 

Making up the expression B'2 - A' C/ , we easily check the 
required identity. 
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30. We have 
i-=n i=n i=n i=n i=n 

~ Piqi= ~ Pi (1-Pi)= ~ Pi - ~ pI =np- ~ py, 
i=1 i=1 i=1 i=1 i=1 

since 
np = PI + P2 + ... + Pn' 

Further 
i=n i-::-,n 

~ Piqi = np- z:: (Pi - p+ p)2= 
i=1 ie-I 

i=n i=n 

=pn - ~[(pi-p)2+2pPi-p21=np- ~ (pi-p)2-
i=1 i=1 

i=n i=n 

-2PL Pi+ntr=np-h (Pi_p)2_ np2. 
i=1 i=1 

But 
np - np2 = np (1 -r p) = npq. 

Thus, we get 

Plql + P2q2 + ... + Pnqn = npq - (PI - p)2 -
- (P2 - p)2 - ... - (Pn _ p)2. 

31. Indeed 
11 11 ,11 
T' 2n -1 + 3"' 2n - 3 + ... I 2n -1 • T = 

__ 1_ {(2n-1)+1 (2n-3)+3 + + 1+(2n-1) } __ 
- 2n 1·(2n-1) + 3(2n-3) ... (2n-1).1 --

1 {iii iii} 
=T,l T+ 2n-1 +3"+ 2n-3 + ... + 2n-1 +T = 

=+(1+-}+++ ... + 2n~1)' 
32. 10 It is obvious that 

111 
Sn=1+ T +3"+"'+n-= 

=n+[(1-1)+(+-1)+ 

+(-}-1)+ ... +(! -1)l=-
=n-(++ ;+ ... +n:-1). 
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k-n k=n I<~-n 

2° Sn= ~ !, _ ",l n-k+k _ "1..-' ( n-k + t) 
nSn - L.J k - L.J k . 

k=1 k=1 k=1 

Hence, 

( n-1 n-2 1 ) 
nSn=n+ -1-+-2-+"'+ n-:-t . 

33. Add to and subtract from tho left member the follo­
wing expression 

We get 
1 1 1 1 1 

1-"2+"3-4"+"'+ 2n-1 -1n= 

= ( 1 + ; + ! + ... + 2n ~ 1 ) - (-} + i-+ ... + ~n ) 

=(1+; +++'.'+2n~i)+ 
+ ( + + ! + ... + 2~! ) - 2 ( ~ + ! + ... + 2~ ) = 

1 1 1 1 1 
=1+"2+3+"4+"'+ 2n-1 +1n-

( 1 1 1) t 1 1 - 1+"2+3+" '+-n = n+1 + n~ 2 + .. '+1n 

34. We have 

( 1 + a 1 1 ) ( 1 - 2a ~ 1 ) ( 1 + 3a ~ 1 ) ... X 
X(1+ 1 )(1- 1 )_ 

(2n-1) a-1 2na-:-1-

a(2a-2).3a '" (2n-1) a (2na-2) _ 
(a-i) (2a-1) (3a-i) ... (2na-1) -

1·a·3·a·5·a ... (2n-1)·a·(2a-2) (4a-2) .. , (2na-2) 
= (a-1)(2a-1) ... (na-1)[(n+ 1)a-1)[(n+2)a-1] ... l{n+n)a-.1] = 

1·a·3·a·5·a ... (2n-1) a·(a-1) (2a-i) '" \na-1) .2n = 
[(n+1)a-1] '" [(n+n)a-1] (a-1)(2a-1) ... (na-1) 

1·a·3·a·5·a ... (2n-1)·a 2n 
= [(n+1)a-1] ... [(n-i n)a-1]· . 
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But 

1 3 r: (2 _1).2n-_ 1·2·3·4·5 .,. 2n .2n-_-
.. ;) ... n 2.4.6 ... 2n 

= 1.~ .. ~ .. ~.~ .... ~ 2n = (n+1) (n+2) '" 2n, 

wherefrom we obtain the required identity. 
35. Let a < x < a + 1, where a is an integer. Subdivide 

the interval between a and a + 1 into n parts. Then x will 
lie in one of these subintervals, i.e. we can find a whole 
number p (0 < p < n - 1) such that 

a+L~x<a+ p+1. 
n -..::: n 

Therefore 

a+ p+1 ~x+~ <a+ p+2 n -...;::: n n ' 

Hence 

[X1=fx+!]= ... =[x+ n-~-1]=a 

f x+ n-;:p ] = ... = f x+ n-;:1 J =a+1. 

Consequen tly 

[xl+f x++ J+ ... +[x+ n-;:1 J= 
= (n- p)a+ p(a+ 1)=an+ p. 

On the other hand, from the inequality 

a+ ~ ~x<a+ p~1 
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we get 
an + p ~ nx < an + p + 1, 

hence, 
[nxl = an + p, 

and the formula is proved. 
36. We have 

cos (a + b) cos (a - b) = 
= [cos a cos b - sin a sin bl X 

X [cos a cos b + sin a sin bl = cos2 a cos2 b -

- sin2 a sin2 b = cos2 a (1 - sin2 b) -

- (1 - cos2 a) sin2 b = cos2 a - sin2 b. 

37. Expanding the bracketed expressions in the left 
members, we easily prove the equalities. 

38. We have 

(1-sin a) (i-sin b) (1-sin c) = 

(1- sin2 a) (1-sin2 b) (1- sin2 c) 

(1 + sin a) (1 + sin b) (1 + sin c) 

cos2 a cos2 b cos2 C b 
= cos a cos b cos c = cos a cos cos c. 

39. Multiplying both members of the given equality by 

(1 + cos a) (1 + cos ~) (1 + cos y), 
we get 

[(1 + cos a) (1 + cos ~) (1 + cos y))2 = 
= sin2 a sin2 ~ sin2 y. 

40. Using the formula 

sin x cos y = ~ [sin (x + y) + sin (x - y)l, 

we get 
2 cos (a + ~) sin (a - ~) ~ sin 2a - sin 2~, 

2 cos (~ + y) sin (~ - y) = sin 2~ - sin 2V 

and so on. Hence follows the identity. 
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41. Using the formula 

sin x sin y = ~ [cos (x - y) - cos (x + y)l, 

we get the identity 

(cos 2b - cos 2a) (cos 2d - cos 2c) + 
+ (cos 2b - cos 2c) (cos 2a - cos 2d) + 

+ (cos 2b - cos 2d) (cos 2c - cos 2a) = O. 

Let cos 2b = a, cos 2a =~, cos 2d = y, cos 2c = 8, 
then 

(a - ~) (y - 8) + (a - 8) (~ - 1') + (a - 1') (8 - ~) = 
= (a - ~) (1' - 6) + (a - l' + l' - 6) (~ - 1') + 
+ (a - 1') (6 - ~) = (a - ~) (y - 6) + 
+ (a - 1') (~ - 1') + (1' - 6) (~ - 1') + 

+ (a - y) (6 - ~) = O. 

But (a - ~) (1' - 6) + (1' - 6) (~ - 1') = (1' - 0) (a - 1') 
and (a - 1') (~ - 1') + (a - 1')-(8 - ~) = (a - 1') (6 - 1'); 
hence the required sum is equal to (a - y) (1' - 6) + 
+ (a - 1') (6 - 1') = O. 

42. 10 Summing the first two cosines, we get 
2 cos l' cos (~ - a); the sum of the second two cosines 
yields 2 cos (a + ~) cos y. The further check is obvious_ 

20 Analogous to 10. 
43. We have 

sin ( A + ! ) + cos ( A + ~ ) = sin (A+ ! ) + 

+ sin (~- A - ~ ) = 2 sin ~ cos (.::. - A - ~ ) 2 4 4 4 4' 

With the aid of a circular permutation we obtain (denoting 
the transformed sum by S) 

~2 =- cos ( ~ - A - 1 ) + cos ( ~ - B - ~ ) + 

+ cos ( ~ - C - ~ ) = 2 cos ( ~ - At B - B t C ) X 
X cos (A-;B +BtC)+sin (~ +C+:). 
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Making use of the relation A + B + C = n, we can show 
that 

cos (..::. _ A + B _ B + C ) = sin (..::. + i:.-+ ~ ) 
42 8 828' 

Therefore we have 

-S-=2sin (..::.+~+~) cos (A-B + B-C) + V2 8 2 8 2 8 

+ 2 sin ( ~ + ~ + ~ ) cos ( ; + ~ + ~ ) = 

= 2 sin ( ~ + ~ + ~ ) [ cos ( A -; B + B -; C ) + 

+ cos ("::'+.£+~)J-4sin (~+~+!!-.-) X 828- 828 

,(11: B+C), (11: C+A) XSlll 8'+2 ""8 Sill 8'+2 ""8' 

44. Carrying out some transformations analogous to the 
previous ones, we obtain the following result 

,A+,B ,C A+ B+ C slllT sIllT+SlllT+cosT cosT cosT= 

= 4 Vi cos ( ~ + ~ ) cos ( ~ + ~ ) cos ( ~ + ~ ) , 
45. We have 

sin 2a = 2 sin a cos a, 

sin 4a = 2 sin 2a cos 2a, 

sin 8a = 2 sin 4a cos 4a, 

sin 2n a = 2 sin 2"-1 a cos 2n - 1a, 

Multiplying term by term and dividing both members by 
the product 

sin 2a sin 4a , , , sin 2n-1a, 

we get 

sin 2n a = 2" sin a cos a cos 2a .. , cos 2n - 1a, 
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sin 2na cos a cos 2a ... cos 2n- 1a = -,,---,---
2n sin a 
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46. We have 

.2n 2' n n 
sm 15= SIll 15 cos 15' 

· 4n 2' ~J': 2n 
sm 15 = SIn 15 ~os 1;>' , 

. 8n 2' 4n 4n 
sllllS= SIll 15 cos 15' 

· 16n 2' 8n 8n 
slll15= SIll 15 cos 15' 

Multiplying the equalities and noting that sin \6; = 
. n 8n 7n 

= -Sill 15 ' cos 15 = -COS15 , we find 

n 2n 4n 7n 1 
cos 15 cos 15 cos 15 cos 15 = 24 . 

Further 
5n 1 

COS 15= '"2 

and 

. 6n 2' 3n 3n 
Sill 15 = SIll 15 cos 15' 

· 12n 2' 6n 6n 
SIll 1"5 = sm 15 cos 15 . 

Hence 
3n 6n 1 

cos 15 . cos "15- = 22 . 

The rest is obvious. 
47. We have 

tan (A+B) _ sin (A+B) cosA _ sin (2A+B)+sinB _ 3 
tan A - cos (A+ B) sin A - sin (2A+B)-sin B - '"2 . 

48. From the giveIl ;,plations we get 

sin 2B = ~ sin 2A, 

3 sin 2 A = 1 - 2 sin 2 B = cos 2B, 
hence 

cos (A + 2B) = cos A cos 2B - sinA sin 2B = 

;:: cos A·3sin2 A- ~ sin A sin 2A =0. 



l:iG Solution~ ---------------------------------------------
49. We have 

2 cos a cos cp = cos (a + cp) + cos (a - cp). 

Consequent ly the expression under consideration is equal to 

cos2 cp + ros2 (a + cp) - [cos2 (a + cp) + 

+cos (a+- cp) cos (a - cp)J = cos2 (p -

- cos2 a cos2 cp + sin2 a sin2 (P = sin2 a. 

50. We have, for instance, 

a2 + a'2 + a"2 = cos2 (P cos2 1p + sin2 cp sin 2 1P cos2 0 + 

+ cos2 cp sin2 1p + sin2 cp cos2 1p cos2 0 + sin2 cp sin2 6 

(the doubled products in the first two squares are cancelled 
ont). Hence 

a2 + a'2 + a"2 = (cos2 cp cos2 1p + cos2 (P sin21P) + 

+ (sin2 cp sin2 1P cos2 6 + sin2 cp COS21P cos2 6) + 

+ sin2 (P sin2 0 = cos2 cp + 

+ (sin2 cp cos2 0 + sin2 cp sin2 6) = 1. 

The remaining equalities are proyed similarly. 

SOLUTIONS TO SECTION 2 
1. Rewrite the identity in the following way 

3 3 (2p3 - q3)3 _ 3 3 (p3 - 2q3)3 
q +q (p3,q3)3 - P - P (p3+q3)3 . 

I t is evident that the right member can be obtained from 
the left one by permuting p and q. Let us reduce the left 
mE'mber to such a form, wherefrom it would be seen that 
after the permutation its vallie remains unchanged. Then 
the validity"I:H the identity will become clear. 

We have 

q3 {( 3 + 3")3 + (2 3 3)3} _ 9p3q3 (6 + 6 6,..6) 
(p3 + q3)3. P q p -q - (p3+q3)3 P q - P 'i . 
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2. We have 

p3 + q3 3 (1 1) 6 (p --j-q) 
(p+q)3 p3q3 + (p+q)4 p2+-q2 + (p+q)5 pq = 

p2 _ pq - q2 3 (1 1 2) 
= (p+q)2 p3q3 + (p+q)4 pr+qz+-;;q = 

p2 _ pq -+ q2 3 ( p1 + _q1 ) 2 = 
= (p+q)2 p3q3 + (p+q)4 

p2_pq+ q2 3 1 
'"'" (p _+ q)2 p3q3 + (/1 + q)2 p2q2 (p --1 q)2 p3q3 X 

X {p2_ pq+q2+3pq}= p31.q3 • 

3. Grouping the last two terms of the sum, we get 

2 q3_ p3 2 q-p 
-(-p-+-q--'-)"-4 p3q3 + (p -t- q)4 p2q2 

_ 2 (q- p) (2 + 2 '2 )_ 
- (p-+- q)4 p3q3 P q -t- pq -

Adding now the first term, we find 

2(q-p) 
(p+ q)2 p3q3 • 

1 q4_ p4 2(q-p) q-p 
(p + q)3 p4q4 + (p -+- q)2 p3q3 = p4q4 • 

4. We have to prove that 

1+x 1+y 1+z_1 
1-x' i-y '1-Z- - . 

Replacing x by its expression, we find \~: = 1;. Since 

y and z are obtained from x by means of a circular 
permutation of the letters a, b, c, we have 

1+y b 
1-y =c' 
1 +z c 
l-z a 

l-Ience, the required identity is obvious. 
5. We have 

a+b+c+d 
a+b-c-d 

a-b+c-d 
a-b-c+d 
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But IOf ~ _- ~ then A+B C+D d 1 of B D' A-B = C-D' an converse y I 

there exists the second of these equalities, then the first 
one exists as well. Reasoning in the same way (putting 
A = a + b + e + d, B = a + b - e - d, C = a - b + e - d, 
D = a - b - e + d, we find 

a+b a-b a+b c+d --=--or-----c+d c-d a-b - c-d 0 

Hence 
a C Il b 
T=(f or c=(f 0 

6. The denominator has the form 

bey2 + bcz2 - 2beyz + aez2 + aex2 - 2aexz + abx2 + 
+ aby2 - 2abxy = e (ax2 + by2) + b (ax2 + ez2) + 

+ a (ez2 + by2) - 2beyz - 2aexz - 2abxy = 
= (a + b + e) (ax2 + by2 + ez2) - e2z2 _ b2y2 -

- a2x2 - 2beyz - 2aexz - 2abxy = (a + b + e) X 

X (ax2 + by2 + ez2) - (ax + by + ez)2o 

Since, by hypothesis, ax + by + cz = 0, the denominator 
turns out to be equal to 

(a + b + e) (ax2 + by2 + ez2), 

and our fraction is equal to 
1 

a+b+c 

7. Reduce to a common denominator the expression on 
the left. The numerator of the fraction obtained will be 
equal to 
X2y2z2 (a2 _ b2) + b2 (x2 _ a2) (y2 _ a2) (Z2 _ a2) _ 

_ a2 (x2 _ b2) (y2 _ b2) (z2_b2)o 

It is obvious that 
(a2 _ x2) (a2 _ y2) (a2 _ Z2) = 

= as _ (x2 + y2 + Z2) a' + (X2y2 + X2Z2 + y2Z2) a2 _ 

_ X 2y2Z2. 
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Hence 
(b2 ~ x 2) (b2 _ y2) (b2 _ Z2) = 

= b6 _ (x2 + y2 + Z2) b4 + 
+ (X2y 2 + X 2Z2 + y2Z2) b2 __ X2y 2Z2. 

Substituting these expressions into the numerator and 
performing all the necessary transformations, we obtain the 
required value of the fraction. 

111 
8.80 = (a-b)(a-c) + (b-a)\b-c) + (c-a) (c-b) 

Reducing the fractions to a common denominator, we have 
1 

8 0 = (a-b) (a-c) (b-c) {(b-c)-(a-c)+(a-b)}=O, 

abc 
8 1 = (a-b) (a-c) + (b-a) (b-c) + (c-a) (c-b) = 

1 
= Ta-b) (a-c) (b-c) {a(b-c)-b(a-c)+c(a-b)}=O, 

a2 b2 c2 

(a-b) (a-c) + (b-a) (b-c) + (c-a) (c-b) 

(a-b) (a~c) (b-c) {a2 (b- c) _b2 (a - c) + c2 (a -b)}. 

Consid'er the numerator. 
We have 

a2 (b - c) - b2 (a - c) + c2 (a - b) = 

= ab (a - b) - c (a2 - b2) + c2 (a - b) = 

= (a - b) (ab - ca - cb + c2) = 

= (a - b) [a (b - c) - c (b - c)] = 

= (a - b) (b - c) (a - c), 

wherefrom it follows that 8 2 = 1. 8 3, 8 4 and 8 5 can be 
computed analogously, but we shall proceed here in a some­
what different way. 

It is easily seen that there exists the following identity 

(x - a) (x - b) (x - c) = x3 - (a + b +c )x2 + 
+ (ab + ac + be) x - abc. 
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Putting, x = a, x = b and x = e, in turn, we get the fol­
lowing equalities 

a3 - (a + b + e) a2 + (ab + ae + be) a - abe = 0, 

b3 - (a + b + e) b2 + (ab + ae + be) b - abe = 0, 

c3 - (a + b + e) e2 + (ab + ae + be) e - abe = 0. 

Further, divide the fust of them by (a - b) (a - e), 
the second by (b - e) (b - a) and the third by (e - a) X 
X (e - b), and add them term by term. Then 

S 3 - (a + b + e) S 2 + (ab + ae + be) S 1 - abe So = 0. 

But since it is known that So = S1 = 0, S2 = 1, we have: 
S3 = a + b + e. 

To compute S4 let us take the preceding identity and 
multiply its members by x. We obtain 

x (x - a) (x - b) (x - e) = X4 - (a + b + e) x3 + 
+ (ab + ae + be) x2 - abex. 

Proceeding analogously, we find: 

S4 - (a + b + e) S3 + (ab + ae + be) S2 - abe S1 = 0. 

Hence 

S4 --/(a + b + e) S3 - (ab + ae + be) S2 = 

= (a + b + e)2 - ab - ae - be = 
= a2 + b2 + e2 + ab + ae + be. 

Likewise, for computing S 5 (multiplying the original iden­
tity by X2), we find 

S 5 - (a + b + e) S 4 + (ab + ae + be) S 3 - abe S 2 = 0. 

Consequently 

S 5 = (a + b + e) (a2 + b2 + e2 + ab + ae + be) -

- (ab + ae + be) (a + b + e) + abe = 

= (a + b + e) (a2 + b2 + e2) + abe = 
= a3 + b3 + c3 + a2b + a2e + b2a + b2e + 

+ e2a + e2b + abe. 
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9. This problem is solved analogously to the precerling 
one. Namply, the equalities So = SI -~ S2 = 0, S3 --- 1 
are established by a direct check; and to compute S 4 we 
may resort to the following identity 

(x - a) (x - b) (x - c) (x - d) = 

Hence 

= X4 - (a -+ b + c + d) x3 + 
+ (ab + ae + ad + be + bd + de) x2 -

- (abc + abd + aed + bed) x + abed 

S 4 = (a + b + e -j - d) S 3 = a + b + e + d. 

10. Put as before 

am bm em 

Sm= (a-b) (a-c) + (b-a) (b-c) + (c-a) (c-b) 

Let us take the first term of our sum am and transform it 

am (a+b) (a+c) _ (a+b+c) am+1+am- 1 .abc 
(a-b) (a-c) - (a-b) (a-c) . 

Making use of a circular permutation, we get similar 
expressions for the second and third terms of am. Adding 
now all these terms, we find: am = (a + b + c) Sm+! -+ 
+ abc S m-1- Hence (after some transformations) 

al = (a -+ b + c) S 2 + abc So = a + b + e 

(S 2 = 1, So = 0), 

a2 = (a + Q + c) S 3 -\- abc SI = (a + b + e)2, 

since S3 = a + b + e, SI=O, 

a3 = (a + b + c) S 4 -+ abc S 2 = 

= (a -+ b -+ c) (a 2 + b2 -+ e2 -+ ab + ae + be) + abc, 

a 4 = (a -+ b + c) S 5 -+ abc S 3 = 

= (a + b + c) [(a + b -+ c) (a 2 + b2 + e2) + 2abel. 
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11. Transform the left member of our identity in the 
following way 

abe { (a-a) (a-~) (a-I') + 
(a-D) (a-b) (a-c) 

Ie-a) (r-~) (e-y) 
+ (c-O) (c-a) (e-b) 

(b-a) (n-~) (b-y) +­
(b-O) (b-a) (b-c) 

+ (O-a) (O-~) (0-1') 
(O-e) (O-a) (e-n) 

_ a~y }. 
abc 

Consider the first four terms of the sum in braces. Expand­
ing the numerator of the first term in powers of a, we get 

a3 - (a + ~ + V) a2 + (a~ + aV + ~V) a - a~v· 

Performing an analogous operation with the remaining 
three terms and adding them, we find that the sum of the 
first four terms is equal to 

8 3 - (a + ~ + V) 8 2 + (a~ + av + ~V) 8 1 - a~v8o, 

where 8 k is the known sum (see Problem 9, where it is neces­
sary to put d = 0). Proceeding from the results of this 
problem, we find that the sum of the first four terms under 
consideration is equal to unity, and, consequently, the 
sought-for expression takes the form 

abe {1- ~~; } =abe-a~y. 
12. Consider the following sum: 

a4 ~4 

84 = (a-~) (a-I') (a-6) + (~-a) (~-y) (~-I\) + 
1'4 64 

+ (y-a) (y-~) (1'-6) + (6-a)(b-~)(6-y) . 

From Problem 9 we have: 8 4 = a + ~ + V + 6. Put a = 
= abe, ~ = abd, V = aed, 6 = bed. Then 

a 4 a4b4e4 

(a-~) (a-y) (a-l) -- (abc-abd) (abc-acd) (abc-bed) -

(e-d) (b-d) (a-d) . 

Using a circular permutation, we get analogous expression 
for the remaining three terms. Thus, the given identity 
is proved. 
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13. 1° Transform one of the terms in the following way: 
1 1 

1 1 
- - ---;---,----:----;--

a(a-b)(a-c) a (i--+) (+-+) 

Then the required sum is equal to 

1 {(+)2 (})2 
abC ( -} _}) ( + _ ~) + -( -:-! -_---:-!'--) --'--( -:-! _--:-! -) + 

(+)2 } __ 1 S 

+ (+_-}) (+-i-) - abc 2' 

But (see Problem 8) S2 = 1, and, hence, we get: 
1 1 1 1 

a (a-b) (a-c) + b (b-c) (b-a) + c (c-a) (c-b) abc' 

However, this result can be obtained in a somewhat diffe­
rent way. Let us consider the four quantities: a, h, c and 0, 
and form So for them. 

We then have 

S _ 1 + 
0- a (a-b) (a-c) b (b-a) (b-c) + c (c-a) (c-b) + 

1 + -:("'""0 --a):-(""'O---:b-;-) -:-;(o:---c""-) = 0, 

since So = O. Hence we get the previous result. 
2° Likewise the sum can be transformed as 
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And so 
t 1 1 

0 2 (a-b) (a-e) + b2 (b-a) (b-c) + e2 (e-a) (e-b) 

ab+ae+be 
a2b2e2, 

A similar method can be applied when computing other 
sums of the form 

___ 1 ___ + + 1 
ok (a-h) (a--c) bit (h-a) (h-e) e il (e-a) (e-b) 

14. We have 
alt bk 

(a-b) (a-c) (a-x) + (b-a) (b-e) (b-x) + 
k xlt 

e =0 + (e-a) (e-b) (e-x) + (x-a) (x-b) (x-c) 

at k = 1 and at 
Hence 

k = 2 (Problem 9). 

alt 

(a-b) (a-e) (x-a) + (b-a) (b-c) (x-b) + 
en 

+ (e-a) (e-b) (x-e) 

15. We have 
b+e+d 

(b-a) (e-a) (d-a) (x-a) 

(x-a) (x-b) (x-e) 
(1£=1,2). 

(a+b+e+ d-x)+(x-a) 
(b-a) (e-a) (d-a) (x-a) 

1 
=(a+b+c+d-x) (b-a) (e-a) (d-a) (x-a) + 

1 
+ (b-a) (e-a) (d-a) 

Applying a circular permutation to the letters a, b, c, d 
and adding the expressions thus obtained, we find that 
the sum in the left member is equal ,to 

{ t 
(a + b -f- c + d - x) + (a-b) (a-e) (a-d) (a-x) 

+ 1 1 ' 
~-~~-~-~~-~+ + ' (n-a) (h-c) (h-d) (b-x) (e-a) (e-b) (e-d) (e-x) 

, 1 } 
T (d-a) (d--b) (d-c) (d--x) . 
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since the second sum equals zero. 
I t remains only to make sure that 

1 + 1 ~ 
(a-b) (a-c) (a-d) (a-.r) (b-a) (b-c) (b-d) (b-.r) I 

. 1 f- 1 ~ 
T (c-a) (c--b) (c-d) (c -x) - (d-a) (d-b) (d-c) (d-f) I 

1 
+ (x-a) (x-b) (x-c) (x-d) =0. 

It is possible to reduce these fractions to a common deno­
minator and, on performing necessary transformations in 
the numerator, to obtain zero. But we can, however, proceed 
in a different way. 

Multiplying the left member by (a - x) (b - x) (c - x) X 
X (d - x), we get 

1 
(a-b) (a-c) (a-d) (b-x)(c-x) (d-x)+ 

1 
+ (b-a)(b-c)(b-d) (a-x)(c-x)(d-x)+ 

1 + (c-a) (c-b)(c-d) (a-x)(b-x)(d-x)+ 
1 + (d-a) (d-b) (d-c) (a-x)(b-x)(c-x)+1. 

It is obvious that we deal with a third-degree polynomial 
in x. It is required to prove that it is identically equal to 
zero. For this purpose it is sufficient to show (see the beginn­
ing of the section) that it becomes zero at four different 
particular values of x. Replacing x successively by a, b, 
c, d, we make sure that our polynomial vanishes at these 
four values of x, and, consequently, it is identically equal 
to zero. 

16. Transposing x 2 to the left, we get there a second­
degree trinomial in x. To prove that it identically equals 
zero it suffices to show that it becomes zero at three diffe­
rent values of x. Putting x = a, b, c, we make sure that 
the identity is valid. 

17. Solved analogously to the preceding problem. How­
ever, Problem 16, as well as this one, can be solved by making 
lise of the quantities S k (see Problem 8 and the following 
o ill'S). 

111-122' 
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18. Put 
a-b b-c c-a 
-c-=X, -a-=Y' -b-=Z, 

The left member of our equality takes the form 

(x+y+z) (.!.+.!.+.!.) =3 + y+z + .r+z + x+y . 
. r y z :r y z 

Consider the fraction y+z. We have 
x 

y+z = (b-C . c-a) ._c_=_c_. b2 -bc-l-ac- 0 2 == 
3.' a T b a -- b a - b ab 

=_c_. b2-a2 _-c(b-a) =~ (-a-b+c) = 
a-b ab ab 

c 2~ 
=ab'( -a-b-c+2c) =a;;- , 

since a -+ b + c = O. Using a circular permutation, we find 

y+z + x+z + x+y = 2c2 -L 2a2 + 2b2 =~ (a3 +b3 +c3 ). 
x y z ab I bc ac abc 

But if a + b + c = 0, then a3 + b3 + c3 = 3abc (see 
Problem 23, Sec. 1). Consequently 

y + z + x + z + x + y == 6 
x y z ' 

and the equality is solved. 
19. Miltiplying the given expression by (a + b) (b + c) X 

X (c + a), we get (a - b) (a + c) (b + c) + (a + c) X 
X (a + b) (b - c) + (a + b) (c - a) (b + c) + 
+ (a - b) (c - a) (b - c). 

This expression is a second-degree trinomial in a which 
becomes zero at a = b, a = c and a = 0 and, consequently, 
is identically equal to zero, i.e. 

a-b _!.... b-c c-a (a-b) (b-c) (c-a)_O 
a+b I b+c + c+a +(a+b)(b+c)(c+a)- . 

We assume here b =1= c. If b = c, then it is easy to make 
sure directly that the identity holds true. 

20. We have 
b-c (b-a)+(a-c) 1 1 

(a-b) (a-c) = (a-h) (a-c) = a-b - a-c' 
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Treating the remaining two terms in a similar way, we 
arrive at the proposed identity. 

21. Answer. O. Solved analogously to Problem 19. 
22. I t is required to prove that 

dm(a-b) (b-c)+bm (a-d) (c-d) _ b-d = O. 
em (a-b) (a-d)+am (b-c) (c-d) a-c 

Reducing to a common denominator, let us prove that 
the numerator equals zero. However, if the numerator 
is divided by the product (a - b) (a - c) (a - d) (b - c) (b -
- d) X (c - d), we get the following expression 

am bm 

(a-b) (a-c) (a-d) + (b-a) (b-c) (b-d) + 
cm dna 

+ (c-a) (c-b) (c-d) + (d-a) (d-o)(d-c) . 

At m = 1,2 this expression is equal to zero (see Problem 9). 
23. Let us first prove that 

1-~+ x (x-atl _ x (X- a l) (x-az) + ... + 
al al a2 al a2a3 

+ (-it x (X- a l)(x- a 2) ... (X-an-l) 
. ala2 ... an 

= (_i)n (X- a l) (x-a:!) ... (x-an) . (*) 
ala 2 ... an 

Likewise, it is evident that the second bracketed expression 
is equal to 

And the product of the bracketed expressions yields 
(-it (x2-a~) (x2-a~) ... (x2-a~) 

aia~ . .. a~ • 

Replacing here x by x2 and (1.i by (1.~ and applying tho 
equality (*) in a reverse order, we get the required identity. 

24. Given 

(b2+;:c- a2 1) + (C2+;:c- b2 _ 1) + 
( 02+ b2_ C2 ) + 2ab + 1 =0. 
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The first bracketed expression is equal to 

(b-C)2_ a2 (b-c-a)(b-c-j Ii) 

2bc 2bc 

the second to 
(a-c)2-b2 (a-c-b)(a-c+b) 

2ac ... "-------:2:<-a'-c----'--' 

Likewise, the third one takes the form 

(a+b)2-c2 (a+b+c) (a+b-c) 
2ab = 2ab • 

Consider the sum of these expressions 

(a+b-c)(a+c-b) (a+b-c) (c+b - a) + 
2bc 2ac 

+ (a+b-c) (a+b+c)_ 
2ab -

a+b-c )} = 2abc {c(a+b-t c)-b(c+b-a)-a(a+c-b = 

Thus, we are given that 

(a+b-c) (c+a-b) (c-a+b) 
2abc 

(a+b-c) (a+c-b) (c+b-a) _ ° 
2abc - , 

wherefrom follows that at least one of the factors in the 
numerator equals zero. Suppose a + b - c = 0; then all 
the three bracketed expressions in the equality (*) are equal 
to zero, and, consequently two of the given fractions are 
equal to 1, while the third one to - 1. The remaining 
two possibili ties yield the same result. 

25. Reducing the original equality to a common deno­
minator and cancelling it out, we get (after some trans­
forma tiOIlS) 

(a + b) (a+ c) (b+c) =,0. (1) 

But the second equality (which is to be proved) can 
also be reduced to the form 

(an+ bn)(an+cn)(bn + crt) =0. (2) 
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It is quite obvious, that with an odd n' equality (2) 
follows from (f), since if, for instance, a+b=O, then 
a= -b and an+bn=a"+(_a)n=an_an=O. 

26. Rewrite the given proportion in the following way 

(bz+cy) yz (cx+az) xz (ay+bx) xy 
-ax-j- by+cz = ax-by+cz = ax+by-cz • 

ACE A+C 
But from the proportion 73=75= y follows B-"-D -

C+E A \-E ( , A 
- D+F B+F it is easy to check, putting -B = 

C E 
= 75 = y= A and ('xpressing A, C and E in terms of A, 

B, D, F). 
Therefore we ha ve 

C (x2+ y2)+z (ax+by) 
c 

a (z2+ y2) + x (by +cz) 
a 

b (x2 j-z2)+y (cz+ax) 
- b 

Subtractingx2 + y2 + Z2 from each term of this equality, 
we get 

z (ax+ by-cz) x (by + cz-ax) y (cz+ax-by) 
cab 

Take the original equalities 
ay+bx bz+cy cx+az 

-z (ax+by-cz) x (-ax+by+cz) y (ax-by+cz) 

Multiplying these equalities, we find 
ay+bx bz+cy cx+az 

Hence 
cab 

e = (ay + bx) /l, 
b = (ex + az) /l, 
a = (bz + ey) /l. 

Multiplying the first of these equalities bye, the second 
by b and the third by a, and forming the expression b2 + 
+ e2 - a2, we find b2 + e2 - a2 = 2/lbex. 

Analogously, we get 

e2 + a2 - b2 = 2/leay, a2 + b2 - e2 = 2/labz. 
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Hence, finally 

x y z 
a(b2 +c2 -a2) = b(a2 +c2 _b2) = c(a2 +b2 -c2 ) • 

27. Since a + b + c = 0, we may write 

(a + b + c) (aex + bP + cy) = o. 
Expanding the expression in the left member, we find 

a2ex + b2p + c2y + ab (ex + P) + ac (ex + y) + 
+ cb (P + y) = o. 

But ex + P = -v' ex + y = -p, ~ + V = -ex, therefore 
a2ex + b2p + c2V - abV - acp - cbex = 0, or a2ex + b2p + 

+c2v-abc(~-!-1. +~) = 0 and since~ + 1. +.1. = 0 
a'b c' abc 

(by hypothesis), we have: a2ex + b2p + C2V = O. 
28. From the equalities 

(b2 + c2 _ a2) x = (c2 + a2 - b2) y = (a2 + b2 - c2) z 
follows 

1 
b2 +c2 -a2 

Put for brevity 

y 

c2 +a2 -b2 

z 

a2 +b2 -c2 

b2 + c2 _ a2 = A, c2 + a2 - b2 = B, a2 + b2 - c2 = C. 

It is evident that our problem is equivalent to the follow­
ing one: if the equation x3 + y3 + z3 = (x + y) (x + z) X 
X (y + z) has the solution 

x = a, y = b, z = c, 

then it also has the following solution 

111 
x=A' y=7I' Z=C' 

We know the following identity (see Problem 19, Sec. 1). 

(x + y + Z)3 - x3 - y3 - Z3 = 3 (x + y) (x + z) (y + z). 
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Using this identity, we can easily prove that the equalities 

x3 + y3 + Z3 = (x + y) (x + Z) (y + z), (1) 

(x + y + Z)3 = 4 (r + y3 + Z3) = 

= 4 (x + y) (x + z) (y + z), (2) 

(x + y - z) (x + z - y) (y + z - x) = -4xyz (3) 

are equivalent, and the existence of any of them involves 
the existence of the remaining ones. Thus, it is sufficient 
to prove that 

( 1 1 1)3 ( 1 1) ( 1 1 ) ( 1 1 ) A+n+c =4 A+n A+C If+c' 
i.e. that 

(AB + AC + BC)3 = 4 (A + B) (A + C) (B + C) ·ABC. 

But 
A + B = 2c2 , A + C = 2b2 , B + C = 2a2• 

Therefore we have to prove 

(AB + AC + BC)3 = 32a2b2c2 ·ABC. 

Let us fIrst compute AB + AC + BC, and then ABC. 
We have 

AB + AC + BC = A (B + C) + BC = 
= (b 2 + c2 _ a2) .2a2 + [a2 + (b 2 - c2)J X 

X [a2 - (b 2 - c2)J = 2a2b2 + 2a2c2 - 2a4 + 
+ a4 _ b4 _ c4 + 2b2c2 = _a4 _ b4 - c4 + 

+ 2a2 b2 + 2a2c2 + 2b2c2 = 4a2b2 _ (a 2 + b2 _ C2)2 = 
= (a - b + c) (-a + b + c) (a + b - c) (a + b + c). 

By virtue of equality (3) 

(a + c - b) (b + c - a) (a + b - c) = -4abc. 

Therefore 

AB + AC + BC = -4abc (a + b + c). 
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Compute ABC. Put 

then 

ABC = (s - 2a2) (s - 2b2 ) (s - 2c2) = 

But 

= s3 - 2 (a 2 + b2 + C2 ) 82 + 4 (a 2b2 + a2c2 + b2c2) s -
- 8a2 b2c2 = 4 (a 2b2 + a2c2 + b2c2) s _ S3 - 8a2b2c2 = 

= s {4a2 b2 + 4a2c2 + 4b2c2 _ (a 2 + b2 + C2)2} _ 

_ 8a2b2c2 = _ s {a4 + b4 + c4 - 2a2 b2 - 2a2c2 _ 

- 2b2c2 } - 8a2b2c2 = s (a -I- c - b) (b + c - a) X 

X (a -I- b - c) (a + b + c) - 8a2 b2c2 = 
= -4abc (a + b + c) (a 2 + b2 + c2) - 8a2 b2c2 = 

= -4abc {a3 + b3 + c3 + a2 (b + c) + b2 (a + c) + 
+ c2 (a + b) + 2abc}. 

(a + b) (a -I- c) (b -I- c) = a2 (b + c) + 
+ b2 (a + c) + c2 (a + b) + 2abc. 

Therefore, by virtue of equality (1), the bracketed expres­
sion is equal to 2 (a3 + b3 + c3). 

But, by virtue of equality (2), 
1 

2 (a3 + b3 + c3) = "2 (a + b -I- C)3. 

Therefore ABC = -2abc (a -I- b -I- C)3. 
But, as has been deduced, AB -I- AC + BC = 

= - 4abc (a + b + c). 
Therefore, 

(AB + AC + BC)3 = 32a2b2c2 ·ABC. 

29. 1° We have: 

Pn = anPn- 1 -I- Pn- 2, Pn - P,,-2 = anPn- l , 

Qn = anQn-1 + Qn-2, Qn - Qn-2 = anOn_I. 

The left member of the equality in question is transformed 
by the following method 

Pn +2 -Pn P n +1 -P,,-1 Pn +1 Pn 
P . P =an+2-p ·an+1-p =an t2· an+l· 

n n+l n n+l 
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We get quite analogously that the right member also 
yields an+! ·an+2. Thus, the identity is proved. 

2° We have 

~_ P"-1 _PhQIl-I-QIlPk- 1 
QIl QI1-1 - QI1Q"-1 

( _1)k-l 

QkQk-1 

Putting here k = 1,2, ... , n and adding termwise, we 
obtain the required result. 

3° We have 

P n+2Qn-2 - P n - 2Qn+2 = (an+2P n+1 + Pn) Qn-2-

- P n - 2 (Qn-l-l an+2 + Qn) = a ll +2 (1\>+IQn-2 - Pn-2QIl+l) + 

+ P nQn-2 - P n -2Qn = 

= an+2 {(an+IPn + P n - I) On-2 - P Il - 2 (an+IQn + Qn-l)} + 

+ (anPn - 1 + P n - 2) Qn-2 - P n - 2 (anQn-I+Qn-2) 

= an+lan+2 (PnQn-2 - P n - 2Qn) + 

+ an+2 (Pn- 1Qn-2 - P Il - 2Qn-l) + 

+ an (Pn - 1Q,,-2 - P,,-2Qn-l) = 
= an+lan+2 {(anP n- 1 + P n - 2) Qn-2 -

- P n - 2 (anQn-1 + Q,,-2)} + an+2(-1)n + an (_1)" 

= (an+2an+lan + an+2 + an) (_1)n. 

4° It is known that P n = anP n - 1 + P n - 2. Therefore 

Pn + P,,-2 1 + 1 
-F) =an -P-= an +-p--=an P +P n-l n-l n-l a,,_l n-2 n-3 

P n - 2 Pn - 2 

1 1 
= an + =an +--+ 

an_I + pPn-3 an-I· .. + __ 1-=_ 
n-2 Po 

a2+-p-1 

1 
=an +--+ 

an-l ..• + __ 1--;1-

al+­ao 

The expression for QQn is found in a similar way. 
n-l 
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30. On the basis of the results of the preceding problem 
we have 

oJ: 

~~1 = (an, an-h ... , ao) = ('10, a2, ..• , an) = ~: . 
Consequently, Pn-1 = Qn. 
31. We have to prove that 

2 ~ 
Pn+l-Pn-tPn+1 = P nP n+2-Pn, 

But 

Or 

P nH = aPn + P n -1> P n+2 ---= aPn+1 + P n• 

Consequently, 

P n+1 - P n - 1 = aPn, P n+2 - Pn = aPn+1• 

Hence, follows the validity of our identity. 
32. By hypothesis 

1 Pn 1 x = ""7""""-;-------:--:------:.,... 
(a, b, ... , l, a, b • ... , l)· Qn = (a. b • ..• , l) 

1 
x=-+ 1 

a T+. 1 .. +-+2 
l Qn· 

Thus, x is obtained 

+.!.2!. in this fraction. 
Qn 

from ~: if 1 is replaced by 1 + 
But 2= ZPn- 1 + Pn- 2 . Therefore 

Qn ZQn-l + Qn-2 

x= ( l + PQnn) Pn- 1+Pn- 2 P Q ~ P P 
n n ,- n n-l 

(z Pn)Q Q Q~+PnQn-l + Q;; n-l + n-2 

33. It is obvious that at k = 0, 1 our formula holds true. 
Assuming that it is valid at k = n - 1, let us prove that 
it takes place also at k = n. And so, we assume 

bo+~ = Pn-l 
b1 + . a Qn-l .. +~ 

bn-t 
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However, according to the rule for composing Ph and Qh, 
we have 

Pn-I = bn-IPn_2+an_IPn_3 
Qn-I bn- IQn-2+ an-IQn-3' 

where Pn- 2 , Pn- 3 , Qn-2, Qn-3 are independent of an-l and 
bn-l. 

On the other hand, it is clear that the fraction 

b al o+Tt + . .. + an_I an 
bn _1 +b 

n 

is obtained from the fraction 

b al 

o+Tt + . .. + an_I 
bn_1 

b I b b b an 
y rep acing n-I Y 11-1 + b . 
Therefore 

n 

(bn- I + i;) Pn-2+an-IPn-3 

(bn_1 + ::) Qn-2+ an-IQn-3 

an 
bn_IP n-2 + an_IP n-3 + Tn P n-2 

bn- IQn-2+ an-IQn-3+ ~: Qn-2 

_ bnPn- 1 +anP n- 2 P n 
- bnQn-1 + anQn-2 Qn· 

34. Denoting the value of our fraction by ~:, we have 

PI = r, QI = r + 1, 
P 2 = r (r + 1), Q2 = r2 + r + 1. 

Using the method of induction, let us prove that. 
rn-1 

Pn=r--1 ' r-
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At n = 1 these formulas are valid. Assuming their validity 
at n = m, let us prove that they also take place at n = 
=m+1. 

We have 
P m +1 = bm +1P m + am +1P m-l. 

In our case we find 

rm-1 2 rm-l-1 rm+l-1 
Pm + 1 =(r+1)r---;:-=T-r r-1 =r r-1 

Analogously we obtain that 

35. Put 

~+_1_= 1 
Ur Ur+l Ur + Ir 

Then we find 

X r = 

Therefore 
1 

Further 

where 

Thus 

~ +.! + .! = ___ 1=---,c--_ 
Ul U2 U3 Ut 

Ul Ul + /12 + X2 

Using the method of induction, we also get the general 
formula. 
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36. Let us denote the fraction 

by ~: ' and put the fraction 

1 t P~ It' equa 0 Q~' IS 
. d h P n P~ f reqUire to prove t at On = Q~ or any 

whole positive n. 

We have 

... , 

Pi CtOt P; Ctc2atb2 

Qi = clbl ' Q~ = ClC2 (b l b2 + a2) , 

We may put PI = ai, QI = bl , P z = albz, Qz = b1bz + a2, 
and then the following relations take place (see Problem 33) 

Pr.+1 = bn+IPn + an+IPn- l , 

Put 
P; = Ctal, P~ = Clc2al b2; 

Q; = Cl bl, Q~ = CIC2 (btb2 + a2) 

Let us prove that for any n we then have 

P~ = CIC2 ..• cnPn, Q~ = CtC2 ... cnQn. 

Let us prove this assertion using the method of inducLion. 
i.e. assuming its validity for a subscript smaller than, 01 

equal to, n, we shall prove the validity for the subscript 
n+1. . 

We have 

P~+1 ,= cll+lbn+IP~ + c"cn+tan+t P ;, -1, 

Q~+1 = ClI +lu,,+IQ;'T e"C n 1-lan+IQ~-I' 
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Hellce (with the asumption) 

P~+1 = Cn +l bn+1 C1CZ ••• cnPn + 
+ CnCn+lan+1C1CZ ••• Cn -1 P n-l = 

= C1 CZ ••• Cn+l (bn + 1P n + all+1Pn-l) 

= C1 CZ ••• Cn +1P ntl 

Likewise prove that 

Q~+1 = C1 CZ ••• Cn+1Qn+l' 

Now it is easy to find that 

37. 1° Put 
1 2 cosx--2-- 1 

cos x - 2-c-o-s-x _ •. 
'-2cosx 

We have 

PI 2 7[;= cos x. 

Therefore we may put 

Further 

P _ sin2x 
1- sin x ' 

sin x 
Ql=sinx' 

!2. = 2cos x __ 1_= 4coszx-1 . 
Q2 2 cos x 2 cos x 

Com;equently, we may take 
p _ sin 3x 
2- 5in x ' 

Q =sin 2,T 
Z sin x . 

sin(n+1)x sinnx , 
Let us prove that then P n = , , Qn =-, - for any n. sin x slnx 

Assuming that these formulas are valid for subscripts 
not exceeding n, let us prove that they also take place at 
n + 1. We have (see Problem 33) 

sin (n + 1) x sin nx 1 . 
P n +1 = 2 cos x , - -,- = -,- SID (n+ 2) x. 

Sin x sin x Sin x 
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sin (/1 + 1) x 
In the same way we fmd that QM! = . , and there-

SIn .c 
fore 

Pn sin(n+1)x 
0;:= sin nx 

for any whole positive n. 
2° Let us denote the continued fraction on the right by 

Pn W Q;; . e have to prove that 

~: =1+b2 +b2b3 + ... +b2b3 ••• b". 

We have 

Therefore we may take: P! = 1, Q! = 1, P2 = b2 + 1, 
Q2 = 1. Then, using the method of induction, it is easy 
to prove that 

Pn = 1 + b2 + b2b3 + ... + b2b3 ••• bn, 

Qn = 1.l 

and, consequently, our equality is also true. 

38. 1° We have 

sin a+ sinb+ sin c = sin (a+b+c) = 
= (sin a + sin b) + [sin c - sin (a + b + c)j = 

= 2 sin a+b cos a-b -2 sin a-f-b cos a+b+2c_ 
2 2 2 2-

2 . a+b (a-b a+b+2c) = SIn -2- cos -2- - cos 2 = 

4 . a+b . a +c . b+C) = SIn -2- SIn -2- sm -2- . 

2° Analogous to the preceding one. 
39. ConsIder the sum 

tan a + tan b + tan c. 
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We have 

sin(a+b) +sinc= 
tan a + tan b + tan c = cos a cos beDs c 

_ sin (a-t b) cos c+sin c cos acosb_ 
- co~ a cos b cos c -

_ sin(a+b) cos c+cos(a+b) sin c-cos (a+b) sin c+sin c cos a cos b_ 
- cos a cos b cos c -

_ sin (a+ b+c)+ sin c [cos a cos b-cos (a+b)l_ 
- cos a cos b cos c -

sin (a+ b+ c)+sin a sin b sin c 
cos a cos b cos c 

Hence follows the required equality. 
40. The equalities 1°, 2° and 3° are easily obtained from 

Problems 38 (1°, 2°) and 39 putting a = A, b = B, c = C 
and a + b + c = A + B + C = n. 

Now let us prove 4°. Rewrite the left member in the follo­
wing way 

A B C( A B) S=tan2tanT+tan2 tanZ-+tan 2 . 

But since 

we have 

C ( II A+B) A+B 1 tan 2 =tan 2--2- =cot-2-= A+B ( 
tan--

2 

Hence 

A 
S = tan 2 tan 

A B 
B tan 2-+ tan 2 
2+ A+B =1, 

tan-2-

since 
A B 

• A+B tan:r+tanT 
tan-2-= A B' 

1-tan- tan-
2 2 
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5° lndeed 

sin 2A + sin 2B + sin 2C = 

= sin 2A + 2 sin (B + C) cos (B - C) 

= 2 sin A cos A + 2 sin A cos (B - C) 

= 2 sin A [cos A + cos (B - C)] = 

= 4 sin A sin B sin C. 

161 

41. 10 It is necessary to find how a, b, and c are related if 

b+ 1 4 · a • b • c 0 cos a + cos cos c- - .SIll 2 SIll 2 SIlly= . 

To this end let us reduce the left member of the equality 
to a form convenient for taking logs, i.e. try to represent 
it in the form of a product of trigonometric functions of the 
quantities a, band c. 

We have 
, a+b a-b 

cos a+ cos b= 2 cos-2-cos -2-= 

= 2 (cos2 .!!:... cos2 .!!.. - sin2 .!!:... sin2 .!!..) 2 2 2 2' 

cos c -1 = - 2 sin2 ~ • 

Therefore the left member takes the form 

2 2a 2b 2·2a.2b 2'2 c 
cos 2cOS 2- SIll 2 sm 2- sm 2-

4 . a , b . c 
- S1l1 2 sm 2 SIll 2 = 

2r 2a 2b (. 2 a ·2 b 2· a. b . c 
= cos 2 cos 2 - Sill 2 Sill "2 + sm"2 SIll '2 sm 2 + 

+ sin2 ~ ) ] = 2 [ cos2 ~ cos2 ~ - (sin ~ sin ~ + sin ~ rJ = 

2[( a b + . (l • b) . cJ = ~ cos 2 cos 2 sm 2 SIll '2 + sm "2 X 

[( a b . a . b) . C] X COS-COS--SIll-Sln- -SIll- = 
2 2 2 2 2 

2 ( a-b , C) ( a+b . C) 
= cos -2-+ SIll 2 cos -2--SIllZ- = 
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= 2 [ cos a -; b + cos ( ~ - ~ ) ] [ cos at b - cos ( ~ - ~ ) J = 

8 . n-\-b+c-a. n+a+c-b 
= - SIll 4 sm 4 X 

. n+a+b-c. a+b-l--c-n 
X sm 4 sm 4 

By hypothesis, this expression must equal zero and, conse­
quently, at least one of the factors must be equal to zero. But 
from the equality sin a = 0 follow~ a = kn (where k is 
any whole number). Therefore, among a, band e, satisfying 
the original relationship, there exists at least one of the 
four relationships 

a + b + e = (4k + 1) n, a + b - e = (4k - 1) n, 

a + e - b = (4k - 1) n, b + e - a = (4k - 1) n. 

2° We have (see Problem 30) 
tan a+ tan b + tane -tan a tan b tan c = sin (a+~+c) . 

. (,05 a cos cos c 

By virtue of our conditions 

sin (a + b + e) = 0 and a + b + e = kn. 

3° Transform the original expression. We have 

1 - cos2 a - cos2 b - cos2 e + 2 cos a cos b cos e = 
= 1 - cos2 a - cos2 b - (cos2 e - 2 cos a cos b cos e + 
+ cos2 a cos2 b) + cos2 a cos2 b = 1 - cos2 a - cos2 b -
- (cos e - cos a cos b)2 + cos2 a cos2 b = 
= (1 - cos2 a) (1 - cos2 b) - (cos e - cos a cos b)2 = 
= (sin a sin b - cos e + cos a cos b) X 
X (sin a sin b + cos e - cos a cos b) = 
= [cos e - cos (a + b)] [cos (a - b) - cos e] = 
_ 4 . a+b+c . a+b-c . a+c-b . c+b-a 
- sm 2 sm 2 sm 2 SIll 2 . 

Consequently, there exists at least one of the following 
relations 

a + b + e = 2kn, a + b - e = 2kn, a + e - b = 2kn, 

b + e - a = 2kn. 
42. Put 

x = tan ~, y = tan ~, z = tan f . 
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Then 
2x 2y 2z 

1 _ x2 = tan IX, 1-y2 = tan ~, 1 _ z2 = tan V, 

and our problem takes the following form. Prove that 

tan IX + tan ~ + tan V = tan IX tan ~ tan V 

ex. ~ ex. l' ~ l' 
tan "'2 tan "2 + tan "2 tan "'2 + tan "2 tan 2 = 1. 

Rewrite the last equality as 

tan ~ (tan ~ + tan f) - ( 1- tan ~ tan n = 0. 

Dividing both members by 1- tan {tall ~ , we get 
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tan ~ tan ~t1' -1 =0, tan ~ = cot~-;1' = tan (~ _~~1'). 
Hence 

~ + ~ + l' _ :!: = kn 
2 2 2 

(if taI)gents are equal, the corresponding angles differ by 
the multiple of n) and 

IX+~+V= (2k+ 1) n. 

And ,0 the proposition is proved (see Problem 40, 3°). 
43. Put b = tan~, c = tan 'V, a = tan IX. Then 

b- c _ tan ~-tan l' _ tan (A _ ) 
1+bc-1+tan~tan1'- p V, 

and, hence, our equality is equivalent to the following one 

tan (~ - V) + tan (V - IX) + tan (IX - ~) = 
= tan (~ - V) tan (V - IX) tan (IX - ~). 

Put 
~ - V = x, V - IX = y, IX - ~ = z. 

Let us finally prove that 

tan x + tan y + tan z = tan x tan y tan z 
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if 
x + y + z = 0. 

But then we have 

tan (x+ y) = - tan z, tanx+tany = -tanz. 
i-tan xtan!! 

Hence follows the required equality. 
It is obvious, that the last two problems can be solved by 

direct transformations of the considered algebraic expres­
sions. 

44. We have 

t 3 sin3a sina(3-4sin2 a) t 3-4sin2 a 
an a=--= = ana.--;-~­cos 3a cos a (1-4 sin2 a) 1-4 sin2 a· 

Divide both the numerator and denominator of this 
fraction by cos2 a and replace __ 12- by 1 + tan2 a. 

cos a 
We get 

t 3 t 3-tan2a t V3-+ tanC(. V3-tana an a = an a = a Il a . . 
1-3 tan2 a 1-V3 tan a 1 + V3 tan a 

Hence 

tan 3a = tan a tan (~ t a ) tan ( ~ - ). 

45. Multiplying both members of the equality by a + b 
and replacing unity in the right member by (sin2 a + 
+ cos2 a)2, we get 

sin4 a+cos4 a+ ~ sin4 a+ : cos4 a= 

= sin4 a + cos4 a + 2 sin 2 a co~"r,(, 

whence 

~ sin4 a-2 sin2acos2a+: cos4 a=0, 

( V ~ sin2a-V: cos2 a) 2 = 0, 

b • 4 a 4 
-aSlD a=bcos a, 
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sin4 ex, cos4 ex, 
---a2 = /j2 = I.. 

Substituting it into the original equality, we find 
1 

'A= (a+b)2 

Therefore 

46. From the second equality we have 

(at cos at + a2 cos a2 + . . . + an cos an) cos e -
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- (at sin a! + a2 sin a2 + . . . + an sin an) sin e = o. 
On the basis of the first equality and since sin e =1= 0, we get 

at sin at + a2 sin a2 + ... + an sin an = O. (*) 

Multiplying the first equality by cos I. and the equality (*) 
by sin I., and subtracting the second result from the first 
one, we have 

at cos (at + I.) + a2 cos (a2 + I.) + ... + 
+ an cos (an + I.) = O. 

47. It is obvious that the left member is reduced to the 
following expression 

(tan ~ - tan V) + (tan V - tan a) + (tan a - tan ~) = o. 
48. 1° We have 

Hence 

~=ap(p-a) 
ra-r s 

Thprpforo 
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But 

S2= p(p-a) (p-b) (p-c). 

Hence 

{ a be} 
w=s (p-b)(p-c)+(p-a) (p-c)+(p-a) (p-b) = 

=s{(P-b)+(P-C)+ (p-a)+(p-c) + (p-a)+(p-b)} = 
(p-b) (p-c) (p-a) (p-c) (p-a) (p-b) 

=2 (ra+rb+rc). 

2° We have 

a2r b2rb c2r 
0'_ n + + C 

- (a-b) (a-c) (b-c) (b-a) (c-a) (c-b) 

{ a2 b2 
=s ~_~~_~~_~+~_~~_~~_~+ 

c2 } + (p-c) (c-a) (c-b) • 

But (see Problem 9) 

a2 b2 

(p-a) (a-b) (a-c) + (p-b) (b-c) (b-a) + 

c2 p2 
+ (p-c) (c-a) (c-b) = (p-a) (p-b) (p-c)" 

Therefore 
Sp2 sp3 p3 p2 

0'= =-=-=-
(p-a) (p-b) (p-c) s2 s r 

3° We get 

( 1 1 1) s(ab+ac+bc- p2) 
ra+rb+rc=s p-a+p-b+p-c =(p-a)(p-b)(p-c)" 

Further 

l:.+~+_c = !{a (p-a) +b (p-b) + c (p-c)} = 
ra rb rc 8 

1 = _ (2 p2 _ a2 _ b2 _ c2) = 
s 

2 
=$ (- p2+ ab+ac+bc). 
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The rest is obvious. 

4° Consider the first sum 
1 {bC(p-a)2 ac(p-b)2, ab(p-c)2 } 

0=52 (a-b) (a-c) + (b-c) (b-a) + (c-a) (c-b) = 

__ 1{2[ be ac + ab J_ 
- s2 p (a-b) (a-c) + (b-c) (b-a) (c-a) (c-b) 

2 b [1 1 1]+ 
- pa C _(a-b)(a-c)+(b-c)(b-a)+(c-a)(c-b) 

+ abc [ a + b + _ c ] } . 
(a-b) (a-c) (b- c) (b-a) (c-a) (c-b) 

But (see Problem 8) 

1 + 1 + 1 -0 
(a-b)(a-c) (b-c) (b-a) (c-a)(c-b)-' 

abc -0 
(a-b) (a-c) + (b-c) (b-a) + (c-a) (c-b) - . 

Therefore 

p2 [bC ac ab ] 
0=52 (a-b) (a-c) + (b-c) (b-a) + (c-a) )c-b) ; 

further 
be ac ab 

(a-b) (a-c) + (b-c) (b-a) + (c-a) (c-b) 

= abc {[a (a-b~ (a-c) + b (b-C~ (b-a) + c (c-a~ (c-b) + 

-L 1 J+-1 }=1 
I (O-a) (O-b) (O-c) abc . 

And so 
p2 1 

0=82=-;:2 . 

Let us go over to the s(lcond sum. We have 

G= _1_ { a2ra + b2rb + 
rarbrc (a-b) (a-c) (b- c) (b-a) 

c2rc } s { a2 
+ (c-a) (c-Il) = rarbrc (a-b) (a-c) (p-a) + 

~ ~} + (b-c) (b-a) (p-b) + (c-a) (c-b) (p-c) • 
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But 
a2 1J2 

(a-b) (a-c) (a- p) + (b-e) (b-a) (b- p) + 
n 2 + e~ + P -0 

(e-a) (e--b) (e-p) (p-a)(p-b)(p-e)-' 

Therefore 

s(p-a) (p-b) (p-e) p2 p2 1 
0= s3 • (p-a)(p-b)(p-e) =52"=-,:2 

5° We have 

0= a~ + b~ + ~ 
(a-b) (a-c) (b-e) (b-a) (e-a) (e--b) 

{ a b 
=s (a-b) (a-c) (p-a) + (b-e) (b-a)(p-b) + 

+ (e-a) (e~b) (p-e) } = -s { (a-b) (a~e) (a-p) + 
b e 

+ (b-e) (b-a) (b-p) + (e-a) (e-b) (e-p) + 
p p} 

+ (p-a) (p-b) (p-e) (p-a) (p-b) (p-e) =-= 

sp p2 P 
= (p-a) (p-b) (p-e) = s =-; . 

Further 

0= (b+e)ra (e+a)rb (a+b)rc 
(a-b) (a-c) + (b-e) (b-a) + (e-a) (e-b) 

{ (b+e) (e+a) 
=s (a-b) (a-c) (p-a) -+ (b-e) (b-a) (p-b)-+ 

(a-i b) } ( b { 1 
+(e-a)(e-b)(p-e) =s a-+ -+c) (a-b) (a-c) (p-a) + 

1 1} 
+ (b-e) (b-a) (p-b) + (e-a) (l:-b) (p-e) -

-s { (/ + b + 
(a--h) (1/- r) (fl--a) (b-e) (b-a) (p-b) 

+ (e-a) (e~b)(p-e) }. 
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But 
1 1 

(a-b) (a-c)(a-p) + (b-c) (b-a) (b-p) + 
+ 1 + 1 -0 

(c-a)(c-b)(c-p) (p-a)(p-b)(p-c)-· 

Therefore, the first braced expression is equal to 
1 

( ) ( b) ( ) • The second braced expression is equal 
p-a p- p-c 

2 
to ~2 • Hence 

s(a+b+c) p2 2p2 p2 p2 P 
a=(p-a)(p-b)(p-c)-s=-s--s=-;=-; • 

49. Rewrite the supposed identity in the following way: 

sin (a + b - c - fl) sin (a - b) = 

= sin (a - c) sin (a - fl) - sin (b - c) sin (b - fl). 

1 
Using the formula sin A sin B = 2" {cos (A - B) -

- cos (A + B)}, we find 
sin(a+b-c-d) sin (a-b) = 

i =2" {cos (2b-c-d) -cos (2a-c-d)}, 

sin (a-c) sin (a-d) = ~ {cos (c-d) -cos (2a-c-d)}, 

sin (b- c) sin (b - d) = ~ {cos (c- d) - cos (2b- c- d)}. 

The rest is obvious. 

50. 1° We have: 1 + tan2 ~ =~ = 1 +~os 8 = _b+_p_C , 
cos2 -

2 

where a+b+c=2p. 
Hence 

1 + tan2 ~ + 1 + tan2 ~ + 1 + tan2 ~ = 

= (b+c)+(a+c)+(a+b) =4, 
p 
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and, consequently, tan2 -} + tan2 ~ + tan2 ~ = 1. 

20 tan2 82 = b+ c -1 = p-a . Therefore 
p p 

t 8 t qJ t '1' _ .. /(p-a) (p-b) (p-c) 
an"2 an""2 an T - V p3 • 

But, as is known 

t At B t C _ .. /(p-a) (p-b) (p-c) 
an 2" an 2" an 2" - V p3 • 

8 qJ '1'_ ABC 
Hence, tan "2 tan "2 tan 2" - tan 2" tan 2" tan ""2 . 

51. The left member of our equality can be rewritten as 
1 

sin (a-b) sin (a-c) sin (b-c) {sin (b-c) -sin (a-c) + 
+ sin (a - b)}. 

But we have 

. (b ) . ( ) 2· b-a b+a-2c sin -c -sm a-c = slIl-2-cos 2 • 

Therefore, the braced expression is equal to 

But 

2 . b-a b+a-2c 2· b-a b-a 
8m -2- cos 2 - sm -2 - cos -2- = 

4 . b-a . b-c . c-a 
= sin -2- sm -2- sin -2- . 

sin (a- b) sin (a- c) sin (b - c) = 
. a-b. a-c. b-c a-b a-c b-c 

= 8 sm -2- sm -2- sm -2- cos -2- cos -2- cos -2- . 

The rest is obvious. 
52. 10 The fraction in the left member has the form 

1 { . . (b ) . ( b)· ( . (b sm a sm - c + Sill a - Sill a - c) Sill - c) 

+ sin bsin (c- a) + f1in c sin (a-. b)} = 

1 ~.. (b ) = . . . . sm a sm - c 
Sill (a-b) Sill (a-c) Sill (b-c) , 
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where summing is applied to all the expressions obtained 
from the one under the summation sign by means of a 
circular permutation. But 

sinasin(b-e)= ~ [cos(a-b+e)-cos(a+b-e)]. 

ThereforE' we have 

~ sin a sin (b -e) = + {cos (a+ e-b)- r,os (a+b -c) + 

+ cos (b+ a-e)-cos (b+ e-a) +cos (e+ b- a)-­
-cos (e +a- J)} = 0, 

and our identity holds true. 
2° The given identity can be proved similarly to case 1°. But 

we can get the same formula immediately from formula 1°, 

replacing a by ~ - a, b by ~ - b, and, finally, e by ~ - e. 

53. 1° We have to prove that ~ sin a sin (b - e) X 

X cos (b + e - a) = 0. Here summation is applied to all 
the expressions obtained from the original one by means of 
a circular permutation. But 

sin a sin (b - e) ={ {cos (a-b + e) - cos (a + b -e)}. 

Therefore 

~ sina sin (b-e) cos (b + e-a) = {- ~ cos (b + e-a) X 

x cos (a-b+e)- ~ ~ cos(a+b-e)cos(b+e-a)= 

= ~ ~ [cos 2e+ cos (2b- 2a) -cos 2b - cos (2e- 2a)] = 

1 = "4 { eos 2e - cos 2b + cos 2a - cos 2e + cos 2b -

- cos 2a + cos (2b - 2a) - cos (2e - 2a) + cos (2e - 2b)-

- cos (2a- 2b) + cos (2a - 2e) - cos (2b - 2e)} = 0. 
:rt 

2° Can be obtained from 1° by replacing a by T-a, b 
:rt :rt 

by T-b and e by -Z-e. 
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3° Likewise we find 

L; sin a sin (b - e) sin (b + e - a) = 

= {{sin 2 (b- a) + sin2 (e-b) + sin 2 (a- e)}. 

It only remains to show that 

{{sin 2 (b- a) + sin 2 (e-b) + sin 2 (a-- e)} = 

= 2 sin (b --e) sin (e- a) sin (a- b). 

4° Proved analogously to 3° or by replacing a by ~ - a, 
1t 1t 

b by T-b and e by T-e. 

54. 1° We have 

L; sin 3 A cos (B-C) = L; sin2 A sin A co~ (B-C) = 

= ~ L; sin2A{sin(A+B-C +sin(A-B+C)}. 

But since A + B + C = n, we have 

L; sin2 A cos (B - C) =~ ~ sin 2 A (sin 2C + sin 2B) = 

= L; sin2 A (sin B cos B + sin C cos C) = 

= sin2 A sin B cos B + sin2 A sin C cos C + 
+ sin2 B sin C cos C + sin2 B sin A cos A + 
+ sin2 C sin A cos A + sin2 C sin B cos B = 

= sin A sin B (sin A cos B + cos A sin B) + 

+ sin A sin C (sin A cos C + cos A sin C) + 

+ sin B sin C (sin B cos C + cos C sin C) = 
= sin A sin B sin (A + B) + ~in A sin C sin (A + C) + 

+ sin B sin C sin (B + C) = 3 sin A sin B sin C. 
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2° We have 

~ sin3 A sin (B -C) = ~ sin2 A sin A sin (B-C) = 

= ~ sin2Asin(B+C)sin(B--C)= 

= ~ ~ .,in2 A {cos 2C -cos 2B}= ~ sin 2 A (sin2 B - sin 2 C) = 

=sin2 A sin2 B sin2 C ~ (Si~2 C - Si~2 B) =sin2 A sin2 B sin2 C X 

{ 1 1 1 1 1 1} 
X SIii2C - sin2 B + sin2 A - sin2 C + sin2 B - sin2 A = O. 

55. 1° We have 

sin 3x = 3 sin x - 4 sin3 x. 
Therefore 

~ sin3Asin3 (B-C)= ~ ~ sin3A{3sin(B-C)­

-sin3 (B-C)} = ! ~ sin3 (B +C) sin (B -C)-

But 

- ~ ~ sin3 (B+C) sin 3 (B-C) = 

=i ~ {cos (2B+4C)-cos (4B+2C)}­

- ! ~ (cos 6C - cos 6B) = 

3 = 8" {cos 2 (B + 2C) - cos 2 (C + 2B) + cos 2 (C + 2A)-

- cos 2 (A + 2C) + cos 2 (A + 2B) - cos 2 (B + 2A) } -

- ! {cos {)C-cos 6B+cos GA-cos 6C + cos6B-co~6A}. 

cos (2B + 4C) = cos (2B + 4A), 

cos (2C + 4B) = cos (2C + 4A), 

cos (2A + 4C) = cos (2A + 4.R). 
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And so, we finally have 

~ sin 3A sin3 (B - C) = o. 

20 Since cos 3x = 4. cos3 X - 3 cos x, we have 

h sin 3A cos3 (B -C) = 

= ~ ~ sin 3 (B + C){cos 3 (B -C) +3 cos (B-C)} = 

= { ~ sin3 (B+C) cos3 (B-C) +-

+- ~ ~ sin3(B+C)cos (B-C)= 

= ~ ~ (sin 6B+-sin 6C)+- : ~ {sin (4.B+2C)+­

+ sin (2B +- 4C)} = ! (sin 6A + sin 6B +- sin 6C) = 

= sin 3A sin 3B sin 3C. 

SOLUTIONS TO SECTION 3 
1. The validity of the given identity can be checked, for 

instance, by the following method. From the formulas (*) 
(see the beginning of the corresponding section in "Problems") 
we get 

V2+V3=V;+-V~' V2-V3=V;-V~' 
Therefore we have 

cvi+ V+)2 _ (1+ V:l)c. liZ 

Vz + V ~ + V ~ - 2 (3 -)- V 3) 

(1+ V3)2·V2 1+ V3 
2V3(1+V3) VB 



Likewise we get 

2-V3 

Consequen tl Y 
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(Ji1 __ J/1}2 

V2-Ji1+V+ 
(1- 113)2. V2 

2 (3- V3) 

17tJ 

( 2+V3 + 2-V3 )2=(1+~3+V3:-1)2= 
V2+ V 2+ V3 V2-V 2-V3 V6 V6 

= (\Ys3)2 = 2. 

2. Let us prove the proposed identities by a direct check. 
10 Put :;2 = a, i.e. a3 = 2. It is required to prove that 

(1 - a + a2)3 = 9 (a - 1). 
We have 

(1 - a + a2)2 = 1 + a2 + a4 + 2a2 - 2a3 - 2a --
= 3 (a 2 - 1), 

since 

Hence 

(1 - a + a2)3 = 3 (a 2 - a + 1) (a 2 - 1) = 

= 3 (a2 - a + 1) (a + 1) (a - 1) = 
= 3 (a3 + 1) (a - 1) = 9 (a - 1). 

20 We have to prove that 

(Y2+Y20-Y25)2=9 (yS-Y4). 
Squaring the left member, we find 

Y4+ Y400 +:;-625+2 :;40-2 Y50-2 Y500= 
=Y4+2 :;-50+5 yS+4 Y5-2Y50-10:;4= 

=9 (:;5-Y4). 
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;)0 Proved as in the preceding casco 
4° We have to prove that 

Put 

We have 

( V5+1 )4 = 3+2 Vs 
V5-1 3-2V5 

4/-
V 5=a. 

( VS+1 )4 = (0.+1)4 = 1+40.+60.2+40.3+0.4 = 
-fi5-1 (0.-1)4 1-40.+60.2-40.3+0.4 

since a 4 = 5. 
Further 

3 + 20. + 30.2 + 20.3 
3-20.+30.2-20.3 ' 

( -fi5+1 )4 _ 3+20.+0.2 (3+20.) _ 3+20. _ 3+2vg1 
V5-1 -3-20.+0.2(3-20.)--3-20. - 3-2V5 • 

5° It is required to prove that 

(1+73-79)3 =5 (2-727),. 
Put 

5/-3 . 5 3 V =a, l.e. a = . 
We have 

(1 + a - ( 2)2 = 1 + a 2 + a 4 + 2a - 2a2 - 2a3 = 
= 1 + 2a - a 2 - 2a3 + a 4 • 

Further 

(1 + a - ( 2)3 = 1 + 3a - 5a3 + 3a5 _ a 6• 

But 

Therefore 

(1 + a - ( 2)3 = 10 - 5a3 = 5 (2 - ~ 27). 

6° Put 7'2" = a and prove the first equality which can be 
rewritten in the following form 

5 (1 + a + ( 3)2 = (1 + ( 2)5. 
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The right member is equal to 

1 + 5a..2 + 10a4 + 10a6 + 5a8 + a lO = 

= 5 (1 + a 2 + 2a4 + 2a6 + as), 
since 

a 10 = 4. 
Further 

a 5 = 2, a 6 = 2a, as = 2a3 , 

and, consequently, 

(1 + a 2)5 = 5 (1 + a 2 + 2a4 + 4a -I- 2a :l). 

It only remains to prove that 

(1 + a + a3)2 = 1 + 4a + a 2 + 2a3 + 2a4• 

The last equality is readily proved by removing the bra­
ckets in the left member and performing simple transfor­
mations. To prove the second equality we have to show that 

or 

Put 

5/2 = a a 5 = 2 N 6 = 2a a7 = 2a2 a8 = 2a3 • y "", ,........., , 

Then we have to prove that 

(a4 + a3 + a - 1)2 = 5 (1 + a 2). 

Expanding the left member, we find 

1 + a 2 + a 6 + a 8 + 2a7 + 2a5 - 2a4 + 2a4 - 2a3 - 2a. 

Making use of the equalities enabling us to replace high 
powers of a by lower ones, we find the required identity. 

3. Put 
ABC D 
-=-=-=-=A. 
abc d 

Then 
A = af..., B = bA, C = Cf..., D = df.... 
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Consequently 

But 

and 

i.e. 

YAa+ VBb+ VCc+ VDd= V~(a+b+c+d). 

A +B+C +D= 'A (a+b+c+d) 

'A= A+B+C+D 
a -j b -j- C + d ' 

V~= -V A+B+C+D. 
Va+b+c+d 

Replacing V~ in the equali ty 

V Aa+ V Bb+VCc+ V LJd = l/~(a+b+c+d) 

by the found value, we obtain the required identity. 
4. Put for brevity 

We have 

3Vax3 by3 cz3 ··V . ( 1 1 1) 3/ -A= -+-+-= ax') -+-+- =x-V a x y z x y z ' 

since 
1 1 1 

ax3 -= by3 = cz3 and - + - + - = 1 . x y z 

Likewise we find 
3/- 3/-

A=yv ~ and A =Zy c. 
Hence 

Adding these equalities termwise, we get 

A (..!.+..!.+-.!...) = 1'a+~b+~c. x y z 



Hence, finally, 

5. Put 

Then 

1 
where a~=2. 

Prove that 

We have 

Solutions to Sec. 3 

A=ya+;';b+Yc. 

an=an+~n, bn=an-~n. 

aman - a~~n = (am + ~m) (an + ~n) _ am-nt~m-n = 

= am+n + ~m+n + an~n (am-n + ~m-n)_ 
am-n+~m-n 

2n 

But. 

consequently, 

The second relation is proved in the same way. 
6. Put 

1+ V5 
2 =a, 

Then 
a + ~ = 1, a~ = -1. 

Furthermore 

a 2 - a - 1 = 0, ~2 - ~ - 1 = 0 

179 
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and 

Un=~5(an-~n). 

Proof. 1° We have 

Un + Un-1 = ~5 (an - ~n) + ~5 (an-I _ ~n-I) = 

= ~5 {(an + an-I) _ (~n + ~n-I)}. 

Multiplying both members of the equality a 2 -a -1 = 0 
by an-I, we get 

a+ 1 =a2, an+an-l =an+1. 

Analogously, it is easy to conclude that 

~n + ~n-I = ~n+l. 

Therefore 

+ _ 1 (n+1 Rn+l) _ un Un-1- vg a - t' - Un+1' 

2° We have 

UkUn-k + Uk-1Un-k-1 = 

= ! {(ak_~k) (an-k_pn-k) + (a"-I_~h-I) (an-k-I_pn-k-I)} = 

=! {an+~n_ak~n-k_pkan-h+an-2+pn-2_pk-Ian-k-l _ 

_ pn-k-Iak-I} = 

= ! {an +an-2 + ~n+ ~n-2_ ~n (~: + ~::~) _ 

_ an ( !: + !::~) } = 

=..!. {an+an-2+pn+pn-2_pn ak~+ak-l _an ~ka+~k-I}_ 
5 ~k+l a k+1-

=~{an +an_2+pn+pn_2_pnak-l (a~+ 1) an ~k-l (a~+ i)} _ 
5 ~k+l ak+1-

= ! {an + an-2 + ~n + ~n-2}, 
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since a~ + 1 = O. Then we porform the following trans­
formations 

! {an+an-2+~n+~n-2} = ! { an-1 ( a+ ! ) +~n-l (~+ ~ ) } = 

= ! {an-1 (a _~) + ~n-l (~_ a)} = a-;- ~ (an-1_ ~n-l) = 

1 = vg (a n - 1 _ ~n-l) = Un-l-

3° Obtained from 2° by putting n = 2k, and then repla­
cing k by n. 

4° We have to show that 

5 (a3n _ ~3n)_ (an_~n)3_ (a1t+l_ ~n+l)3 + (an - 1 _ ~n-l)3 = O. 

The left member is transformed in the following way 

5 (a3n _ wn) _a3n (a3+ 1- ~3 ) +3a2n~n (a2~+1- :2~) -
- 3an~2n ( a~2 + 1- a~2 ) + ~3n ( ~3 + 1- ;3 ). 

I t is easy to show that a2~ j- 1- a!~ = 0, a~2 + 1- a~2 = O. 
On the other hand, we can easily make sure that 

1 1 
a 3+ 1-(i3= ~3+ 1-W=a3+~3+1 = 

= (a+~) (a2-a~+ ~2)+1 = a2·-a~+ ~2+1 = 5. 

Hence follows the validity of our identity. 
5° We have to prove that 

(an _ ~n)4_ (an-2 _ ~n-2) (an-1_ ~n-l) (an+1_ ~n+l) X 

X (an+2_ ~n+2) = 25. 
First prove that 

(an-2_~n-2) (an+2_ WH2) -'-- a2n+ ~2n_ (_1)n (a4 + ~4), 
(an-1_ ~n-l) (all+!_ Wt+l) = a 2n + ~2" + ( -1)" (a2 + ~2). 

But 

a 2 + ~2 = (a + ~)2 _ 2a~ = 3, a4 + ~4 = 
= (a2 + ~2)2 _ 2a2~2 = 7. 
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Therefore 

(an-2 _ ~n-2) (an-1_ ~n-l) (an+1_ ~1l+1) (an+2 _ ~1l+2) = 

= (a2n + ~2n)2_ (-1t 4 (a2n + ~2n)_ 21. 

On the other hand 

(an _ ~n)4 -= a 4rt _ 4a3n~n + 4 _ 4an~3n + ~4n = 

= a 4n + ~4n+ 4-4 (_1)n (a2n+~2n). 

Subtracting the last-but-one equality from the last one 
termwise, we find the required result. 

6° and 7° are proved analogously to the previous cases. 
7. 1° We have 

1 1 

2 [(a2+b2)2 -a) [(a2+b2)2 -b) = 
1 

= 2 (a2 + b2 ) -2 (a+ b) (a2+ b2)2 + 2ab= 

= (a2 + b2) -2 (a+b) Va2+ b2+(a+ b)2 + 

+ (a2 + b2)+2ab- (a + b)2 

(singling out a perfect square). 
Consequently 

1 1 

2 [(a2+b2)2 -a] [(a2+b2)2 -b] = {a+b- V a2+b2)2. 

Hence follows the first identity. 
2° Multiplying the braced expressions on the left, we get 

2 1 

3 (a3 +b3)3 -3(a+b)(a3+b3)3 +3ab= 
2 2 1 4 

=3(a2-ab+b2)3(a+b)3 -3 (a2_ab+b2)3 (a+b)3 + 
2 1 

+ (a+ b)2_ (a2 - ab + b2) = [(a+b)3 _ (a2_ ab+b2 ) 3]3. 
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The rest is obvious. 
-. /2a-b 

8. It is easily seen that ax = V-b-' hence 

-. /2a-b 
= b (1-2 -, /2a-b + 2a-b) = a-b V-b-

2 (b-a) V b b b-a 

Analogously, we find 

-. /1+bx = 
V 1-bx 1 b -.;'"2a=b -a-V IJ-b-

-. /2a-b -. /2a-b 
a+b V-b - a-l-b V-b-

= ya2-2ab+b2 = Y(b-a)2 

_, /2a-b 
a+b V-b-

b-a 

(since b-a> 0). MUltiplying the two obtained expres­
sionf:, we find 

a-b y2a;b a+b V 2a;b 

--~b---a----'--~b---a----

9. Factor the expression 

a2_b2 2a-b 
b 

(b_a)2 

= a2 - 2ab + b2 = 1-
(b-a)2 

n3 - 3n - 2. 
We have 

n3 - 3n - 2 = n3 - n - 2n - 2 = n (n2 - 1) -

- 2 (n + 1) = (n + 1) (n2 - n - 2) = 
= (n + 1)2 (n - 2). 

Likewise 
n3 - 3n + 2 = (n - 1)2 (n + 2). 
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Now we may write: 
n3 -3n-2+(n2-1) V~ 
n3 -3n+2+(n2-1) Vn2-4 

_(n+1)2(n- 2)-j-(n2-1)V~_ (n+1)Vn=2 X 
- (n-1)2 (n-j-2)-j-(n 2-1) Vn2-4 - (n-1) Vn+2 

(n+1) Vn-2+(n-1) Vn+2 (n +1) Vn-2 
X =. 

(n-1) Vn+2+(n+1)Vn-2 (n-1) Vn+2 

10. Consider the second one of the fractions contained in 
the first brackets, namely: 

1-a 1-a Vt=a 
V1-a2-1+a = V1-a2-(1-a) = V1+a- V1-a • 

And so, the transformed expression takes the form 

[ ViTa + Vr=a ] . Vt-=a2 -1 _ 
V1+a- V1-a V1+a- V1-a a-

l/Wa + Vr=a V1-li2-1 
= V1-j-a- V1-a . a 

2a (Vt.=a2 -1) 
(V1+a-V1-a)2' a 

2 (Vt=a2-1) _ -1 
(1-j-a+1-a-2V1-a2) - . 

11. From the formula <*) it is easy to get: 

·VA+VB+VA-VB=2 V A+ ~A2_B. 
In our case 

A=x, B=4x-4, A2_B=X2_4x+4, 

{ x-2 if x>2, 
V A2_B = V(X_2)2= . 

2-x If x < 2. 
In the first case we have 

V 11 ... /x-j-x-2 
x+2V x-1+ ' x-2V x-1 =2 V' 2 = 

=2 V x-1. 
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The second case yields 

V x+2V x-1+V-x-2V x-1=2 V x+;-x =2. 

I t is easy to see that at x = 2 the expression under con­
sideration is also equal to 2. 

12. In this case 

A = a + b + c, B = 4ac + 4bc, 
A 2 - B = (a + b + C)2 - 4dc - 4bc = 

= a2 + b2 + c2 + 2ab - 2bc - 2ac = 

If 

then 

If 

then 

a + b - c> 0, 

VA2-B=a+b-c. 

a+b-c<O, 

VA2-B=c-a-b. 

= (a + b - C)2. 

Hence, we easily obtain that the given expression is equal 
to 2V a + b if a + b > c, and to 2Vc if a + b < c. At 
a + b = c these values coincide. 

13. Let us denote 

v -~-Vr+~=v. 
Then 

x = u + v. 
Consequently 

x3 = (u + V)3 = u3 + if + 3uv (u + v). 
But 

u3 + if = - q, uv = - ~ . 

Therefore 

or 
x3 = - q - px 

x3 + px + q = ° 
which is the required result. 
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14. We can proceed, for instance, in the following way. 
Put 

V x+a+ V x+b=z. 

Then (multiplying and dividingtheleftmemberbyV x + a­
- V x + b) we find. 

or 

Hence 

a-b 
---:==---==- = Z Y x+a- yx+b 

V- y- a-b x+a- x+b=-. z 

V-- a-b 2 x+a=z+-, z 
V-- a-b 

2 x+b=z--z-' 

i.e. both roots are expressed in terms of z without radicals. 
15. Put 

Consequently 

a' = aA, b' =bA, . c' = CA, 
Therefore 

a'+b'+c' 
A= a+b+c 

Va+ Yb+ Yc+ Vii' + Yb' + V? = 
= (1 + VX) (Va+ l/b+ Ve). 

Our fraction takes the form 

1 (1-VA) (va + Vb" - VC) 
(1+ VI) (1i.i+ Yb+ VC) = (1-1) (a+b-c+2yab) 

(1-VI) (va+ Yb-VC) (a+b-c-2ya;;) 
(1-1) (al +b2+cz-2ab-2ac-2bc) 

= ("Vii+b-FC- Va'+b'+c') (Va + Vb-VC+)(a+b-c-2 yiib) ya:;:ii+C 
(a+b+c-a' -b'-c') (a2+bZ+cl-2ab-2ac-2bc) 

16. Put 

Hence 
2 = p3 + 3pq + (3p2 + q) V-q, 
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since q is not a perfect square, it must be 3p2 + q = 0, 
which is impossible. 

17. 1° We have 

tan (3; - a ) = tan ( n + ~ - a ) = tan ( ~ - a ) = cot a, 

cos ( 3; - a ) = cos ( n + ~ - a ) = - cos ( ~ - a ) = 

cos (2n - a) = cos ( - a) = cos a 

cos ( a - ~ ) = cos ( ; - a ) = sin a 

sin (n--a)= -sin(-a)= +sina 

cos (n+ a) = -cos a 

sin ( a - ~ ) = - sin ( ; - a ) = - cos a 

Now we get 

= -sin a (2°, 4°), 

(1°, 3°), 

(3°,4°), 

(2°,3°), 

(2") , 

(3°, 4°). 

-cotex·sinex . 2 2 l' 2 . 2 0 -----+ sm a + cos a = - + sm a + cos a = . cos ex 

2° In this case we obtain 

sin(3n-a)=(-1)3 sin(-a)= -sin(-a)=sina (2°,3°), 

cos (3n + a) = ( -1)3 cos a = - cos a (2°), 

sin ( 321t - a) = sin (n + ~ - a ) = - sin ( ; - a ) = 

= -cosa (2°,4°), 

cos ( 5; - a) = cos (2n + ; - a) = cos ( ; - a ) = sin a 

(1° or 2",4°). 
Thus, we have 

(1 - sin a - cos a) (1 + cos a + sin a) + sin 2a = 

= [1 - (sin a + cos a)] [1 + (sin a + cos a)] + sin 2a = 
1 - (sin a + cos a)2 + sin 2a = 

= 1 - sin2 a - cos2 a - 2 sin a cos a + sin 2a = O. 
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3° Analogous to the previous ones. 
18. Indeed, we have 

1 '_2· 2et 
-COSCG- sm 2' 

whence 

. ..::. ~ / i-coset 
sm 2 = + V 2 . 

But in our conditions 

Then 

sin ~ = sin (1m + ~o ) = ( _ 1)" sin ~o , 
where 

. eto _____ o 
sm 2:::::' . 

Therefore, indeed 

. ~_(_1)k"/ i-COSet 
sm 2 - V 2 . 

The second assertion is proved analogously. 
19. Let us prove the validity of some of the proposed for­

mulas. Let us, for instance, prove that A 16 = 0 if n = 0 
(mod 2). Put n = 2l. Then 

i ( In . 3) ( 3ln 5) 
2AI6=COS T+ n -;32n +cos -4-+n-32n + 

( In 3) ( /11 5 ) = -cos ----n -cos In----n + 
4 32 4 32 

, ( In [ ,5 ) .. (')[ In 3 ) _ .. 
'1- cos T+ nT32n +cos ... n-T+32 n -

( In 3) I ( In 5 ) - - cos T - 32 n - ( -1) cos T + 32 n + 
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Let us prove, for instance, that A14 = 0 if n = 1, 3, 4 
(mod 7). We have: 

1 ( 1 13) ( 3 3) 2" A 14 = cos 7" nn - 14 n + cos 7" nn - 14 n + 
+ cos ( ~ nn - ;: n ) . 

If we replace here n by a number, which is comparable with 
it by modulus 7, then all the cosines will acquire only a 
common factor equal to +1. Indeed, let us assume that 
n = ex (mod 7), i.e. n = ex + 7N, where N is an integer. 

Therefore 

cos (k;1t _~) =cos (k(a~7N)1t _~) = 

= cos (k~1t + kN n _ ~ ) = ( _ 1) kN cos ( k~1t _ ~ ) = 

=(_1)N cos (k~1t _~), 

since in our case k = 1,3,5 and, consequently, is odd; (~ is 

equal either to 1~ n or to !! n ) . Therefore, in order to prove 

that Au = 0 at n == 1, 3, 4 (mod 7), it is sufficient to prove 
that it will take place at n = 1, 3, 4. The validity of this 
is readily checked. 

First put n = 1. Then we prove that 

cos (..!. n -. 13 n ) + cos (~n - ~ n) + cos (~n - ~ n) = 0 
7 14 7 14 7 14 • 

After transformations we get: 

11 3 7 (3) 3 cos 14 n + cos 14 n + cos 14 "t = cos n - 14 n + cos 1.4 n + 

1t 3 3 
+cos '2= -cos 14 n+cos 1.4 n =0. 

Let now n = 3. Then we have to prove that 

cos (1. n _ 13 n ) +cos (~n-1.n) +cos (15n_~n) = 
7 14 7 14 7 14 

7 15 27 (1t ) 
= cos 14 n+cos 14 n+cos 14 n=cos n+14 + 
+ cos ( 2n - ~4 ) = - cos ~4 + cos ~ = O. 
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Reasoning in t.he same way, we make sure that at n = 4 
we also obtain zero. 

In conclusion, let us prove that As never becomes zero, 
i.e. at no whole values of n. We have 

1 (1 7) (1 1 ) Z-AR=cos -:rnn-16n +cos --:rnn+nn-1Un = 

= cos ( ! nn - ~ n ) + ( - 1 t cos ( ! nn + 116 n ) . 

Consider the following cases: 
1° Let n = 0 (mod 4), n = 4N. Then 

~ As=cos (Nn-176n)+(-1)'lNCOS (Nn+116 n ) = 
N 7 N 1 

= (-1) cos 16 n + (-1) cos 16 n = 

= ( -1t ( cos ~ n +cos 176 n). 
The bracketed expression is not equal to zero, since it 

represents a sum of cosines of two acute angles. 
2° Let n == 1 (mod 4), i.e. n = 1 + 4N. 

} As = cos ( ~ + N n - 176 n) + cos ( 3: + 3N n - 116 n) = 

= ( - 1) N { cos ( ~ - 176 n) + cos ( 3: - 1~ n ) } = 

= ( - 1 t { cos 1~ n + cos /6 n } . 

It is obvious that the braced sum is not equal to zero, 
and, consequently, in this case As is also not equal to zero. 
I t only remains to consider the cases: n == 3 (mod 4) and 
n = 2 (mod 4), but we leave them to the reader. 

20. It is required to prove that 

LJp (k) = 0 

ifk=n, n-1, n-2, n-4, n-5, n-6, and the 
sign before p (k) is chosen accordingly. 

J t is evident t.hat 

~ p(k)=A ~ (k+3)2+C ~ (_1)11 +D ~ cos 2~k . 
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The first two sums on the right are equal to zero. It remains 
to prove that 

'" 211k L.J cos -3- = o. 
If k is a whole number, the following cases are possible: 

1° k is exactly divisible by 3, k = 3l; 
2° k, when divided by 3, leaves the remainder 1, k = 

= 3l + 1; 
3° k, when divided by 3, leaves the remainder 2, k = 

= 3l+2. 
In case 1° 

211k 
cos -3-= 1. 

211k 211 In cases 2° and 3° cos -3- = cos 3 . 

Let us first assume that n is divisible by 3. Then 

'" 211k_cos211n 211 (n-1) 211 (n-2)+ 
L.J cos -3- - -3-- cos 3 - cos 3 

+ 211 (n-4) + 211 (n-5) 211 (n-6) 
cos 3 cos 3 - cos 3 

But 
2 = -1 (mod 3) 

and 
211k 211k' 

cos -3- = cos -3-

if 
k = k' (mod 3). 

Since by the assumption n = 0 (mod 3), we have 

n - 1 == -1, n - 2 = 1, n - 4 = -1, 

n - 5 = +1, n - 6 = 0, 
and our sum takes the form 

211 211 211 211 
1- cos -3- - cos 3 + cos -3-+ cos 3 -1 = o. 

It remains to prove that our sum is also equal to zero in 
the cases when n = +1 (mod 3). The proof is similar to the 
previous case. 
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21. We have 

sin 15°=sin (45°-30°) =sin (~ - ~) =sin ~ cos ~-

1t • 1t V2 V3 V2 1 V6- Vi 
-cosT SIll lf=-2-'-2---2-'Z= 4 

Analogously we find cos 15°. 
We have 

. 180 . n 21t SIll = SIlliQ = cos 5 . 

But 

2 .n n .2n 
SIll 5" cos T = SIll 5 ' 

2.2n 2n .4n .1t 
SIllT cos 5 = SIll 5 = SIll "'5 . 

Multiplying these equalities termwise, we find 
n 2n 1 

cosScos 5="4' 

On the other hand 
n 2n . 3n . n 1t 2n 1 

cos s-cos T =2SIll 10 SIll w=2cos"'5 cos 5=2"' 

Thus, jf we put 
• 1t 2n 1t 

sm w=cos T=x, cosT'=Y' 

we have 

But 
1 5 

(X+y)2= (x-y)2+4xY=7l+ 1 ="4' 
Consequently, 

Vs 
x+Y=-2-' 

Using this relation and the relation y-x= ~ , we get 

. n . 180 -1+ lis 
x = SIll 10 = SIll = 4 

Now cos 18° is readily found. 
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22. Indeed 

sin 6° = sin (60° - 54°) = sin 60° cos 54° - cos 60° sin 54°. 

But 

sin 54° =cos 36° = 1- 2 sin~ 18°= 1-2 6-!6Vg = 1+ ys , 
cos 54° =V1-sin254°=! VlO-2 V5. 

To obtain the result we have to substitute these values into 
the first formula; cos 6° is found in the same way. 

23. Bear in mind that 

(1) 11 • _____ + 11 11 < < + 11 -T<arcslDx:::::::, T' -T arctan x 2' 

O::(;arccos x::(;n, 0 < arccot x < n, 

(2) sin (arcsin x) = x, cos (arccos x) = x, 

tan (arctan x) = x, cot (arccot x) = x. 

Let us now prove that 

cos (arcsin x) = V1_X2. 
Put 

arcsin x = y, 
then 

sin y = x. 

We have got to compute cos y. But it is known that 

cosy= V1-sin2 y= V 1-.r2 , 

and the radical is taken with the plus sign, since 

and, consequently, 
cos y ~ O. 

Let us, for example, also prove that 

cos (arctan x) 
1 

Put 
arctan x = y, tan y = x. 
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We have to find cos y. We have 

Consequently 

and 

_1_2- = 1+tan2 y= 1 + x2 • 
cos y 

2 1 
cos Y= 1 +x2 

1 cos Y =cos (arctan x) = , 
V 1 + .y2 

where the radical is takpn with the plus sign again. sin('p 

cos y ~ o. 
The rest of the formlllas are proved in the same \\ay. 
24. By definition, 

1t 1t 
-2 < arctan;r < +"2' 

o < arccot ;r < n. 
Therefore 

n < + < 3n -T arctan x arccot x + -2 

Let lIS compute sin (arctan x + arccot x). Wp have 

sin (arctan x + arccot x) = 

= sin (arctan x) cos (arccot x) + 
+ cos (arctan x) sin (arccot x) =-

x x + 1 
V1+.T2 V1+.1·2 V1+:~2 

1 -1 V1+x 2 - • 

However, if the sine of a certain arc is equal to 1, then this 
arc equals 

~ +2kn, 

when' k is any whole number, i.e., in other words, 

arctan x -+- arccot x 

can attain one of the following values 
-7n - 31t n 51t 9n 

... , -2-' -2-' T' 2' 2' 



Solutions to Sec. 3 195 

But only one of them, namely ~, is contained in the 

interval between - ~ and + 3; . Therefore it is obliga­

tory that 
11 

arctan x + arccot x = T" 

Likewise, let us prove that 

. + 11 arCSIn x arccos x = T' 

First of all we have 

11 • + ____ 311 
-T::S;;;arcsIn x arccos x",=:::z. 

On the other hand, 

sin (arcsin x + arccos x) 

= sin (arcsin x) cos (arccos x) + 
+ cos (arcsin x) sin (arccos x) = 

= x 2 + V 1 - x2 • V 1 - x2 = 1 t 
wherefrom follows that 

. + 11 arCSIn x arccos x = 2" . 

25. First of all it is easy to prove that the quantities 

arctan x + arctan y 
and 

arctan --=.±!L. 
i-xy 

differ from each other only by en, where e is an integer. 
Indeed, 

tan (arctan t+ y ) x+y -xy - 1-xy , 

tan (arctan x + arctan y) = 
tan (arctan x) + tan (arctan y) 
i-tan (arctan x) tan (arctan y) 

x+y 
1-xy' 
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But if two quantities have equal tangents, then they differ 
from each other by a term divisible by ll. 

Therefore, indeed, 

arctan x + arctan y = arctan t + Y + ell. (*) -xy 

Let us fmd out the exact val-ue of e. Since 
n n n n 

-2 < arctan x < +2' -2 < arctany< +2' 

we have 
-ll < arctan x +- arctan y < + II 

and, consequently, 

I arctan t~;y + elli < ll. 
And since 

n x+y n 
-2< arctan 1-xy < +2 ' 

then lei < 2 and, consequently, e may attain only one of 
the following three values 

0, +1, -1. 

To find the value of e let us write the following equality 

cos (arctan x + arctan~) = cos (arctan t~x~ + ell). 

Hence 

cos (arctan x) cos (arctan y) - sin (arctan x) sin (arctan y) = 

= cos ( arc tan t~ ;y ) cos ell. 

On the basis of the resul ts of Problem 23 we ha ve 
1 1 x Y 

V1+x2 . V1+y2 V1+x2 V1+y2 
1 

--~====~==~-·COSell • 
.• / 1+( x+y)2 
V 1-xy 

Consequently 

1-xy V1 (x+y)2 cos ell = + 
V(1+x2) (1+y2) 1-xy' 
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We have 

"/1+( x-t-y )2=-./(1-t- X2)(1-t- y2) = Y(1-t-x2)(1-t-y2.) 
V 1-xy V (1-xy)2 Y(1-xy)2 

But 

V(1-xy)2=1-xy if 1-xy>0, i.e. if xy< 1, 
and 

V(1-xy)2 = - (1-xy) if 1-xy < 0, i.e. if xy> 1. 
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Therefore, cos en = 1 if xy < 1, and cos en = -1 if 
xy > 1. Since en can attain only the values 0, nand -n, 
it follows that if xy < 1, then e = 0, and if xy> 1, then 
e = +1. What sign is to be taken is decided in the follo­
wing way: if xy > 1 and x > 0, then also y > 0, then 

arctan x> ° and arctan y > 0, and arctan 1x-t-y < 0. 
-xy 

The left member of the equality <*) is a positive quantity, 
consequently, the right member must also be positive, and 
therefore en must exceed zero, and e = +1. Quite in the 
same way we make sure that if xy > 1 and x < 0, y < 0, 
then e = -1. 

26. We have 
2 

1 1 1 5 
4 arctan 5 = 2 arctan 5 + 2 arctan 5=2 arctan --1- = 

1--
25 

555 
= 2 arctan 12 = acrtan 12 + arc tan 12 = 

5 5 
12+12 120 

=arctan 25 arctan 119 · 

1-144 
Further 

120 (1 ) arctan H9 + arctan - 239 = 

120 1 
119-239 l't 

= arctan 120 1 = arctan 1 = T . 
1-t- 119· 239 

27. Using the formula of Problem 25, we easily obtain 
the result. 
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28. First of all let us notice, that since arcsin x is con­

tained between - ~ and + ~ , and 2 arctan x lies between 

-n and +n, we have 
3n 2x 3n 

-2~2arctanx+arcsin 1+x2 < +2' 

Let us now compute the sine of the required arc, i.e. find 
what the expression 

is equal to. 
We have 

( 2x ) sin 2 arc tan x + arcsin 1 + x 2 

sin (2 arctan x + arcsin 1 ~x2 ) = 

= sin (2 arctan x) cos (arcsin 1-~ x2 ).+ 

+ cos (2 arctan x) sin ( arcsin 1 ~x2 ) 

First compute sin (2 arctan x). Put 

arctan x = y, tan y = x. 
Then 

sin (2 arctan x) = sin 2y = tan 2y ·cos 2y. 
But 

2tany 1-tan2 y 
tan 2y = 1- tan2 y , cos 2y = 1 + tan2 y • 

Consequently, 
. 2 2 tan y 2x 

Slll( arctanx)=1+tan2 y=1+x2 ' 

Further 

cos (arcsin 1~x2 ) = -V 1 - ( 1~x2 )2 = 

since x> 1. 

_ -. ;---;-( 1-:-_-x"""'2)':C""2 

- V (1+x2)2 

Further, it is obvious that 
1-x2 

cos (2 arctan x) = 1 +x2 ' 

. ( . 2x) 2x 
sm arCSlll 1 + x2 = 1 + x2 , 

x 2 -1 
1 +x2 ' 
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therefore 

sin (2 arctan x + arcsin 1 ~:r2 ) = 
2x x2 - 1 1 - x2 2x 

= 1 + x2 . 1 + x2 + 1 + x2 . 1 + x2 = 0. 

Thus, the sine of the required arc is equal to zero, consequ­
ently, this arc can have one of the infinite number of values: 

... , -3n, -2n, -n, 0, +n, 2n, 3n, 4n, .... 

But among these values there are only three (-n, ° and n) 

lying in the required interval between - 3; and + 3; . On the 

other hand, x > 1 and, consequently, 2 arctan x > ° and 

arcsin 1 ~~xX2 > 0, and therefore the required sum 

2 t . 2x 
arc an x + arCSlll 1 + x2 

will also be greater than zero and, consequently, can be 
equal only to n. 

29. It is evident that 

Let us form 

1 
- n~ arctan x +- arctan -~ + n. 

x 

sin ( arc tan x + arctan ! ) 
The required sine turns out to be equal to (see Problem 23) 

sin (arctan x) cos (are tan .! ) +cos (arctan x) sin (arctan ! ) = 
1 

x 1 x 

1/1+x2 
V 1+-1 + Y1+x2 

V1+-1 
x2 x2 

.1: Vx2 1 Vx2 

V1+x2 V 1 + x2 + V 1 + x2 x·Y1+x2 

x2 1 
=1 1+x2 + 1+x2 
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if x> 0 (since in this case V:?=x). And if x < 0, then 

V x2 = -x and we have sin ( arctan x -+ arctan ; ) = - 1. 

Hence follows tha t 
1 n 

arctan x -+ arctan 7 = +""2 -+ 2kn, 

where plus is taken whon x > 0, and minus when x < O. 
But since, on the other hand, it must be 

1 
-n::::;; arctan x-+arctan -::::;; -+n, 

x 

our problem has been solved. 
30. Compute the expression 

sin (arcsin x -+ arcsin y). 
We have 

sin (arcsin x -+ arcsin y) = sin (arcsin x) cos (arcsin y) + 
-+cos (arcsin x) sin (arcsin y) = x V 1- y2 -+ y V 1-x2. 

Thus, considering the two arcs 

arcsin x -+ arcsin y 
and 

arcsin{xV1- y2-+ y V1-x2 ), 

we may assert that their sines are equal to each other. 
However, if 

• • R 2sl·na-~Cosa+~=0 smr:J.=slnp, 2 2 ' 

and, consequently, eiLher a;~ =kn or a~~ =(2k' +1) ; 

(k and k' in tegers), Le. ei ther 

r:J. = ~ -+ 2kn 
or 

r:J. = - ~ -+ (2k' -+ 1) n. 

Therefore we may assert that 

arcsin x -+ arcsin y = 1] arcsin (x V 1- y2 + y V 1 - X2) -+ en, 
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where l] = +1 if e is even, and l] = -1 if e is odd. To de­
termine e more accurately, let us take cosines of both 
members. We get 

cos (arcsin x + arcsin y) = 

= eos [l] arcsin (x V 1 - y2 + y V 1 X2) + en] . 
Hence 

V 1 - x2. V 1 y2 - xy = 

=(-1)ecos [arcsin (x V 1 y2+ y V1 X2)]. 
Further 

V 1- x2. V 1 y2 - xy = 

=(-1)£V1-(xV1 y2+ y V1 X2)2. 

The radicand on the right can be transformed as 

1- (x V 1 y2 + y V 1 X2)2 = 

= 1 - x2 (1 - y2) - y2 (1 - x 2) - 2xy y 1 x2 . V 1 y2 = 

= (1 - x 2) (1 - y2) - 2xy V 1 x2. V 1 y2 + x2y2 = 

== (V 1·-x2V 1 y2_xy)2. 

If it turns out that 

V 1 x 2.lfT=Y2-xy > 0, 
then 

V 1- (x Vf=Y2 + y Vf=X2r~ = 

= V (V 1 X2.y 1 y2_xy)2 = y 1_X~.YT=Y2-xy. 
Therefore, in thi" case 

(-1)£ = +1, 
i.e. e is even. 

And if 
V 1 x 2 V 1 y2 - xy < 0, 

then 
(-1)E = -1, 

and, consequently, e is odd. 
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Let us now consider the expression 
1 - X2 _ y2. 

We have 
1- X2 - y2 = 1 _ x2 _ y2 + x2y2 _ x 2y2 = 

= (1 - X2) (1 _ y2) _ X2 y2 = 

= (V 1-x2 • V1 - y2_xy) (V 1_X2. V 1- y2+.1·Y)· 

The quantity 1 - X2 - y2 can be greater (smaller) than or 
equal to zero. Let us consider all the three cases. 

1° Suppose 1 - X2 - y2 > 0, i.e. X2 + y2 < 1. If the 
product of two factors is positive, then these factors are 
either both positive simultaneously, or both negative Rirnul­
taneously. And so, we have either 

V 1 - X2. V 1 - y2 - xy > 0, V 1 - x2 V 1 - y2 + xy > () 
or 

V 1-x2 V1- y2- xy < 0, V 1-x2V1-y2+xy < O. 

But the second case is imposRible, since, adrling the laRt two 
inequalities, we get 

V 1 - x 2 V 1 - y2 < 0, 

which is impossible. If, however, the first two inequalities 
exist, then 

V 1- x2 V 1- y2 - xy > 0. 

Consequently, in this case e is even. 

or 

Thus, if X2 + y2 < 1, then in our formula e is even. 
2° Let now 1 - X2 - y2 < ° and, consequently, either 

V1_X2 V1_y2-xy > 0, V 1_X2 V1- y2+ xy <O 

V 1 - :1:2 V 1 - y2 - xy < 0, V~ 1 - X2 V 1 - y2 + xy > 0. 

But from the first two inequalities we easily obtain xy < 0 
If this inequality is fulfilled, then it will obligatory be 

V 1 - x2 V 1- y2 - xy > 0, 

and, consequently, e is even, 
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From the second pair of inequalities we get xy > 0, and 
e is odd. 

3° Finally, suppose 1 - x 2 - y2 = 0. Then again two 
cases are possible: either xy :::;;; ° or xy > 0. 

In the first case l/1 - x2·V1-y2-xy>0, and, hence, 
e is even. Likewise, the second case gives an even e (e = 0), 
since there ·exists the following relation: 

arcsin x + arcsin V 1- x2 = ~ (x> 0). 

Thus, we can judge whether e is even or odd. Now let us 
consider the value of e. We have 

I arcsin x + arcsin y I < n. 
Consequently 

I 'I'] arcsin (x -V 1- y2 + y V 1- X2) + en 1< n. 

Hence 
lei < 2. 

And so, e may attain only three values: 0, +1, -1. 
Comparing the results obtained, we may now assert that 

if x2 + y2:::;;;1 or if xy < 0, then e = 0, 'I'] = +1, 

and if x2 + y2 > 1 or if xy > 0, then e = +1, 'I'] = -1. 
To find out when e = +1 and when e = -1, let us notice 
that at x > 0, y > ° arcsin x + arcsin y > ° and, con­
sequently, 

-arcsin (x V 1_y2+ y V 1 __ X2) + en > 0, 

and therefore in this case e = +1. If, however, x < 0, 
y < 0, then it is obvious that e = -1. 

31. We have (see Problem 24) 

arccos x + arccos ( ~ + -} V 3 - 3x2 ) = 

= n - arcsin x-arcsin ( ~ +-} V 3-3x2 ); 

on the other hand (Problem 30), 

arcsin x + arcsin ( ; + -} V 3 - 3x2) ~ 'I'] arcsin £ + en, 
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where 

lit ( x. V3V-1 -2)2 ;=x - 2 1 ___ 2 -x + 
+ ( X V3'V-1 -2) 1/-1 -2 2+2 -x -x. 

But 

( X V3V-)2 1 (,/- ,/-)2 1 - 2 + -2- 1 - X 2 -=-= T v 1 - X 2 - v 3 x , 

and since x ~ --}, we have 4X2~ '1: 3x2 ~ 1 - x2 and 

V3x~V1-X2. 
Therefore 

V1- (; + ~V 1 x2r=--}v (V 1 x2_ V3x)2= 

=--} (V3x - V 1--x2) 
V3 and ;=2 . 

Consequently 
. t 11: 

arCSIn '0 = 3" . 

The only thing which is left is to find 'I'J and to (see Prob­
lem 30). 

Let us prove that 

2 (X V3"'~2)2 1 x + 2 + 2'" VI - x- > . 

Consequently, 
'I'J = -1, to = +1. 

Therefore, 

arccosx+arccos( ~+--}V0-3x2)=n-(-~ +n)= ~. 
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1 1 32. We have tan A = T' tan B = 3". Let us compute 

cos 2A. Since 

1+tan2A=~2 A' cos 
we have 

1 1 50 2 49 
cos2 A = 1 + 49 =- 49 and cos A = 50 . 

But 
? 98 24 

cos 2A = 2 COS" A -1 = 50 -1 = 25 . 

Further 
sin 4B = 2 sin 2B cos 2B. 

But 
2 4 

cos 2B = 2 cos2 B-11= 1 +tan2B-1 = 5" ' 

sin 2B = 2 sin B cos B = 2 tan B cos2 B = 1 ~t::n~ B = ! . 
Consequen tly, 

. 4 3 24 
sm4B=2· S ·S =25 and sin4B=cos2A. 

33. By hypothesis we have 

(a+b)2=9ab or (a;br =ab. 

The rest is obvious. 
34. Put 

loga n = x, logma n = y. 

Then 

Hence 

= aX = mY.aY, ali = mao 

Taking logarithms of this last equality to the base a, we get 
the required result. 

35. Put 
x(y+z-x) _ y (z+x-y) z (x+y-z) 

logx - log y log z t 
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Then 

log x = tx (y + z -x), log y = ty (z + x - y), 

log z = tz (x + y - z). 
Hence 

y log x + x log y = 2txyz, y log z + z log y = 2txyz, 

z log x + x log z = 2txyz. 
Consequently 

y log x + x log y = y log z + z log y = z log x + x log z, 
log xYyX = log zYyZ = log xZzx. 

Finally 
xYyX = zYyZ = xZzx. 

36. 10 Put 10gb a = x. Then 

bX = a. 

Taking logarithms of this equality to the base a, we get 

x loga b = 1. 
But x = 10gb a. Consequently, indeed, 10gb a loga b = 1. 

20 We have 

Therefore 
10gb (10gb a) 1 

a = (a lOgb a)IOgb(iogb a) = (a10ga b)IOgb (10gb a) = 

biogb (10gb a) 1 
= = Ogba. 

37. From the given relations ,it follows that 
yl-log x = 10, z1-log Y = 10. 

Taking logarithms of these equalities to the base 10, we get 

(1 - log x) log y = 1, (1 - log y) log z = 1. 
whence 

log x = 1 __ 1_ = 1 -----,--
logy 1 __ 1_ 

log z 
i-log z 

and, consequently, 
1 

X = 101- log z. 
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38. The original equality yields 

a2 = (c - b) (c + b). 
Hence 

2 loge.H) (J = logc+b (c - b) + 1, 
2 loge-b a = loge-Ii (c + b) + 1. 

Multiplying these equalities, we find 

4 logc+ba ·logc_ba = logc+b (c - b) + logc_b (c + b) + 
+ 1 + logc+b (c - b) loge_b (c + b). 

However, 
loge-Ii (c + b) logc+b (c - b) = 1. 

Therefore 

4 logc+b a loge-b a = 2 logc+b a - 1 + 2 logc-b a - 1+ 2. 
Finally 

log,+b a + logc-b a = 2 logc+b a log c-b a. 

39. Put 

loga N = x, loge N = y, logva;; N = z. 
The last eqnality yields 

z 

(ac)2 = N. 
Hence 

log" N = ~ (1 + loga c), loge N = ~ (1 + loge a). 

Therefore 
2.r 1 I -- = oga c, 
Z 

2y 
--1=loge a. 

z 

Consequen t I y 

or 
x x-z 
y z-y 

40. We have 
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41. Let 

Then 

log an = log a + n log q, log an - bn = 

= log a + n log q - b - nd = log a-b. 
Hence 

n log q - nd = 0, logfl q = d, ~d = q. 

And so 

SOLUTIONS TO SECTION 4 
1. We have 

( x-ab -e) + (~_ b) + ( x-be _ a) =0. 
a+b a-Le b--\ e 

Hence 
x-ab-ae-be x-ae-ab-be x-be-ab-ae _ 0 

a+b + a+e + b+e -

or 

( 1 1 1) (x-ab-ac-be) --+--+-- =0. 
a+b a+c b+c 

Assuming that 
111 

a+b + a+e + b +c 

is not equal to zero, we obtain 

x = ab + ae + be. 
If, however, 

111 
a+b + a+e + b+c =0, 

then the given equation turns into an identity which holds 
true for any value of x. 

2. Rewrite the equation as follows 

( ~_~_~)+( x-b _~_~) + (~_-.!._~) =0. 
be b e ae a e ab a b 
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We have 
x-a-b-c _ x-b-a-c __ x-e-a-b =0 

be -l ac f ab . 

lIenee 

( 1 1 1) (x-a-b-c) /j'C+/iC+-ab =0, 

and, consequently, 
x = a + b + c. 

It is assumed, of course, that none of the quantities a, b 

and c, as also bi +.!.. +.!.b is equal to zero. 
c ac a 

3. If we put in our equation 

6x + 2a = A, 3b + c = B, 2x + 6a = C, b + 3c = D, 

then it is rewritten in the following way 

A+B C+D 
A-B = C-D . 

Adding unity to both members of the equation, we find 

2A 2C 
A-B .-- C-D . 

Likewise, subtracting unity, we get 

2B 2D 
A-B = C-D . 

Dividing the last equalities termwise, we have 

A C 
7J-=-75' 

i.e. 
6x+2a 2x+6a 
3b+e = b+ 3e . 

Hence 

Finally 
ab 

.T=-. 
c 
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4. Add 3 to both members of the equation and rewrite 
it in the following way 

( a+~-x + 1) + ( a+~-x + 1) + ( b+:-x + 1) = 

Hence 

(a+ b+c-X') ( ! + ~ + ! ) =4 a~~t~-:·x . 
Consequently 

( 1 1 1 4) 
(a+b+c-x) a-+T+c- a.j-b te =0 

and, finally, 
x = a + b + c. 

5. Taking V b + x outside the brackets in the left mem­
ber, we get 

V b + x b + x = --=- VX. 
bx a 

Consequently, 

Hence 
p+1 p 

( b+X)P be 
-x- =a' b~x= (~ r+ 1 

Further 
p 

!!.. = (.!l.:..)P+I -1 
x a ' 

b 
x=-----p 

( b: r+ 1 -.1 

6. 1° Squaring both members of the given equation, we 
fInd 

x + 1 + x - 1 + 2V x2 - 1 = 1. 
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2V x2 - 1 = 1 - 2x, 
4x2 - 4 = 1 + 4x2 - 4x, 

5 
x =7;. 
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Since squaring leads, generally speaking, to an equation 
not equivalent to the given one, or rather to such an equa­
tion which in addition to the roots of the given equation may 
ha ve other roots different from them (so-called extraneous 
roots), it is necessary to check, by substitution, whether 

! is really the root of the original equation. The check shows 

that ! does not satisfy the original equation (here, as befo­

re, we consider only principal values of the ,roots). 
2° Carrying out all necessary transformations similar to 

the previous ones, we find that x = { is the root of our 

equation. 
7. Cube both members of the given equation, taking the 

formula for the cube of a sum in the following form 

(A + B)3 = A3 + B3 + 3AB (A + B). 

We ha\fe 

a + Vx+ a-V x+3 V a2 -x(Va+ V x·j-V a-V;;) =b. 
Since 

V V-
a+ V x+ a-V x=V"b, 

we have 

2 V-- V- 2 (b-2a)3 a-j-3 a2 -x· b=b, x=a - 27b . 

We assume that a and b are such that 

2_ (b-2a)3 >-0 
a 27b ~. 

Since the equality of cubes of two real numbers also 
means the equality of the numbers themselves, the found 
valliI' of x satisfies the original equation as well. 
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8. Squaring both members of the equation, we find 

- V X4 - X 2 = X 2 - 2x. 
Hence 

x2 [X2 - 1 - X 2 - 4 + 4x] = X 2 (4x - 5) = 0. 

Thus, the last equation has two roots x = ° and x = !. 
Substituting them into the original equation, we see that 
the unique root of this equation is 

or 

5 
x=t;. 

9. Getting rid of the denominator, we obtain 

Vb(x-b)=Va(x-a), b(x-b)=a(x-a), x=a+b. 

As is easily seen, this value of x is also the root of the origi­
nal equation. 

10. Multiplying both the numerator and denominator by 
V a + x + Va - x, we get 

Hence 

-v a2 -x2 =xVb-a. 

Squaring both members of this equality, we find two roots 

x=o, 2aVii 
x = 1+b . 

However, the first of these values is not the root of the ori­
ginal equation, the second one will be its root if 
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Indeed, we have 

1;-::-;-:: ,/ 2a-V;; V- ,/(1+-Vb)2=Vli 1+ Vb , 
V a + x = V a + ""T+b ~--' a V 1 + b -V H- b 

Va __ x='/a_2aYb=Vli 1 /(Yb_1)2 = 
V 1 :-b V 1+b 

= Va -V;;-1 (if Vb-1;?O). 
-V1+b 

Substituting the obtained values for V a + x and -V a - x 
into the original equation, we make sure that our assertion 
is true. 

11. Adding all the given equations, we have 

I + + a+b+c+d 
.TTY Z V= 3 

Consequently 

a+b+c+d 
v=(x+y+z+v)---(x+y+z)=~ -a~ 

3 

Likewise, we obtain 

a+c+d-2b a+b+d-2c a+b+c-2d 
Z= 3 ,Y= 3 ,x= 3 . 

12. Adding all the four equations, we get 

4Xl = 2al + 2az + 2a3 + 2a4, 

Multiplying the last two equations by -1, and then adding 
all the four equations, we find 

Similarly, we get 
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13. Put X + y + z + V = s. Then the system is rewrit­
ten as follows 

so that 

ax + m (s - x) = k 

by + m (s - y) = l 

cz + m (s - z) = P 

dv + m (s - v) = q 

ms + x (a - m) = k, ms + y (b - m) = l, 

ms + z (c - m) = p, ms + v (d - m) = q. 
Hence 

k In Imp m 
X = a-m - a-m S, y= b-.m - b-m s, z= c-m - c-m S, 

q m 
v=-----s. 

d-m d-m 

Adding these equalities termwise, we find 
kIp q 

s= a-m + b-m +c=m+ d-m-

( 1 1 1 1) -ms --+--+--+-- . a-m b-m c-m' d-m 

Consequently 

s [1 +m( a~m + b~m + c~m + d~ln) ] = 

=_k_+_I_+_p_+_q_ . 
a-m b-m c-m d-m 

Wherefrom we find s, and then from the equalities (*) we 
obtain the required values of the unknowns x, y, z and v. 

14. Put 

Hence 
Xi = ai + miA, 

X2 = a2 + m2A, 

A. 
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Substituting these into the last one of the given equations, 
we get 

Xt + X 2 + . . . + Xp = a = 
= (at + a2 + + a p ) + 'A, (mt + m2 + ... + m p )' 

Consequently, 
a-at-a2-'" -ap 

'A, = , 
mt+ m2+···+ mp 

and then we readily get the values of 

15. If we put 
1,1,1,1, 
-X=x, y=y, -;=Z, v=v, 

then the solution of this system is reduced to that of Pro­
blem 11. Using the result of Problem 11, we easily obtain 

3 2 
x = a + b + c - 2d ' Y = a + b + d - 2c ' 

3 3 
Z = a+c+d-2b' V = b+c+d-2a • 

16. Dividing the first equation by ab, the second by ae 
and the third by be (assuming abe =1= 0), we get 

Hence 

~= (.::.+.1L+~) __ ('::'+.1L) =~ (_c +J:...+...!:.) __ c. 
cab cab 2 ab ac bc ab 

z a2 + b2 -c2 
Consequently, -= 2 b c a c 
analogously 

. a2 + b2 -c2 
I.e. Z = 2ab and then 

a2 +c2_b2 b2 +c2 _a2 
Y = 2ac ' x = 2bc . 

17. First of all we have an obvious solution x = Y = 
= z = O. Let us now look for nonzero solutions, i.e. for 
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such in which x, y, z are not equal to zero. Dividing the 
first of the given equations by yz, the second by zx and the 
third by xy, we obtain 

":'+.!:.=2d ~+!...=2d' .!:.+~=2d". 
z y 'x z 'y x 

Hence 

~+.!:.+~ =d+d' +d". 
x y z 

Therefore 

!!.-=d'+d" -d, .!:.=d+d"-d' .:....=d+d'-d". x y , z 

Finally 
abc 

X = d'+d"-d' Y = d+d"-d" Z = d+d'-d" • 

18. Rewrite the system in the following way 
ay-1-b."C 1 az+cx 1 bz+ey 1 

xy - C ' xz = 11 ' yz a 

Hence 

~-L.!:.-!. a c 1 b c 1 
x I Y - e' x + -;=1}' y+-;=a-. 

Consequently (see the preceding problem) 
2a2be 2ab2e 2abe2 

x = ae + ab _ be ' Y = be + ab _ ae ' Z = be + ac - ab . 

19. The obvious solution is x = Y -; Z = O. Dividing 
both members of each equation of our system by xyz, we get 
1111_1 111_1 
Xzi~-Yz-~' ~+Yz-Xz-bz' 

1 111 
y.-+x;-;y = "C2' 

Adding pairwise, we find 
21121 1 
~=az+'b2' 1iI='b2+7' 

Consequently 
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Multiplying the equalities, we obtain 

2 2 2 8a4b4c4 

x y z = (a2 + 112) (b2 + C2) -(a-=-2 +---'C2C:-) 

Hence 

2a2b2 

xy = a2 +b2 ' 

we find for z two values which differ in the sign. By the 
obtained value of z we find the corresponding values of y 
and x from the equalities (*). Thus, we get two sets of 
values for x, y and z satisfying our equation. 

20. Adding all the three equations, we find 
(x + y + z) (a + b + e) = O. 

Hence 

whence 
a-b a-~c ii-a 

X = a + b + c' Y =- a + b + c' z ~ a -i b + c 

21. Adding all the three equations termwise, we get 

(b + e) x + (e + a) y + (a + b) z =-= 2a3 + 2b3 + 2e3 • 

Using the given equations in succession, we fmd 

2 (b + e) x = 2b3 + 2e3 , 2 (e + a) y = 2a3 + 2e3 , 

2 (a + b) z = 2a3 + 2b3 , 

whence 

x = b2 - be + e2 , y = a2 - ae + e2 , z = a2 - ab + b2 • 

22. Consider the following equality 
x y z (8-A) (8-J.t) (8-v) 

a+8+ b+8 +T+e- 1 = - (8+a)(6+b) (8+c) . 

Let us transform the equality, by reducing its terms to a 
common denominator and then rejecting the latter. We get 
a second-degree polynomial in 8 with coefficients depending 
on x, y, z, A., ~, '\I, a. b. c, which is equal to zero. If now we 
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substitute successivly A, /-.l and 'V for a into the original 
expression, then, by virtue of the given equations, this 
expression (and, consequently, the second-degree polyno­
mial) vanishes. However, if a second-degree polynomial 
becomes zero at three different values of the variable, then 
it is identically equal to zero (see Sec. 2) and, consequently, 
the equality 

x y z 
a+8 + b+8 + c+8 -1 = 

(8-1..) (8-p,) (8-v) 

(8+a) (8+b) (8+c) 

(by virtue of existence of the three given equations) is an 
identity with respect to a, i.e. it holds for any values of a. 

Multiplying both members of this equality by a + a, put 
e = -a. Then we find 

x = ....:(_u ...:..+-;-1....:..) ...:..(a-;-;+,-;-,-p,,-)(.:...,a,....:+_v_) 
(a-b) (a-c) 

Likewise we get 
(b+l..) (b+p,) (b+v) 

Y= (b-c) (b-a) , 
(c+l..) (c+p,) (c+v) z= . (c-a) (c-{J) 

Of course, we assume here that the given quantities A, /-.l, 
v, as also a, band c, are not equal to one another. 

23. The given equations show that the polynomial 

ex3 + xex2 + yex + z 
vanishes at three different values of a, namely at ex = a, at 
ex = b and at ex = c (assuming that a, band c are not equal 
to one another). 

Set up a difference 

ex3 + xex' + yex + z - (ex - a) (ex - b) (ex - c). 

This difference also becomes zero at ex equal to a, b, c. 
Expanding this expression in powers of ex, we obtain 

(x + a + b + c) ex2 + (y - ab - ac - bc ) ex + 
+ z + abc. 

This second-degree trinomial in ex vanishes at three different 
values of ex, and therefore it equals zero identically and, 
consequently, all its coefficients are equal to zero, i.e. 

x + a + b + c = 0, y - ab - ac - bc = 0, 
z + abc = O. 
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x = -(a + b + c), 

y = ab + ae + be, 

z = -abc 
is the solution of our system. 

24. We find similarly 

t = -(a + b + e +- d), 

x = ab + ae + ad + be + bd + cd, 

y = -(abc + abd + aed + bcd), 

z = abed. 

21!J 

25. Multiplying the first equation by r, the second by p, 
the third by q and the fourth by 1 and adding, we get 

(a3 + a2q + ap + r) x + (b3 + b2q + bp + r) y + 
+ (e3 + e2q + ep + r) z + (d3 + d2q +- dp + r) It 

= mr t- np + kq + l. 
Let us choose the quantities r, p and q so that the follo­
wing equalities take place 

b3 + b2q +. bp + r = 0, 
c3 + e2q + ep + r = 0, 

d3 + d2q + dp + r = O. 
Hence, we obtain (see Problem 23) 

q = -(b + e. + d), p = be + bd + cd, r = -bcd, 

and, consequently 
N N 

x= a3+a2q+ap+r = (a-b)(a-c) (a-d) , 

where 

N = -mbedo + n (be + bd + cd) - k (b + e + d) -I- l. 

As to the equality 

a3 + a2q + ap + r = (a - b) (a - c) (a - d), 
it follows readily from the identity 

a,3 + qa.2 + pa. + r = (a. - b) (a. - c) (a. - d). 
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To find the variable y, the quantities q, p and r are so chosen 
that the following equalities take place 

a3 + a2q + ap + r = 0, 
c3 + c2q + cp + r = 0, 
rJ3 + d2q + dp + r = O. 

The remammg variables are found analogously. 
26. Put 

XI + X2 + . . . + Xn = S. 

Adding the equations term by term, we get 

s + 2s + 3s + . . . + ns = al + a2 + . . . + an' 
But 

1+2+3+ 

Therefore 

+ n = n(n+1) 
2 

(an arithmetic pro­

gression). 

2 
s = n (n+1) (al + a2 + ... + an) = A (for brevity). 

Subtracting now the second equation from the first one, we 
find 

XI + X2 + xa + ... + xn - nXj = al - a2' 

Hence 

and 
A+a2- al 

XI= n • 

Subtracting the third equation from the second, we get 
A+aS-a2 

X2= n 

and so on. 
27. Put 

Then we have 

Hence 

XI + x 2 + . . . + xn = S. 

-s + 2xI = 2a, -s + 4X2 = 4a, 

-8 + 8X3 = 8a, t • t, -8 + 2nxn = 2na. 

8 S , B 
XI == a + 2" Xa == a + 4"' Xa = a +"8' ... , Xn = a + 2n' 
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Adding these equalities, we get 

( 1 1 1 ) 
s=na+s 2+4+'" +2'1 . 

But 

Therefore 

Consequently 

S 
X2 = a + 4 = a + 2n - 2na = a (1 + n· 2n - 2 ) and so on. 

28. Let 
Xl + X2 + X3 + . . . + Xn = S = 1. 

Then 

s - X2 = 2, s - X3 = 3, . . -, S - Xn -1 = n - 1, 
S - Xn = n. 

Consequently (since s = 1) 

x2=-1, x3=-2, 

Hence 

. . -, Xn = -(n - 1). 

X2 + X3 + ... + Xn = - [(1 + 2 + ... + (n - 1)] 
n(n-1) 

2 
Finally 

Xl = 1 - (X2 + X3 + 
29. Suppose the equations are compatible, i.e. there 

exists such a value of X at which both equations are satisfied. 
Substituting this value of X into the given equations, we 
get the following ideQtities 

ax + b = 0, a'x + b' = 0. 

Multiply the first of them by b', and the second by b. Sub­
tracting termwise the obtained equalities, we find 

(ab' - a'b) x = 0. 
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If the common solution for x is nonzero, then it actually 
follows from the last equality 

ab'-a'b=O. 

If the common solution is equal to zero, then from the ori­
ginal equation it follows that 

b = b' = 0, 

and therefore in this case also 

ab' - a'b = 0. 

And so, in both cases, if the two given equations have a 
common solution, then 

ab' - a'b = 0. 

Hence, conversely if the condition 

ab' - a'b = ° 
is satisfied, the two given equations have a common root 
(the coefficients of the equations are proportional), and, 
consequently, they are compatible. 

30. To prove that the given systems are equivalent it is 
necessary to prove that each solution of one of the systems 
is simultaneously a solution for the other system. Indeed, 
it is apparent, that each solution of the first system is at 
the same time a solution for the second system. It only 
remains to prove that each solution of the second system 
will also be a solution for the first system. Suppose a pair of 
numbers x and y is the solution of the second system, i.e. 
we have identically 

l£ + l'£' = 0, 
m£ + m'£' = 0, 

where 
£ = ax + by + c, £' = a'x + b'y + c'. 

Multiplying the first equality by m' and the second by l', 
and subtracting them termwise, we find 

(lm' - ml') £ = 0. 
Likewise, multiplying the first equality by m and the se­
cond by l, and subtracting, we get 

(lm' - ml') ~' = 0. 
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But since, by hypothesis, 

lm' - ml' =1= 0, 

it follows from the last two equalities that 

~=O 
and 

r = 0, 
i.e. 

ax + by + c = ° 
and 

a'x + b'y + c' = 0. 
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Thus, the pair of numbers x and y, which is the solution of 
the second system, is simultaneously the solution of the 
first system. 

31. Multiplying the first equation by b' and the second 
by b, and subtracting termwise, we find 

(ab' - a'b) x + cb' - c'b = 0. 

We get similarly 

(ab' - a'b) y + c'a - a'c = 0. 

These two equations are equivalent to the original ones. 
It is evident that if ab' - a' b =1= 0, then there exists one 
and only one pair of values of x and y satisfying the last 
two equalities, and, consequently, the original system as 
well. 

32. Multiplying the first equality by b' and the second 
by b, anrl subtracting, we find 

(ab' - a'b) x = 0. 

Since, by hypothesis, ab' - a' b =1= 0, it follows that x = 0. 
In the same way we prove that y = 0. 

33. From the first two equations we get 
e'b-cb' a'e-e'a 

.c -= ab' -a'b' y = ab' -a'b . 

If the three equations are compatible, then a pair of num­
bers x and y being the solution of the system of the first two 
equations must also satisfy the third equation. Therefore, 
if the three given equations are compatible, then there 
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exists the following relation 

a" e'b-eb' + b" a'e-e'a +e" = ° 
ab' -a'b ab' -a'b 

or 

a" (e'b - eb') + b" (a'e - e'a) + e" (ab' - a'b) = 0. (*) 

Conversely, the existence of this relation means that a 
solution, which satisfies the first two equations, satisfies the 
third one as well. This relation may be rewritten in the 
following ways 

a' (eb" - e"b) + b' (ac" - ca") + e' (ba" - b"a) =~ 0, 

a (e"b' - e' b") + b (a"e' - e"a') + e (b"a' - a"b') = 0. 

Hence it follows that the solution of each pair of the three 
equations is necessarily the solution of the third equation, 
i.e. our system is compatible provided the condition (.) 
is observed. 

34. Subtracting from the first equality the second, and 
then the third one, we find 

(a - b) y + (a2 - b2) Z = 0, (a - c) y + (a2 - e2) z = 0. 

Since a - b =1= ° and a - e =1= 0, we have the following 
equalities 

y + (a + b) z = 0, y + (a + c) z = 0. 

Subtracting them term by term, we have 

(b - c) z = 0. 

But by hypothesis b - e =1= 0, therefore z = 0. Substitu­
ting this value into one of the last two equations, we find 
y = 0. Finally, making use of one of the original equations, 
we get 

x = 0. 

35. Multiplying the first equality by B j and the second 
one by B, and subtracting them termwise, we get 

(AB t - AtB) x + (CB t - CtB) z = 0. (1) 
We find analogously 

(ACt - AtC) x + (BCt - BIC) y = 0. (2) 
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Suppose none Qf the expressions 

ABI - AlB, CBI - CIB, ACI - AIC 

is equal to zero. Then we get 
x z' 

C1B-CBI - ABI-AIB 
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[multiplying both members of the first equality by the 
product 

and 
x y 

Thus, in this case the required proportion really takes 
place. 

Let now one and only one of the expressions 

ABI - AlB, CBI - CIB, ACI - AIC 

vanish. Put, for instance, CBI - CIB = O. Then from 
equalities (1) and (2) we get x = O. Further, suppose that 
two of the mentioned expressions, for instance, CIB - CBI 
and CAl - ACI are equal to zel'o, and the third one, i.e. 
ABI - AlB is nonzero. We then find x = y = O. In these 
cases our proportion, or, more precisely, three equalities, 

x = ').. (CIB - CBI), 

y = ').. (CAl - ACI), 

z = ').. (ABI - AlB), 

will also take place. 
Thus, in these cases two given equations determine the 
variables x, y and z "accurate to the common factor of pro­
portionali ty". 

If all the three quantities 

ABI - AlB, CBI - CIB and ACI - AjC 

are equal to zero, then there exists the following proportion 

A B C 
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In this case the two equations (forming a system) turn 
into one, and nothing definite can be said about the values 
of the variables x, y and z which satisfy this equation. 

36. From the first two equations (see the preceding pro­
blem) we get 

x y z 
oc-b2 bc-a2 ab-c2 

Hence 

x = ').. (ae - b2), y = ').. (be - a2 ), z = ').. (ab - e2). 

Substituting these values into the third equation, we find 

b (ae - b2) + a (be - a2) + e (ab - e2) = 0 
or 

a3 + b3 + e3 - 3abe = O. 

37. Multiplying the first two equations, we get 

x 2 z2 y2 
----1--a2 c2 - b2' 

The same result is obtained by multiplying the third equa­
tion by the fourth one, which shows that if there exist any 
three of the given equations, then there also exists a fourth 
one, i.e. the system is compatible. 

To determine the values of x, y and z satisfying the given 
system proceed in the following way: equating the right 
members of the first and the third equations, find 

Solving this equation with respect to y, we have 

ft-A. 
y=b ft+A. . 

Substituting this into the first two equations, we get 

=- ...:. _ 2A.ft 
a + c - ft+A. ' 

Hence 

x=a 

:r z 
a c 

2 
ft+A.· 
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38. Rewrite the system in the following way 

a (x + py) + b (x + qy) = ap2 + bq2 

ap (x + py) + bq (x + qy) = ap3 + bq3 

ap"-l (x + py) + bqh-l (x + qy) = ap"+l + bqh+l. 
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Now it is obvious that the system is equivalent to the follow­
ing two equations 

x + py = p2, X + qy = q2, 

and, hence, the system is compatible. 
39. We have 

X2 = al - Xj, 

X3 = a2 - X2 = a2 - al + XI, 
X4 = a3 - X3 = a3 - a2 + al - XI, 

Xn = an -I - an -2 + . . . + a2 + al + XI' 
I t should be noted that in the last equality the upper signs 
will occur when n is odd, and the lower signs when n is 
even. 

Consider the two cases separately. 
10 Let n be odd. Then 

Xn = an-l - an -2 + . . . + a2 - al + XI' 
On the other hand, 

Xn + XI = an' 
From these two equalities we get 

an -an-t +an-2-'" -a2 +at 
Xj= 2 ' 

and, hence, 
ai-an +an-t -.,. -a3+ a2 

X2= 2 ' 

a2 - at -1-- an - ... - a4 + a3 
X3= 2 ' 

20 Let now n be even. Then 

Xn = an-l - an-2 + ... - a2 + al - Xl' 



228 sotution.~ 

On the other hand, 

Consequently, for the given system of equations to be com­
patible the following equality must be satisfied 

an -I - an -2 + . . . - a2 + al = an, 

i.e. 

an + an -2 + . . . + a2 = an -I + an -3 + . . . + al 

(the sum of coefficients with even subscripts must equal 
the sum of coefficients with odd subscripts). It is apparent 
that in this case the system will be indeterminate, i.e. will 
allow an infinite number of solutions, namely: 

XI = A, 
X2 = al - A, 

X3 = a2 - al + A, 
X4 = a3 - a2 + al - A, 

Xn = an-I - a n -2 + ... + a3 - a2 + aj-A, 

where A is an arbitrary quantity. 
40. From the first two equations we find 

x y z 
-an2--""'b2'-= A. 
a-d - b-d 

Substituting this into the third equation, we have 

A { a~d ( b~d - C~d ) + b~d ( c~2d - a~d ) + 

+ c ~ d ( a ~ d - b b
2 

d ) } = d (a - b) (b - c) (c - a). 

After sim plifica tion we get 

a (b 2 C2 ) b (C 2 a2 ) 
a-d b-d - c-d + b-d c-d' - a-d + 

c (a2 b2 ) d (a-b) (b-c) (a-c) 
+ c-d a-d - b-d = (a-d) (b-d) (c-d) . 

Therefore 
A = -(a - if) (b - if) (c - if), 
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and, consequently, 

x = (a - d) (b - e) (db + de - be), 

y = (b - d) (e - a) (de + da - ae), 

z = (e - d) (a - b) (ad + db - ab). 
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41. Solving the last two equations with respect to x 
and y, we find 

Hence 

x+n= (c-m) (n--a) 
z+c 

_ .:...( b_-_l..:...) .:...( m_----'c)e­y+b= 
z+m 

x+a= (c-m)(n-a) --(n-a)=(a-n) z+m . 
z+c z+c 

Analogously 

+ 1 = (l- b) z + c . 
Y z+m 

Substituting the founll values of x + a and y + 1 into the 
first equation, we see that it is a consequence of the two 
last equtions. Thus, the system is indeterminate, and all 
its solutions are given by the formulas 

(c-m) (n-a) 
x= -n, 

z+c 

for an arbi trary z. 

y = -,(_b _l),-;,(,--m_-_c...:.)_ 
z+m 

b, 

42. From the second and the third equations we have 

(1 - k) x + ky = - [(1 + k) x + (12 - k) y], 

hence, taking into account the first equation, (5 - k) y = 
= 0 wherefrom either k = 5 or y = 0 (hence x = 0), which 
yields (substituting into the second equation) k = -1. 

43. We have 

sin 2a = 2 sin a cos a, 

sin 3a = sin a (4 cos2 a - 1), 

sin 4a = 4 sin a (2 cos3 a - cos a). 
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Therefore the first of the equations of our system is rewrit­
ten in the following way 

x + 2y cos a + z (4 cos2 a - 1) = 4 (2 cos3 a - cos a). 

The remaining two are similar. Expand this equation in 
powers of cos a. We have 

8 cos3 a - 4z cos2 a - (2y + 4) cos a + z - x = O. 

Putting cos a = t and dividing both members by 8, we get 

Our system of equations is equivalent to the statement that 
the equation (*) has three roots: t = cos a, t = cos band 
t = cos c, wherefrom follows (see Problem 23) 

z 
2"= cos a+ cos b + cos c, 

yt 2 = -(cosacosb+cosacosc+cosbcosc), 

x-z 
-8- = cos a cos b cos c. 

Therefore the solution of our system will be 

x = 2 (cos a + cos b + cos c) + 8 cos a cos b cos c, 

y = -2 - 4 (cos a cos b + cos a cos c + cos b cos c), 

z = 2 (cos a + cos b + cos c). 

44. Put 
abc ---------k sin A - sinB - sinG - . 

Since A + B + C = 11:, we have 

sin A = sin (B + C) = sin B cos C + cos B sin C. 

But from the given proportion we have 

'A a 'B b ·C C 
SIll =-,;' SIll =-,;' SIll =-,;.' 

Substituting this into the last equality, we find 

a = b cos C + c cos B. 

The rest of the equalities are obtained similarly. 
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45. Expressing a and b in termS of c and trigonometric 
functions (from the first two of the given equalities), we get 

b ~. c (cos A --- cos B cos C) 
- sin2 C . 

c (cos B + cos A cos C) 
a= sin2 C 

(1) 

(2) 

Substituting (1) and (2) into the third equality anrl accom­
plishing all necessary transformations, we find 

1 - cos2 A - cos2 B - cos2 C - 2 cos A cos B cos C = O. 

Let us now prove that 

A + B + C = n. 

Transform the obtained equality in the following way 

cos2 A + 2 cos A cos B cos C = 
= 1 - cos2 B - cos2 C - cos2 B cos2 C + cos2 B cos2 C, 

cos2 A + 2 cos A cos B cos C + cos2 B cos2 C = 

= 1 - cos2 B ~ cos2 C (1 - cos2 B), 

((OS A + cos B cos C)2 = sin2 B sin2 C. 

But since we have obtained [soe (1)] that 

cos A + cos B cos C = 
h sin2 C 

c >0, 

we havE' 

cos A + cos B cos C = sin B sin C, 

cos A = sin B sin C - cos B cos C =~ - cos (B -;- C), 

I C A+B+C A-B-C cos A T cos (B + ) = 2 cos 2 cos 2 = 0, 

wherefrom follows that either 

A+~+C =(2l+1) ~ 
or 

A-B-C ~ 
--.",-- = (2l' -l- 1) ~ 

2 '2 ' 
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where land l' are integers. Let us first show' tha t the second 
case is impossible. In this case we would have 

A - B - C = (2l' + 1) n, B = A - C - (2l' + 1) n, 

cos B = cos (A - C - n) = -cos (A - C) = 

= -cos A cos C - sin A sin C. 
Consequently, 

cos B + cos A cos C = -sin A sin C < 0 

which is impossible, since we have obtained (2) 

a sin2 C 
cosB+cosAcosC= > O. 

c· 
Thus, there remains only the case 

A -+:- B + C = (2l + 1) n. 

However, by virtue of the inequalities, existing for A, B 
and C, we have 

i.e. 

and 

0< 2l + 1 < 3, 

2l + 1 = 1 

A + B + C = n. 

It only remains to show that 
abc 

sin A = sin B = sin C . 

We ha ve shown that 

cos A + cos B cos C = sin B sin C. 

On the other hand, 

cos B + cos A cos C = cos (n - A - C) + cos A cos C = 
= -cos (A + C) + cos A cos C = 

= sin A sin C. 

Using this equality and also equalities (1) and (2), we easily 
obtain the required proportion. 

46. Let us first show that equation (2) follows from equa­
tions (1). Multiplying the first of equations (1) by a, the 
second by b and the third by - c and adding them term-
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wise we get 
a2 + b2 - e2 = 2ab cos C, 

i.e. the third of equations (2). Likewise we obtain the re­
maining two of equations (2). 

To obtain equations (1) from equations (2) add the first 
two of (2). Collecting like terms, we find 

2e2 -2 be cos A - 2 ae cos B = O. 
Hence 

e = b cos A + a cos B, 

i.e. we get the third of equations (1). The rest of them are 
obtained similarly. 

47. From the first equality we get 

Hence 

cos a - cos b cos c cos A = ---:--.,----,;---­
sin b sin c 

sin2 A = 1 - cos2 A = 
sin2 b sin2 c- (cos a-cos b cos c)2 

sin2 b sin2 c 

_ (1-cos2 b) (1-cos2 c)-(cos a-cos b cos c)2 
- sin2 b sin2 c 

1-cos2 a -cos2 b-cos2 c+ 2 cos a cos b cos c 
sin2 b sin2 c 

Consequently 
sin2 A 1- cos2 a-cos2 b-cos2 c+ 2 cos a cos b cos c 
sin2 a = sin2 a sin2 b sin2 c 

Since the given formulas turn one into another by means 
of a circular permutation of the letters a, b, e, A, B, C, 
and as a result of this transformation the right member of 
the last equality remains unchanged, we actually have 

sin2 A sin2 B sin2 C 
sin2 a = sin2 b = sin2 c . 

But the quantities a, b, c and A, B, C are contained between 
o and n, therefore 

Sin A sin B sin C 
,in (1 = SI!lb ---< Si"ri"'C" . 
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48. 1° Let us take the last two of the eqllalities (*) from 
the preceding problem. We have 

cos b - cos c cos a = sin a sin c cos B, 

-cos a cos b + cos c = sin a sin b cos C. 

Multiplying the first of them by cos a and the second by 1 
and then adding, we find 

-cos c cos2 a + cos c = sin a sin c cos B cos a + 
+ sin a sin b cos C. 

Hence 
cos c sin a = sin c cos a cos B + sin b cos C. 

But since it was shown in the preceding problpID that from 
the equalities (*) follows the proportion 

sin a 
~in A 

sin I! 
sin H 

sin c 
sin C . 

in the last equality we can replace the quantities sin a, 
sin b anrl sin c by ones proportional to them . We get 

cos c sin A -c sin C cos a eos B -t- sin B cos C. 

It is apparent, that there exist six similar equalities. Let us 
take one more of them, namely, the one which also contains 
cos c and cos a. It will have the form 

cos a si n C = si n A cos c cos B t si Il B eos A . 

(This equality can be obtained in the following way: mul­
tiply the second of the equalities (*) by cos c and the first 
one by unity, add them, and in the obtained equalityrepla­
ce sin c by sin C .and so on.) Thus, we have 

cos c sin A = sin C cos a cos B + sin B cos C, 

cos a sin C = sin A cos c cos B + si n B cos A. 

Eliminating cos c, we find 

cos A = -cos B cos C + sin B sin C cos a. 

The rest of the equalities are obtained from this one w,ing a 
circular permutation. 

2° The formulas (*) of Problem 47 make it possible to 
express cos A, cos B and cos C in terms of sin a, sin b, 
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sin c and cos a, cos b, cos c. Let us find the expressions for 
· A d A W h S1l1 "2 an cos "2' eave 

2 . 2 A 1 A 1 cos a - cos b cos c sIn - = - cos = - . . 2 sm b sm c 

CQS (b-c) - cos a 
sin b sin c 

2 COS2 ~ = l' A 1 + cos a - cos b cos c 
2 + cos ~ sill b sin c -

cos a-cos (b+c) 
sinbsinc 

Hence 

11 a+b-c a+,·-b 
A sill 2 sill 2 

sin -= 
2 sinhs[nc 

V a+b+c. b+c-a 
A sin 2 Sill 2 

cos 2 = ----s-:i-n-:b-s-:. jC-Jl-c-' ---

Similar expressions are obtai ned for si n ~ . cos {- and 

· C C . A+B S1I1 2 , cosT' Now compute SIll --2-' We have 

· A+B . A B A. B sln--- = sIn - COS _...L cos- SIll - = 2 2 2 I 2 2 

vi a+b+e. a-t-b-e 
sin 2 Sill . 2 

~= ----s'7in- a-s-:· [-n-;b---- X 

( 
. a+e-b b+c-a ) a-b 

. Sill 2 sin 2 C cos --2-
X sine +---s"-in-c-- =cosT' c 

cos T 
Thus, we have obtained the following formula 

a-b 
. A+B cos -2-

SlJl--2-= e 

cosT 

C 
cosT' 
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Likewise we find 
a+b 

A+B cos -2- . C 
cos --2- = c sm T . 

cosT 

Since e ---= A + B + C - J't, we have 
A+B 11: C-e 
-2-=2--2-

Therefore 
. A+B C-e 

sm --2- = cos -2-

and, consequently, 

Hence 

C-e 
cos-2-

C 
cosT 

C-e C 
cos -2- -cos 2 

C-r C 
cos-2-+cos T 

a-b 
cos-2-

c 
cosT 

a-b c 
cos -2--cOS 2 

a-b c cos-- J cos-2 I 2 

and, consequ('ntly, 

e ( C e) p-b p-a tanTtan 2-T =tan-2-tan-2-· 

Using the formula 
a+b cos--

cos AtB = ; 
cosT 

we find analogously 

. C 
smT' 

e ( C e ) p p-c tanTcot T-4 = tan 2 tan-2- • 

(1) 

(2) 

Multiplying the equalities (1) and (2) termwise and 
extracting the square root, we get 

1 ,;r----p------p---a------p--b~----p---c 
tanT8= V tanTtan-2-tan -2- tan--r-' 
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49. We have 

a [tan (x+y) - tan (x+ ~)] + b [tan (x +a) - tan (x+y)] + 

+c [tan (x+~) -tan (x+a)] =0. 
Hence 

asin(I'-Bl bsin(a-I'l I 

cos(x+B)cos(x+l'l + cos(x+a) cos (x+l'l T 

_--,-c_S-,-i n--n+'( B_-----,-a..:...l -:---:- = O. + cos(x+B)cos(x+a) 

a sin (I' - ~) cos (x + a) + b sin (a -- 1') CuS (x + ~) -\-
-I- c sill (~- a) cos (.c + 1') --= (). 

Finally 

a sin (1'- Bl cos a+ b sin (a-I'l cos P + c sin (~-a) cos I' tan x = --.:..!-----!.,'--~'--'-~..,-:~---'-''--~----',.-'------:-__''o~--'-__c_-'-
a sin (1'- Pl sin a +b sin (a-,\,) sin ~ t- c sin (P -- a) sin I' 

50. We have 

') x 
COS"T= 

1+tan2 ~ 
2 

Therefore 

1-tan2~ 
cos x = 2 cos2 ~ _ 1 = 2 

1 +tan2 ~ 
2 

sin x = tan x cos x = 

x 
2tanT 1- tan2 _x_ 

2 
x 

2tany 

1-tan2~ 1-I-tan2~ 1ltan2~ 
2 2' 2 

It is obvious that if tan f is rational, then sin x and cos x 

are also rational. Show that if sin x and cos x are rational, 

then tan ~ is rational too. 

From the first relationship we have 

( 1 + tan2 ~ ) cos x = 1 - tan2 ~ • 

Hence 

tan2 ~ __ = 1 -cos x 
2 1..Lcos X 
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Consequently, if cos x is rational, then tan2 ~ is rational as 

well. But from the second equality it follows that 

2 tan ; = sin x ( 1 + tan2 ; ). 

Hence, it is clear that if sin x and cos x are rational, then 

tan ~ is also rational. 

51. Since Si1l 2 x + cos2 X = 1, we havc 

si (14 .r + cos~ X' + 2 sin2 .r cos2 x ~~. 1, 
i.c. 

sin4 x -+ cos4 X = 1-2 sin2 x cos2 x. 

Therefore the equation is rewritten as 

1 - 2 sin2 x cos2 x = a, 

2 sin2 x cos2 x = 1 - a, 

sin 2 2x = 2 (1 - a), sin 2x = + V2 (1 - a). 

For Lhe solutions to be real it is necessary and sufficient 
that 

+~a~1. 
52. 10 Transforming the leH member of the equation, 

we get 

sin x + sin 3x + sin 2x = 2 sin 2x cos x + sin 2x = 
= sin 2x (1 + 2 cos x) = 0. 

Hence 

(1) sin 2x = 0, 
1 

(2) cos X= --. , 2 

20 In this case the transformation of the left member 
yields 

cos nx + cos (n - 2) x - cos x = 2 cos (n - 1) x cos x -

- cos x = cos x [2 cos (n - 1) x ~ 1] = 0, 

i.e. 1 
either cos x = ° or cos (n - 1) x =2' 
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53. 1° We have 

m (sin a cos x - cos a sin x) -

- n (sin b cos x - cos b sin x) = 0, 

(n cos b - m cos a) sin x - (n sin b - m sin a) cos x = 0, 

[ nsinb-m sin aJ (n cos b - m cos a) cos x tan x - b = 0. 
_ n cos - m cos a 

Hence 

t nsinb-msina 
an :r = n cos b.- m cos a • 

2° We have 

sin x cos 3a + cos x sin 3a = 3 (sin a cos x - cos a sin x). 

Hence 

sin x (cos 3a + 3 cos a) - cos x (3 sin a - sin 3a) = 0. 

But 

cos 3a = 4 cos3 a - 3 cos a, sin 3a = 3 sin a - 4 sin3 a. 

Therefore the equa tion takes the form 

sin x cos3 a - cos x sin3 a = 0. 
And so 

tan x = tan3 a. 

54. I t is easy to find that 

sin 5x = 16 sin5 x-20 sin3 x + 5 sin x. 

Therefore our equa tion takes the form 

-20 sin3 x + 5 sin x = ° 
or 

sin x (1 - 4 sin2 x) = 0. 

Thus, we have the following solutions 

sin x -= 0, sin x = + }. 
55. We have 

2 sin :r cos (a - .r) - sill a + sin (2x - a). 
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The equa tion takes the form 

sin x + sin (2x - a) = 0 
or 

2 . 3x-a x-a 0 
sm -2- cos -2-. = . 

Thus, the following is possible 

. 3x-a 0 d 3x-a sm-2-= an -2-=kn, 
i.e. 

3x= a+2kn, 

where k is any integer. 
Similarly, we have 

a -t 2kn 
x= 3 ' 

cos x;a =0,. x 2 a =(2l+1) ~, x=a+(2l+1)n, 

where l is any integer. 
56. We have 

sin x sin (1'- x) =-} [cos (2x -1') -cos 1']. 

Therefore the equation is rewritten in the following way 

cos (2x - y) - cos y = 2a, 

cos (2x - y) = 2a + cos y. 

57. We have 
. ( + )+. . sin(a+x) 0 sm a x sma SIn x cos (a+x) --mcosacosx= . 

Further 
sin(a+x) 
cos (a-j-x) {cos (a + x) + sina sin x} - m cos a cos x = O. 

Hence 
sin(a+x) 

( --l ) cos a cos x - m cos a cos x = cos a ,-x 
= cos acos x{tan (a+ x) -m}= O. 

Assuming cos a =F 0, we obtain the following equalities 
for determining x 

cos x = 0, tan (a + x) = m. 



Solutions to Sec. 4 241 

58. Rewrite the equation in the following way 

cos2 a + cos2 (a + x) - 2 cos a cos (a + x) = 1 - cos2 x. 

Hence 
[cos a - cos (a + x))2 - sin2 x = 0, 

i.e. 

[cos a - cos (a + x) - sin xl [cos a - cos (a + x) + 
+ sin xl = 0. 

Fnrther 

[cos a (1 - cos x) + sin x (sin a - 1)1 X 

X [cos a (1 - cos x) + sin x (sin a + 1)1 = 0, 

sin2 x [cos a tan ~ + sin a - 11 X 

X [cos a tan ; + sin a + 1] = ° 
(if sin x =J= 0). If sin x = 0, then cos2 a (1 - cos X)2 = 0. 

Now we easily find the following solutions: 

eosx=1, tanx=cota, i.e. x=2kn 
and 

2k--j-1 
2 :rr. 

59. We enn readily obtain 

. 2 tan x 
slll2x= l' t 2 -t- an x 

Therefore 

( 2 tan X) , 
(1-tanx) 1 + 1--j-tan2 x = 1--t-tan x. 

Henee 

(1- tan x) (1 + tan x)2 _ (1 + t ) = ° 
1 + tan2 x an x , 

l+tanx ° ~:-'-:---n-- {1- tan2 x- 1- tan2 x} = , 
1+tan2 x 

tan2 :r ('J + tan x) _ ° 
1 + tan2 x -. 

For determining x we have: tan x = 0, tan x = -1. 
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60. We have 

tan A + tan B = sin (A + B) 
cos A cos B 

Therefore 

tan x+ tan 4x+ tan 2x + tan 3x 
sin 5x ----.--+ cos x cos 4x 

sin 5x 
+ cos 2x cos 3x 

sin 5x 
cos x cos 2x cos 3x cos 4x X 

X {cos 2x cos 3x + cos x cos 4x}. 
But 

cos 3x = 4 cos3 X - 3 cos x. 

Thus, our equation takes the form 
sin 5x 2 

2 3 4 [cos2x(4cos x-3)+cos4x]=0. cos x cos x cos x 

Hence 
sin 5x [4 cos2 2x-cos 2x-1] _ 0 

cos 2x cos 3x cos 4x -. 

Consequently, either sin 5x = 0, i.e. 5x = kn, or 

4 cos2 2x - cos 2x - 1 = 0, 
that is 

8 cos 2x = 1 + V IT. 
61. Substituting the expressions containing X and Y for 

x and y into the trinomial 

ax2 + 2bxy + cy2, 
we get 

ax2 + 2bxy + cy2 = a (X cos 8 - Y sin 8)2 + 

+ 2b (X cos 8 - Y sin 8) (X sin 8 + Y cos 8) + 
+ c (X sin 8 + Y cos 8)2 = 

= (a cos2 8 + 2b cos 8 sin 8 + c sin2 8) X2 + 
+ (a sin2 8 - 2b sin 8 cos 8 + C cos2 8) y2 + 

+ (-2a cos 8 sin 8 + 2c cos 8 sin 8 + 2b cos2 8 -

-2b sin2 8) XY. 
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Since, by hypothesis, the coefficient of XY must be equal 
to zero, we have the following equation for determining 8: 

or 
2b (cos2 e - sin2 8) - 2 (a - c) sin 8 cos 8 = 0 

Thus, 
2b cos 28 - (a - c) sin 28 = O. 

2b 
tan 28 =--. 

a-c 

62. It is obvious tha t 

x+y sin(20+a+~) 
x-y sin(a-~) 

Therefore 

x+y sin2(a-~)+ y+z sin2(~-1')+ z+x sin2(y-a)= 
x-y y-z z-x 

= sin (28 +a +~) sin (a-~) +sin (28+ ~+y) sin (~-y) + 

+ sin (28 + 1'+a) sin (y-a). 

But 

sin (28 + a +~) sin (a -~) = ~ {cos (28 + 2~) - cos (28+2a)}. 

Using a circular permutation, we easily check the vali­
dity of our identity. 

63. 1° Put 

sin x = sin y = sin z = k 
abc . 

We then, have 

sin x = ak, sin y = bk, sin z = ck. 

On the other hand, 

sin z = sin (n - x - y) = sin (x + y) = 

Hence 
= sin x cos y + cos x sin y. 

a cos y + b cos x = c, b cos z + c cos y = a, 

c cos x + a cos z = b. 
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Solving this system, we find 
~+~-~ ~+~-~ 

cos x = 2bc cos y = 2ca 

a2 +b2 -c2 
cos Z = 2ab • 

At k = ° we get also the following solution sin x = 
= sin y = sin z = 0. 

2° Put 
tan x __ tan y _ tan z _ k 
-a---b-----c-- . 

Hence 

tan x = ak, tan y = bk, tan z = ck. 

Adding these equalities term by term, we get (see Problem 
40, Sec. 2) 

(a + b + c) k = tan x + tan y + tan z = tan x tan y tan z. 

Consequently, 

(a + b + c) k - k3 abc ~ 0. 
Thus, 

k=O, k= + Vr a+b+c . 
- abc 

Hence either tan x = tan y = tan z = ° or 

t -. / (a+b+c) a 
anx= + V bc ' 

t -, / (a+b-t-c)b 
any= + V ac ' 

t + -. / (a+b+c) c 
an z= - V ab . 

64. We have 

tan 2b = tan (x + y) = tan x+tan y 
i-tan x tan y 

But, by hypothesis, 

tan x tan y = a, 
therefore 

tan x + tan y = (1 - a) tan 2b. 

Knowing the product and sum of the tangents it is easy 
to find the tangents themselves (see Sec. 5). 
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65. Transform the equation in the following way 
1 

4x+i-. 4x =3x
- z (1+3), 

Hence 

And so 

Consequen tly, 
3 

2x-3=0 and x=T. 

66. Taking logarithms of both members of our equation, 
we find 

(x + 1) 10g1o X = 0. 
Hence 

x=1. 

67. Taking logarithms of the first equation, we find 

x 10g1o a + y 10gio b = 10gio m. 

Finally, we have to solve the system 

68. Put 

x 10gio a + y 10gio b = 10g1o m, 

x + y = n. 

x = M, y = all 

(from this problem on we assume that a > 0, b > 0, a =1= 1, 
b =1= 1 and find positive solutions). 

Then (by virtue of the first equation): 

b~Y = allX. 
But 

Consequently, 
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Hence 
a~s = a'IJX , x (~ - '1']) = o. 

Thus, either x = 0 or 'I'] = s. But at x = 0 we get y = O. 
Rejecting this solution, consider the case 'I'] = i. 

Consequently, 

But 

Hence 

and 

x log a = y log b, 

b' log a = a' log b, 

log b 
~ (logb-Ioga) = log-l-' oga 

1 log b 
og loga 

s= logb-loga 

Therefore 

( log* 10gb ) 
x=b~= b 10gb . logb-Ioga . 

Since the ratio of logarithms of two numbers is independent 
of the base chosen, in the expression 

1 log b 
og Toga 

log b 

we may consider the first logarithms as taken to the base b. 
Then 

and 

110gb 
ogToga 

b log b log b 
log a 

log b 

x = ( log b ) log b-Iog a 
log a 

Analogously, we find 
log a 

=( 10gb ) 10gb-log a 
Y log a 

69. Taking logarithms of the second equation, we find 
logx log y 
loga = 10gb • 
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Putting this ratio to be equal to t we get 

x = as, y = bs. 

247 

Substituting these values into the first equation and assu­
ming a ¥= b±l, we find S = -1. Thus 

1 1 
X=a' Y=T' 

70. We have 

Consequently, mx 
xm=y-Y-. 

Making use of the second equation, we find 
mx 

y-Y-=yn. 

Hence, either y = 1, and then x = 1 or :x = n, i.e. 

x = ..!!:.JL • 
m 

Substituting into the second equation, we have: 

And so 

( ny)m n m =y, m-n (m)m y = - . 
n 

n m 

y = ( : r- n , X = y: = ( : r-n . 

SOLUTIONS TO SECTION 5 
1. We have 

x2 7-( b--!+-,x,.,..) ..;.-( x_+!..-7c ) 
(x-b) (x-c) 

x3 (b + c + x) + xbcx 
(x-b)(x-c) 

Therefore the left member of our equation is equal to 

[ 
x3 b3 c3 ] 

(b+c+x) (x-b)(x-c)+(b-x)(b-c)+(c-x)(c-b) + 

+ bcx [(X_b)x(x_c) + (b_X)b(b_C) + (C_x)c(C_bJ· 
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But (see Problem 8, Sec. 2) 
x 3 b3 c3 

(x-b) (x-c) + (b-x) (b-c) + (c-x) (c-b) = b +e+x, 

x b c_O 
(x-b) (x-c) + (b-x) (b-c) + (c-x) (c-b) - . 

Therefore the equation takes the form 

(b + e + X)2 = (b + e)2. 
Hence 

(b + e + X)2 - (b + e)2 = 0, 

(b + e + x- - b - c) (b + e + x + b + c) = 0, 

and consequently 

XI = 0, X2 = -2 (b + c). 

2. Rewrite the equation in the following way 

(x - a) (x - b) (x - c) (b -c) (e - a) (a- b) {(x-a) (c':a) (a-b) + 

~ ~} + (x-b) (b-c) (a-b) + (x-c) (c-a) (b-c) = O. 

As is known (see Problem 9, Sec. 2) 
a3 b3 

(a-x) (a-b) (a-c) + (b-x) (b-a) (b-c) + 
c3 x3 

+ (c-x) (c-a) (c-bJ + (x-a) (x-b) (x-c) = 1. 

Therefore, the equation is rewritten as follows 

(x-a) (x-b) (x-c) (b-e) (e-a) (a-b) X 

X {1- x 3 
} =0 

(x-a) (x-b) (x-c) 

or 

(b - c) (e - a) (a - b) [(x - a) (x - b) (x - c) - x 3 ] = O. 

Assuming that a, b, e are not equal, we get 

(a + b + c) x 2 - (ab + ae + be) x + abc = 0, 

ab+ac+bc ± V(ab+ac+bc)2-4abc (a+b+c) 
:c= 2 (a+b+c) • 
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For the roots to be equal it is necessary and sufficient that 

(ab + ac + bC)2 - 4abc (a + b + c) = O. 
Hence 

a2b2 + a2c2 + b2c2 - 2a2bc - 2b2ac - 2c2ab = 0, 

(ab + ac - bC)2 - 4a2bc = 0, 

( ~+~_~)2 _~=O. c b a be 

or 

[ ( ;~ + ;ii ) 2 - ! J [( ;~ - ;ii ) 2 - ! J = 0. 

Finally 

( 1 1 1)( 1 ,1 1) 
V~ + Vii - Va Vc --r- Vii + Va x 

( 1 1 1)( 1 1 1) 
X Vc - Vii - Va Vc - Vii + Va =0. 

3. Rewrite the equation in the form 
3 3 

(a_x)2+(x_b)2 _ -b 
1 1 -a , 

(a_x)2+(x_b)2 

wherefrom we have 
1 1 

a-x-(a-x)2 (X-b)2 +x-b-=a-b 

or 
V(a-x) (x-b) = 0. 

Thus, the required solutions will be 

XI = a, X2 = b. 
4. We have 

V 4a+b-5x+ V4b+a-5x=3Va+b-2x. 

Squaring both members of the equality and performing aU 
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the necessary transformations, we get 

Squaring them once again, we find 

(4a + b) (4b + a) - 5x (4a + b + 4b + a) + 25xll = 

= 4 (all + bl! + 4Xll + 2ab - 4ax - 4bx). 
Hence 

XII - ax - bx + ab = 0, 

and, consequently, 
Xi = a, X2 = b. 

Substituting the found values into the original equation, we 
get 

Vb-a+2 Vb-a-3 Vb-a=O. 

2Va-b+ Va-b-3 Va-b=O. 

Hence, if a =1= b, then the equation has two roots: a and iJ 
(strictly speaking, if the operations with complex numbers 
are regarded as unknown, then there will be only one root). 

5. Rewrite the given equation as 

(1 + A) x2 - (a + e + ')..b + ')..d) x + ae + Abd = O. 

Set up the discriminant of this equation D (')..). We have 

D (')..) = (a + e + ')..b + ')..d)2 - 4 (1 + ')..) (ae + Abd). 

On transformation we obtain 

D (')..) = ')..2 (b - d)2 + 2').. (ab + ad + be + de - 2bd -

- 2ae) + (a - e)2. 

We have to prove that D (A) ~ 0 for any')... Since D (A) is 
a second-degree trinomial in ').. and D (0) = (a - e)2 > 0, 
it is sufficient to prove that the roots of this trinomial are 
imaginary. And for the roots of our trinomial to be ima­
ginary, it is necessary and sufficient that the expression 

4 (ab + ad + be + de - 2bd - 2ae)2 - 4 (a - e)2 (b - d)2 
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be less than zero. We ha ve 

4 (ab + ad + be + de - 2bd - 2ae)2 -

- 4 (a - e)2 (b - d)2 = 

= 4 (ab + ad + be + de - 2bd - 2ae -

- ab + eb + ad - cd) X 

X (ab + ad + be + de - 2bd - 2ae + ab -

- eb - ad + cd) = 
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= -16 (b - a) (d - c) (e - b) (d - a). 

The last expression is really less than zero by virtue of the 
given conditions 

a < b < e < d. 

6. The original equation can be rewritten in the follow­
ing way 

3x2 - 2 (a + b + c) x + ab + ac + be = O. 

Let us prove that 

4 (a + b + e)2 - 12 (ab + ae + be) ~ O. 

We have 

4 (a + b + e)2 - 12 (ab + ae + be) = 

= 4 (a2 + b2 + e2 - ab - ae - be) = 

= 2 (2a2 + 2b2 + 2e2 - 2ab - 2ae - 2be) = 
= 2 {(a2 - 2ab + b2) + (a2 - 2ae + e2) + 

+ (b2 _ 2be + e2)} = 
= 2{(a - b)2 + (a - e)2 + (b - e)2} ~ O. 

7. Suppose the roots of both equations are imaginary. 
Then 

p2 _ 4q < 0, p~ - 4ql < O. 
Consequently 

p2 + p= _ 4q - 4ql < 0, p2 + p~ - 2pPI < 0, 
(p - PI)2 < 0, 

which is impossible. 
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8. Let us r!'lwrite the given equation as 

(a + b + e) x2 - 2 (ab + ae + be) x + 3abe = O. 

Prove that its discriminant is greater than or equal to zero. 
We have 

4 (ab + ae + be)2 - 12abe (a + b + e) = 

= 2 {(ab - ae)2 + (ab - be)2 + (ae - be)2} ~ O. 

9.' By properties of the quadratic equation we have the 
following system 

p + q = -p, pq = q. 

From the second equation we get 

q (p ~ 1) = o. 
Hence, either q = 0 or p = 1. From the first one we find 

if q = 0, then p = 0; if p = 1, then q = -2. 

Thus, we have two quadratic equations satisfying the set 
requirements 

x2 = 0 and x2 + x - 2 = O. 

10. We have 

x2 + y2 + Z2 - xy - xz - yz = 

= ~ (2x2 + 2y2 + 2Z2 - 2xy - 2xz - 2yz) 
1 ="2 {(x - y)2 + (x - Z)2 + (y - Z)2} ~ 0 

(see Problems 6 and 8). 
But we can reason in a different way. Rearranging our 

expression in powers of x, we get x2 - (y + z) x + y2 + 
+ Z2 - yz. To prove that this expression is greater than, 
or equal to, zero for all values of x, it is sufficient to prove 
that: firstly 

y2 + Z2 - yz ~ 0 
and, secondly, 

(y + Z)2 - 4 (y2 + Z2 - 1/z) ~ O. 
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It is evident that there exist the following identities 

y2 + Z2 _ yz = ( y _ } Z ) 2 + : Z2, 

(y + Z)2 _ 4 (y2 + Z2 - yz) = -3 (y _ Z)2 

and, consequently, our assertion is proved. 
11. We have 

a2 a2 
X2+ y2+ Z2_ T =x2 + y2+ (a-x- y)2-T' 

I t is necessary to show that the last expression is greater 
than, or equal to, zero for all values of x and y. Rearranging 
this polynomial in powers of y, we get 

a2 
y2+ (x-a) y+x2-ax+T' 

It remains only to prove that for all values of x 

x2-ax+ ~2 ~O, (x-a)2-4 (x2-ax+ ~2) ~O. 
We have 

2 + a2 ( a ) 2 1 2 --- 0 X -ax T= X- 2 +1.2 a ~ , 

(x-a)2-4 (x2-ax+ ~) = -3 (x- ~ a)2 ~O, 
which is the desired result. However, the proof can be car­
ried out in a somewhat different way. Indeed, it is required 
to prove that 

3x2 + 3y2 + 3z2 ~ a2 
if 

x 2 + y2 + Z2 + 2xy + 2xz + 2yz = a2. 

Consequently, it suffices to prove that 

3x3 + 3y2 + 3z2 ~ x 2 + y2 + Z2 + 2xy + 2xz + 2yz 
or 

2x2 + 2y2 + 2Z2 - 2xy - 2xz - 2yz ~ O. 

And this last inequality is already known to us (see, for 
instance, Problem 6). 

12. See the preceding problem. 
13. By the properties of quadratic equation we may write 

a + ~ = -p, a~ = q. 
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Therefore 
SI = -po 

Since a and ~ are roots of the equation 

x2 + px + q2 = 0, 
we have 

a 2 + pa + q = 0, ~2 + p~ + q = O. 

Adding these equalities term by term, we find 

S2 + PSI + 2q = O. 
Hence 

S2 = -PSI - 2q = p2 - 2q. 

Multiplying both members of our equation by Xk, we get 

Xk+2 + pXk +1 + qxk = O. 

Substituting a and ~ and adding, we find 

Sk+2 + PSk+1 + qSk = O. 

Putting here k = 1, we have 

Further 
S3 = -p (p2 - 2q) + qp = 3pq _ p3 

Likewise we find 
S4 = p4 - 4p2q + 2q2, S5 = _p5 + 5p3q _ 5pq2. 

To obtain LI, let us put in our formula k = -1. We have 

SI + PSo + qS_1 = O. 
But 

Therefore 
So = 2, SI = -po 

qs _I = + P - 2p = - p, P S_I = --. 
q 

Likewise we get S-2, S_3, S_4 and S-5' However, we may pro­
ceed as follows 

1 1 ah+f}k Sk 
Sk=-+-= =-
- a k f}k (af})k qk ' 

wherefrom all the desired values of S_k are readily found. 
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14. Let 

Then 

w4 = a + 4 t/ a3~ + 6 t'" a2~2 + 4 t/ a~3 + .~. 
But 

a + ~ = -p, a~ = q. 
Consequently 

{t)4= -p+6Vq+4'ya~(Va+VM. 
But 

Oia+ -V~)2=a+~+2Va~= - p+2Vq, 
therefore 

w=V--p+6Vq+4'yq.V -p+2Vq. 
15. Let x be the common root of the given equations. 

Multiplying the first equation by A', and the second by A 
and subtracting them termwise, we get 

(AB' - A'B) x + AC' - A'C = O. 

Likewise, multiplying the first one by B' and the second by 
B and subtracting, we find 

(AB' - A'B) x 2 + BC' - B'C = O. 

Take the value of x from the first obtained equality and 
substitute it into the second one. Thus, we obtain the, re­
quired result. 

16. Adding all the three equations termwise, we find 

(x + y + Z)2 = a2 + b2 + c2• 

Hence 

x + y + z = + Va2 + b2 + c2 • 

Consequently 
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17. I t is obvious that the system can be rewritten in 
the following way 

(x + z) (x + y) = a, 

(y + z) (y + x) = b, 

(z + x) (z + y) = c. 

Multiplying these equations and extracting a square root 
from both members of the obtained equality, we have 

(x -+ z) (x -1- y) (y + z) = + II abc. 

Hence 

Y +z= + Vabc 
, - a ' + _ ± VatiC 

x z-- b ' 
/­

x+y= + 1 abc. 
c 

Adding these equalities termwise, we find 

VabC(1 1 1) x-'+--y tz-=+-- -+-+- . 2 abc 

But since 

, Vabc 
y -t- z =0 + -a- , 

we have 

x = + Vabc (! + .-!. __ ~) . 
- 2 b c a 

Analogously 

= + Vabc (.-!.+!_l) 
Y-2 a c b' 

z = + Vabc (~+.-!. _ ~) 
- 2 b a c ' 

simultaneously taking either pluses or minuses everywhere 
18. Put 

y + x = y, x + z =~, y + z = a. 

Then our equations take the form 

y + ~ = ay~ 

a + y = bay 

~ + a = ca~. 



Solutions to Sec. 5 257 

Solving this system (see Sec. 4, Problem 17), we find the 
solutions of the original system 

x=y=z=O 

x= ~ (P~b + p~c - p~a) r 

y = ~ (p~c t p~a - P~b) , 

Z= ~ (p~a+p~b-p~c)' 
where 

2p = a + b + c. 

19. Adding unity to both members of the equations, 
we get 

or 

1 + y + z + yz = a + 1, 
1 + _x + z + xz = b + 1, 
1 + x + y + xy = c + 1 

(1 + y) (1 + z) = a + 1, 

(1 + x) (1· + z) = b + 1, 

(1 + y) (1 + x) = c + 1. 

Multiplying these equations, we get 

(1 + X)2 (1 + y)2 (1 + Z)2 = (1 + a) (1 t b) (1 + c) 
or 

(1 + x)-f1 + III (1 + z) = ± V (1 + a) (1 + b) (1 + c). 
Consequen tl y, 

1+ =+-./(1+b)(1+c) 1+ =+-1/(1+a)(1+c) 
x - V 1+a' y - V 1+b ' 

1+z=+ V(1+;~~+b). 
20. Multiptying the given equations, we obtain 

(xYZ)2 = ab cx yz. 

First of all we have an obvious solution x = y = z = O. 
Then 

xyz = abc. 
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From the original equations we find 

xyz = ax2, xyz = by2, xyz = cz~. 
Hence 

ax2 = abc, by2 = abc, ez2 = abc, 

x2 = be, y2 = ac, Z2 = abo 

Thus, we have the following solution set 

x = Vbe, y = Y ac, Z = Yab; 

x = - Vbe, y = - Vac, Z = V ab; 

x=Vbe, y= -Vae, Z= -Yab; 

x= -Vbc, y= Vac, z= -Vab. 

21. Adding the first two equations and subtracting the 
third one, we get 

2x2 = (c + b - a) xyz. 

Likewise we find 

2y2 = (c + a - b) xyz, 2Z2 = (a + b - c) xyz. 

Singling out the solution 

x = y = z = 0, 
we have 

2x = (c + b - a) yz, 2y = (c + a - b) xz, 

2z = (a + b - c) xy. 

Then proceed as in the preceding problem. 
22. The system is reduced to the form 

xy + xz = ai, 

yz + yx = bi , 

zx + zy = c2. 

Adding these equations term by term, we find 
1 

xy+xz + YZ=T (a2+ b2+ c2). 

Taking into consideration the first three equations, we get 
b2+c2_a2 a2 + c2 -b2 

yZ= 2 ,zx= 2 
a2 +b2 _c2 

xY= 2 
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Multiplying them, we have 
2 (b2+c2 __ a2) (a2+ c2_b2) (a2+b2-c2) 

(xyz) = 8 ' 

i.e. 

.. ;(b2+ cL-a2) (a2 +c2-b2) (a2 + b2 -c2) 
xyZ= + V 8 • 

Now we easily fInd 

_ .;(a2-t-c2-b2) (a2+b2_c2) 
x- + V 8 (b2 +c2 -a2 ) , 

_ .;(a2+b2_c2) (b2+c2_a2) 
y- + V 8 (a2 +c2-b2 ) , 

_ _.;(a2+c2-b2) (b2+c2_a2) 
Z - + V 8 (a2+b2_c2) • 

23. Adding and subtracting the given equations term­
wise, we find 

x3 + y3 = a (x + y) + b (x + y) = (a + b) (x + y), 
x3 - y3 = a (x - y) - b (x - y) = (a - b) (x - y). 

Hence 
(x + y) (x2 - xy + y2 - a - b) = 0, 

(x - y) (x2 + xy + y2 - a + b) = 0. 

Thus, we have to consider the following systems 

1° x + y = 0, x - y = 0; 
2° x + y = 0, x2 + xy + y2 - a + b = 0; 
3° x - y = 0, x2 - xy + y2 - a - b = 0; 

4° x2 - xy + y2 - a - b = 0, x2 + xy + y2 - a + 
+ b = 0. 

The first three systems yield the following solutions 

1° x=y=o; 

2° X= + lla-b, y= + Ya-b; 

:10 x=-=.1I=+ Ya+b. 
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The last system is reduced to the following one 

x2 + y2 = a, xy = -b. 

Solving it, we get 

x= ~ (e Va-2b+fJ If a+2b), 

y= ~ (eVa-2b-fJ Va+2b), 

where e and fJ take on the values +1 independently of each 
other. Thus, we get four more solutions. 

24. Reduce the system to the following form 

(x + y - z) (x + z - y) = a, 

(y + z - x) (y + x - z) = b, 

(x + z - y) (z + y - x) = c. 

Multiplying and taking a square root, we get 

(x + y - z) (x + z - y) (y + z - x) = + V abc. 

Further 

ac y'-
x+z-y=+ lI' 

Consequently 

25. Put 
x+y 

x+y +CXy=y, 
--"y:.....+:.....z_ 
y+z-t-ayz=a, 

Then the system takes the form 

by + c~ = a, ca + ay = b, a~ + ba. = c 
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or 
~ a c -+-=-. b a ab 

Therefore 
a ~ 'V 1. a2+b2+c2 
--;-+/;+c=2 abc 

and, consequently, 
b2+c2 __ a2 

IX= 2bc ' 
a2 -I- c2 - b2 

~ = '2ac ' 
a2+b2_c2 

Y= 2ab 

Further 
x+ y+cxy 

x+y y' 
Finally 

Analogously, we find 
1 1. b~ 
x+7=1.-~' 

wherefrom we find x, y and z. 
26. Multiplying the first, second and third equations 

respectively by y, z and x, we get 

ex + ay + bz = O. 
Likewise, multiplying these equations by z, x and y, we 
find 

bx + ey + az = O. 
From these two equations (see Problem 35, Sec. 4) we obtain 

i.e. 

_x_=_y_=_z_='A 
a2-bc b2-ac c2-ab ' 

x = (a2 - be) 'A, y = (b 2 - ae) 'A, z = (e2 - ab) 'A. 

Substituting these expressions into the third equation, we 
find 

v= c _ 1 
(c2-ab)2-(a2-bc) (b2-ac) - a3+b3+c3 -3abq' 

Now it is easy to find x, y and ~. 
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27. Rewritf' the system as follows 

Hence 

(y2 _ xz) + (Z2 - 3}Y) = a 

(x2 - yz) + (Z2 _ xy) = b 

(x2 _ zy) + (y2 - zx) = c. 

2 b+c-a 2 a+c-b 2 a+b-c 
x - JJz = 2 ' Y - xz = 2 ' z - xy = 2 ' 

i.e. we have obtained a system as in the preceding problem 
28. Subtracting the equations term by term, we have 

(x - y) (x + y + z) = b2 - a2 , 

(x - z) (x + y + z) = c2 - a2 • 

Put x + y + z = t, then 

(x - y) t = b2 - a2, (x - z) t = c2 - a2• 

Adding these two equations termwise, we have 

[3x- (x+ y+ z)] t = b2+c2_2a2. 

Hence 
t2+ b2+ c2_ 2a2 

X= 3t . 

Analogously 
t2--1-a2--1-c2-2b2 t2+a2+b2-2c2 

y= '3t Z= 3t • 

Substituting these values of x, y and z in one of the equations, 
we find 

t4 _ (a2 + b2 + c2) t2 + a4 + b4 + c4 _ 
_ a2b2 _ a2c2 - b2c2 = O. 

Hence 
2 a2+b2+c2 ± y3 (a+b+c) (-a+b+c) (a-b+c) (a+b-c) 

t = 2 -. 

Knowing t, we obtain the values of x, y and z. 
29. We have the following identities 

(x + y + Z)2 - (x2 + y2 + Z2) = 2 (xy + xz + yz), 

(x + y + Z)3 _ (x3 + y3 + Z3) = 
= 3 (x + y + z) (xy + xz + yz) - 3x!/z. 
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Taking into account the second and third equations of our 
system, we get from the first identity 

xy + xz + yz = 0. 

From the second identity we have 

xyz = 0. 

Thus, we obtain the following solutions of our system 

x = 0, y = 0, Z = a; 

x = 0, y = a, Z = 0; 

x = a, Y = 0, Z = O. 

30. Let x, y, Z and u be the roots of the following fourth­
degree equation 

a 4 - pa3 + qa2 - ra + t = o. (*) 
Put 

Then 
S4 - PS3 + QS2 - rS1 + t = 0. 

But by hypothesis 

S4 = a 4 , S3 = a 3 , S2 = a 2 , S1 = a. 

Therefore, the following identity must take place 

a 4 - pa3 + Qa2 - ra + t = 0, 
i.e. the equation (*) has the root a = a, and therefore one 
of the unknowns, say x, is equal to a.· 

Then there must take place the equalities 

u + y + Z = 0, u2 + y2 + Z2 = 0, u3 + y3 + Z3 = 0, 
and, consequently, (by virtue of the results of the last 
problem) 

u = y = Z = 0. 
Thus, the given s vstem has the following solutions 

x = a, U = Y = Z = 0; 

y = a, x = U = Z = 0: 
Z = a, x = y = U = 0; 

!l = a, x = y = Z = 0, 
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31. Equivalence of these systems follows from the iden­
tity 
(a2 + b2 + e2 _ 1)2 + (a'2 + b'2 + e'2 _ 1)2 + 

+ (a"2 + b"2 + e"2 - 1)2 + 2 (aa' + bb' + ee')2 + 

+·2 (aa" + bb" + ee")2 + 2 (a'a" + b'b" + e'e")2 = 
= (a2 + a'2 + a"2 _ 1)2 + (b2 + b'2 + b"2 _ 1)2 + 
+ (e2 + e'2+ e"2 - 1)2 + 2 (ab + a'b' + a"b")2 + 

+ 2 (ae + a'e' + a"e")2 + 

+ 2 (be + b' e' + b"e'')2. 

It should be noted that nine coefficients: a, a', a", b, 
b', b\ e, e' and e" can be (as it was established by Euler) 
expressed in terms of three independent quantities p, q 
and r in the following way 

1+p2_ q2_ r2 b_2(r+pq) 2 (-.,.q+pr) 
a= N ' - N' e= N ' 

, 2(-r+pq) ,1_p2+q2_r2 ,2(p+qr) 
a= N ' b= N ,e= N ' 

b" = 2 ( - p + rq) 
N ' 

(N=1+p2+ q2+ r 2). 

32. Multiplying the first three equalities, we get 

X2y2z2 (y + z) (x + z) (x + y) = a3b3e3 • 

Using the fourth equality, we have 

(y + z) (x + z) (x + y) = abc 
or 

x2 (y + z) + y2 (x + z) + Z2 (x + y) + 2xyz = abc. 

But adding the first three equalities, we find 

x' (11 + z) + y2 (x + z) + Z2 (x + y) = a3 + b3 + cS. 

Thus, finally 

33. Adding the three given equalities, we get 

a+b+e= (y-z)(z-x) (x- y). 
;I:JJ.1. • 
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Similarly, we have 

a_b_c=(Y-~)(z+x)(x+y) , 
xyz 

Hence 

b -c- a = (z-x) (x-f- y) (y+z) 
xyz ' 

c-a-b= (x-y) (y+z) (z-+ x). 
xyz 

(a + b +c) (b + c-a) (a+ c-b) (a+ b-c) = 
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= _ ( ; _ : ) 2 ( : _ : ) 2, ( : _ f ) 2 = _ aWc2• 

Hence, we finally get the lIesult of the elimination 

2b2c2 + 2b2a2 + 2a2c2 - a4 - b4 - c4 + a2b2c2 = 0. 
34. We have 

.J!.. +-.:... = 2a, -.:... +-=- = 2b -=-+.L = 2c. z y x z 'y x 

Squaring these equalities and adding them, we get 
~ ~ ~ ~ ~ ~ - + - + - +- - + - + - +- 6 c-= 4a2 +- 4b2 +- 4c2 • 
~ ~ ~ ~ ~ ~ 

On the other hand, multiplying these equalities, we find 
y2 z2 z2 x2 x2 y2 
12+ -y2+7+ ZZ-+YZ-+7 +2 =8abc. 

Consequently, the result of eliminating x, y and z from the 
given system is 

a2 + b2 + c2 - 2abc = 1. 
35. We have an identity 

(a + b + c) (b + c - a) (a + c - b) (a + b - c) 

= 4b2c2 _ (b 2 + c2 _ a2)2. 

Replacing in the right member a2 , b2 and c2 by their expres­
sions in terms of x, y and z, and using the relationship 

xy + xz + yz = 0, 
we get 
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Thus, the actual result of eliminating x, y and z from the 
given system is 

(a + b + e) (b + e - a) (a + e - b) (a + b - e) = O. 

36. We have 

(x + y)3 = x3 + y3 + 3xy (x + y) = 

= x3 + !l + ~ (x + y) f(x + y)2 - (x2 + y2)J. 

And so 

(x + y)3 = 3 (x + y) (x2 + y2) _ 2 (x3 + y3). 
But 

x + y = a, x2 + y2 = b, :1:1 + y3 = e. 

Consequently, the result of the elimination is 

a3 = 3ab - 2e. 
37. Put 

Then 
a = xt.., b = yt.., e = zt... (*) 

On the other hand, we have 

(a + b + e)2 = a2 + b2 + e2 + 2ab + 2ae + 2be. 

Since a + b + e = 1, a2 + b2 + e2 = 1, we obtain from 
the last equality 

ab + ae + be = O. 

Taking into consideration the equalities (*), we find 

xy + xz + yz = O. 
38. We have 

(a- :)(a- :)(a- ~)=I' 
or 

3 (Z+x+!I) 2 (z.x Y) 1 a - - - - a + ---t--+- a- ~=V. 
x Y Z !J Z x ' 

Hence 
a~ - 1 = y. 
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39. From the first two equalities we find 

z (d - c) + x (d - a) + y (d - b) = O,} (*) 
w (d - c) + x (a - c) + y (l> - c) = 0. 

Multiplying the first equality by y, and the second by x, 
and adding them, we get 

(zy + wx) (d - c) = x2 (c - a) + y2 (b - d) + 
+ xy (a + c - b - d). 

We find in the same way that 

(zx + wy) (d - c) = x2 (a - d) + y2 (c - b) + 
+ xy (b + c - a - d), 

zw (d - C)2 = x2 (a - d) (c - a) + 
+ y2 (b - d) (c - b) + 
+ xy [(a - d) (c - b) + (b - d) (c - a)J. 

Substituting the found expressions for zy + wx, zx + wy 
and zw in to the third equali t y, we get 

AX2 + 2/3xy + Cy2 = 0, 
where 

A = (c - a) (a - d)2 (b - C)2 + (c - d) X 

X (b - d)2 (c - a)2 + 
+ (a - d) (c - a) (d - c) (n - b)2, 

C = (b - d) (a - d)2 (b - C)2 + 
+ (c - b) (b - d)2 (c - a)2 + 

+ (b - d) (c - b) (d - c) (a - b)2, 

2B = (a + c, - b - d) (a - d)2 (b - C)2 + 
+ (b + c - a - d) (b - d)2 (c - a)2 + 
+ (d - C)3 (a - [;)2 + [(a - d) (c - b) + 

+ (b - d) (c - a)J (d - c) (a - b)2. 

Performing all the necessary transformations (the work can 
be simplified by making use of the result of Problem 8, 
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Sec. 2), we find 

A = (a - d)2 (c - a)2 (c - d), 

B = (d - c) (a - d) (b - c) (a - c) (d - b), 

C = (c - b)2 (b - d)2 (c - d). 

Therefore we ha ve 

Ax2 + 2Bxy + Cy2 = (c - d) [(a - d) (a - c) x -

- (b - c) (d - b) y12 = O. 
Hence 

x y 
(b-c) (d-b) (a-d) (a-c) . 

Substituting these values into the equality (*), we get the 
required proportion. 

40. 1° We have 

2cos a+~ cos a-~ -(2cos2 a+~ -1) =~ 
2 2 2 2 

or 

4cos2 at~ -4cos a-;~ cos at~ +1=0. 

Hence 

4 cos a-;~ ± V 16 cos2 a-;~ -16 
cos at~ = 8 

Since the radicand is equal to -16sin2 a-;~ and cos at~ 

is real, the expression -16 sin2 ~-;~ must be greater than, 

or equal to, zero. But this expression cannot exceed zero. 
Therefore we have 

a-A. 
sin-2-t' =0. 

But since 0 < a < nand 0 < ~ < n, we have a = ~ and, 
consequen tl y, 

and 

1 
cosa=2 
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41. By hypot.hesis 
9+1p 9-1p 

2 cos -2- cos -2- = a, 2 sin 91 Ip cos 9 2 Ip = b. 

Hence 

But 

Therefore 

9+1p b 
tan-2-=-;· 

1-tan2 -=-2 
cosx= x ' 

1+tan2 -

sinx= 

2 

b2 
1-"i.ii" a2 _ b2 

x 
2tan"2 

x 
1+tan2 -

2 

2 . .!:. 
2ab 
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cos(8+<p)= b2 -=a2+b2 ' 
1+(i2 

sin (8+<p)= :2 
1+- a2+b2' 

a2 

42. By hypothesis 
a cos p + b sin P = c. 
we find 

we have a cos ex + b sin ex = c, 
Adding these equalities termwise 

2acos a.t~ cos a.-;~ +2bsin a.t~ cos a. 2 ~ =2c. 

Hence 
a.-~ c 

cos-2-= +R R -
a cos _a._t'_+b sin a.+ t' 

2 2 
c 

- cos a. t ~ (a + b tan a. t ~ ) . 
Subtracting now the given equalities termwise, we obtain 

2 . a.+~ . a.-~ 2b' a.-~ a.+~ 0 - asm-2-sm-2-+ sm-2-cos-2-=· 

Since ex and p are different solutions of the equation, then 
sin a.-;~ =1= O. Consequently, the last equality yields 

tan a.t~ =: . 
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ex.-~ Let us return to computing cos2 -2-. We have 

cos2 ex.-~ = c2 = 
2 cos2 ex. t ~ (a + b tan ex. t ~ ) 2 

2 ( b2 ) 1 c2 

= c 1 + (i2 ( b )2 = a2+h2 
a+b-

a 

43. Rewl'ite the given equalities in the following way 

sin e (b cos ex - a cos ~) = cos e (b sin ex - a sin ~), 

sin e (d sin ex _. c sin ~) = cos e (c cos ~ - d cos ex). 

Eliminating e, we find 

(b cos ex - a cos ~) (c cos ~ - d cos ex) = 

= (b sin ex - a sin ~) (d sin ex - e sin ~). 
Hence 

be cos ex cos ~ - ae COS2~ - bd cos2 ex + ad cos ex cos ~ = 
= bd sin2ex - ad sin ex sin ~ - be sin ex sin ~ + ae sin2 ~ 

or 

(be + ad) cos ex cos ~ + (be + ad) sin ex sin ~ = bd + ae. 

Finally 

44. 1° We have 

bd+ac 
cos (ex-~) = bc+ad 

e2 -1 1 + 2e cos ~ + e2 _ 
1+2ecosex.+e2 - e2 -1 -

_ 2e2+2ecos~ = e+cos~ 
- 2e2 + 2e cos ex. e + cos a. 

(by the property of proportions, from the equality : = ~ 
a + c a) 

follows b + d = b . 

Similarly, we have 
e2 -1 

1 + 2e cos ex. + e2 
1 + 2e cos ~ + e2 

e2 -1 
-2-2e cos ~ 
2+2e cos ex. 

1+e cos ~ 
1 +e cos a. . 
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Then 

( e+cos~ )2 =(1+ecos~)2 = e2+cos2~-1-e2cos2~ = sin2~ 
e+cosa (1+ecosa)2 e2+cos2a-1-e2cos2a sin2a· 

Consequently, 

e2 -1 = _ 1 + e cos ~ = + sin ~ 
1-1 2e cos a+e2 1+ecosa - sina 

2° From the given equality follows (see the result of 1°) 

e+cos ~ 
e+ cos a 

1+ecos~ 
1+ecosa' 

Consequently, 
e + cos ~ -1- e cos ~ __ e + cos ~ + 1 + e cos ~ 
e + cos a + 1 + e cos a e + cos a -1.- e cos a 

( . a c a+c a-c) 
from the equalIty b=(j follows b+d -= b-d . 

Further 

or 

(i-e) (i-cos ~) 
(1 + e) (1-1- cos a) 

(1 + e) (1 + cos ~) 
(1-e)(1-cosa) 

(1-cosB)(1-cosa)= g~:~~ (1+cos~)(1+cosa). 
Finally 

a ~ 1+e 
tan 2 tan 2" = --\- T-=e' 

45. Solving the given equation with respect to cos x, 
we find 

cos x (sin2 ~ cos a - sin2 a cos ~) = 

= cos2 a sin2 ~ - sin2 a cos2 ~ = cos2 a - cos2 ~. 
But 
sin2 ~ cos a - sin2 a cos ~ = cos a (1 - cos2 ~) -

- cos ~ (1 - cos2 a) = cos a - cos ~ + 

+ cos a cos ~ (cos a - cos ~) = 

therefore 
= (cos ex - cos ~) (1 + cos a cos ~) 

cos a+cos ~ cos x = -;--,------'-;;-
1 + cos a cos ~ 
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Further 
x i-cos x 

tan2 -2 = """7"-:---­
i+cos x 

1 + cos IX cos ~ - cos IX - cos ~ 
1+ces IX cos ~+cos IX+COS ~ 

= (i-cos IX) (i-cos ~) = tan2 ~ tan21. 
(1 +cos IX) (1 + cos ~) 2 2 

and consequently 
x IX ~ 

tan 2" = ± tan ""2 tan 2" . 

46. We have 

sin2a=4sin2 ~ sin2 ~ =(1-coscp)(1-cosO)= 

= (1-~) (1- cos IX ) . 
cos ~ cos I' 

Hence 

1 - cos2 a = 1-cos a cos ~: cos I' + cos2 IX 
cos cos I' cos ~ cos I' ' 

i.e. 

( 1) cos~+cos1' cos2 a 1 + II. = cos a II. • cos p cos I' cos p cos I' 

Assuming that cos a is nonzero, we find 
cos 1'+ cos ~ cos a = -:-.,..-~--'-;:-

1 +cos I' cos ~ 

Now it is easy to check that 

tan2 ~ = tan2 ~ tan2 ~ . 

47. Put tan ~ = a, tan ~1 = ~. Then the first two equa­

lities take the form 

xa2 - 2ya + 2a - x = 0, X~2 - 2y~ + 2a - x = o. 
Consequently a and ~ are the roots of the quadratic equation 

XZ2 - 2yz + 2a - x = o. 
Therefore 

2y 2a-x 
a+~=7' a~=-x-· 

Furthermore 
a - ~ = 2l. 
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Let us now eliminate a alld P from the last three equalities. 
We have identically 

(a + ~)2 = (a _ ~)2 + 4a~. 
Consequen tly, 

After simplification we actually get 

y2 = 2ax _ (1 _ l2) x 2. 

48. From the fust two equalities it is obvious that e 
and cp are the roots of the equation 

x cos a + y sin a - 2a = ° (unknown a). 

It is clear that e and (p are also the roots of the equation 

(2a - x cos a)2 = y2 sin2 a. 

Transform tho last <'qnation in the following way 

x2 cos2 a - 'tax cos a + 4a2 = y2 (1 - cos2 a), 

(x2 + y2) cos2 a - 4ax cos a + 4a2 - y2 = 0. 

Therefore the qllantities cos e and cos cp are the roots of 
the following- <'q na I ion 

(x· 2 + y!) Z2 - 4axz + 4a2 _ y2 = 0, 

and therefore 

('os 0 cos <f 
4ax 

cos e -1- cos cp = :z:2 + y2 

We then 11(1\'p 

1.1 ",' 112 ~), "i II ~ L c--- 6 1 - cos H 
.0 ~ • '!. " 2 

i-cos cp 
2 

1 

or 1- (cos Ot- cos <jJ) +- cos 0 cos cp = 1. Hence, y2 = 4a (a - x). 
49. We haV(' 

S a 
tan2 - - tan2 -

A La S-a 2 2 
tan -'2- tan -2- = ---'S----a 

i-tan2 2" tan2 "'2 
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But 

Solutions 

tan2 != 1-cosEl = 1-cosa.cos~ 
2 1 -+- cos e 1 + cos a. cos ~ , 

t 2 a. __ i-cos a­an - - - -:-:----
2 1 -r cos a. 

Consequen Lly 
1 - cos a. cos ~ 1 - cos a. 

El -+- a. 0 - a. 1 -+- co; a. cm ~ 1 -+- cos a. 
tan -2- . tan -2-= --:1;---c-o-s -a.-c-'o-s"13--=1-'---c-os-a.-

1-
1 -+- cos a. C03 ~ 1 -+- cos a. 

i-cos ~ = tan2 i 
1-+-cos~ 2 

50. We have 

a-+-c cos x-+-cos (x-j-20) 
I b-+-d = cos(x-+-8)-j-cos(.r-+-38) 

cos (x -+- 8) cos 8 
cos (x + 2El) cos 0 

Hence 
a-+-c 
-b-

51. We have 

Hence 

1 + tan 2 e = cos ~ 
cos a. ' 

c 

1 + t . 2 _ cos ~ 
,Ill <jl- --. cos y 

tan2 8 
tan2 1p 

cos ~ - cos a. cos y 
cos a. cos ~ - co;; y 

On the other hand, it is givpn that 

Therefore we have 

tan2 0 
tan2 1p 

cos ~-cos a. 
cos ~-cos y 

From this equaJi ty we get 

tan2 a. 
tan2 y 

. cos y = tan2 a. 
cos a. tan2 y 

sin2 y-sin2 a. 

b 

c 

cos2 a. sin2 y-cos2 y sin2 a. cos ~ = ----:--,,-'--:--::-'--­
cos a. sin2 y- sin2 a. C03 y cos a. si n2 y - sin2 a. cos y 
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But 

tan2 !. = 1-cos ~ = cosasinz y-sinZ a cos y-sinZ y+sinZ a = 
2 1+cos ~ cos a sinZy-sinZ a cos y+sinZ y-sinZ a 

_ sinz a (1-C03 y)- sinz y (1-cos a) __ 
- sinZy(1+cosa)-sin2a(1+cosy) -

8 sin2 ..::.. cos2 ~ sinzl-8sin2 1. cos2 .:L sin2"::" 
2 2 2 2 2 2 

8sinzl cos2l cos2 ~-8sin2 ~ cosz !!:... coszl 
2 2 2 2 2 2 

sin2!!:... sinz .1. (COS2 !!:... _ cos2 .1. ) 
2 2 2 2 

cos2 !:. cosz1.(sin21.-sin2~) 
2 2 2 2 

tan2 ..::.. • tan2 1. 
2 2 ' 

since 

52. Put 

tan{=x, tan ~ =y. 

Then 

1-x2 
cos8= 1+x2 =cosacos~, 

= cos al· cos ~. 

Further 

x 2 = 'l-cosacos~ 
1 -t cos a cos ~ , 

y2 = 1 - cos at cos ~ 
1 + cos at cos ~ , 

therefore 

t 2 ~ 22 (1-cosacos~)(1-cosatcos~) 
an "2 = x y = (1 +C03 a cos~) (1-\ cos at cos~) 

Add unity to both members of the equality. We find 

2 _ 2 (1 + cos a cos at cos2 ~) 
'l+cos ~ - (1 + cos a cos~) (1 +cos at cos~)· 

Assuming cos ~ =1= 0, we obtain 

cos a + cos at = 1 + cos a cos 'at cos2 ~, 
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i.e. 

cos ex + cos ext = 1 + cos ex cos ext (1 - sin2 ~), 

cos ex cos ext sin2 ~ = 1 + cos ex cos ext - cos ex - cos exl = 

= (1 - cos ex) (1 - cos ext), 
and, consequently, indeed 

sin2 ~= (_1 __ 1) (_1 __ 1). 
cos a cos at 

53. We have 
cos(~-y)-cos (a-~) 

cos (a+~)-cos (~+y) 
cos (~-a)-cos (~-y) 
cos (~+y)-cos (y+a) 

cos (a-~)-cos (y-a) 
cos (y+a)-cos (a+~) = x. 

Hence 

or 

sin(~-~) 

sin ( at I' +~) 

tan ~ _ tan a + I' 
2 

tan ~+tan at I' 

Sin( ~-y) 

sin ( ~1a +1') 

Sin(~-a) 
sin( yt~ +a) 

tan y-tan ~+a tan a-tan ~+y 
2 2 

------:<~-:--- = B 
tan y+tan t a tan a+tan 11' 

But from the equalities 
a-b 
a+b -

follows 

Therefore we have 
tan a 

a 

a'-b' a"-b" 
a'+b' a"+b" 

a' a" 

tan ~ tan I' 

54. From the first equaliLy we have 

(tan e cos ~- sin~) cos a I (cm a-tan 8 sin a) sin~ = 0 
(tancpcosa-sina)cos~ T (cos~+tan(~sin~)sin(J. . . 
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Hence 

sin a cos ~ cos (0: - ~)"tan 0 + sill ~ cos a cos (a +~) tan cp = 

= 2 sin ~ cos ~ sin a cos a. (*) 

From the secoml equal i ty we get 
tan 0 cos (a. -~) tan ~ 
tan IP cos (a. + ~) tan a. 

Therefore we may put 

tan e = 'A cos (a - ~) tan ~, 
tan cp ~ -A cos (a + ~) tan a. 

Substitnting the expressions for tan e and tan cp into the 
equality (*), we find 

1 
A = 2 sin a. sin ~ . 

Thus 
cos (a. - ~) 1 ) 

tan e = 2 . ~ = -2 (cot a + tan ~ , Sill a. cos 

tan cp = - COS(a.~~) =-.!.. (tan a - cot ~). 
2 cos a. Sill ~ 2 

55. We have 

sin2 a + sin2 ~ - 2 sin a sin ~ cos (a - ~) = 

= sin2 a + sin2 ~ - 2 sin a sin ~ cos a cos ~ -

- 2 sin2 a sin2 ~ = sin2a - sin2 a sin2 ~ + 
+ sin2 ~ - sin2 a sin2 ~ - 2 sin a sin ~ cos a cos ~ = 

= sin2 a cos2 ~ + sin2 ~ cos2 a -

- 2 sin a sin ~ cos a cos ~ = 

= (sin a cos ~ - cos a sin ~)2 = sin2 (a - ~). 

Therefore 
sin (a - ~) =+n sin (a + ~), 

sin a cos ~ - cos a sin ~ = ± n (sin a cos ~ + cos a sin ~), 

tan a - tan ~ =+n (tan a + tan ~). 
Finally 

l+n 
tan a = 1 ~ n tan ~. 
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56. Expanding the given equalities, we get 

cos a cos 30 + sin a sin 30 = m COS3 0, 
sin a cos 30 - cos a sin 30 = m sin3 O. 

Multiplying the first equality by cos 30, the second by 
- sin 30 and adding them term by term, we find 

cos a = m {cos3 0 cos 30 - sin:l 0 sin 30}. 

But it is known that 

cos 30 = 4 cos3 0 - 3 cos 0, sin 30 = 3 sin EJ - 4 sin:l O. 

Consequently 

cos3 0 cos 30 - sin3 0 sin 30 =~ 4 (COSO 0 + sin6 0) -
- 3 (sin4 0 + cos4 0). 

But squaring the original equality and adding, we get 

coso 0 + sin6 0 = ~ . 
rn2 

Compute cos4 0 + sin4 O. We have 

cos6 0 + sin6 0 = 

= (cos2 0 + sin2 0) (cos4 0 + sin4 0 - cos2 0 sin2 0) = 
= cos4 0 + sin4 0 - cos2 0 sin2 O. 

Therefore 

~ = (cos2 0 + sin2 0)2 - 3 sin2 0 cos2 e, 
rn 1 

3 sin2 0 cos2 0 = 1 -­
rn 2 ' 

sin4 0 + cos4 0 = 1 - 2 sin2 0 cos2 0 = 

= 1-~(1--'!') =~(1 +~). 3 rn 2 3 rn 2 

Thus 
cos a = m {4 (COSO 0 + sinO 0) - 3 (sin4 0 + cos4 EJ)} = 

= m {~ _ 1 _ ~} = 2 -- m 2 

m2 rn2 In' 

i.e. 
m2 + m cos a = 2. 

57. From the fIrst equality we obtain 

a [sin (0 + (p) - sin (0 - cp») = 
= b [sin (0 - cp) + sin (0 + cp»). 



Hence 

Co nsequ en Ll y 
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a tan {jl = b tan e. 
e 

2 tan z 
a -tan cp= e . 
b t -- tan2 -

2 

But from the second equality we have 

e bta n ~ + c 
tan "2 = a 

therefore 

a 2tanf 
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Putting for brevity tan 1- = x and transforming the last 

equality, we find 

be (1 + x2 ) = - (b2 + e2 - a2 ) x. 
But 

2x 
-'t:-+'---'x 2'-- = sin (p. 

Finally 

58. From the third equality we obtain 

sin2 e sin2 (P = (cos e cos cp - sin ~ sin y)2. 

Using the first two equalities, we find 

(1 _ S~n2~) (1_~~_n2y) = ( 8in.~siIlY -sill~sin )2. 
SIn2 a; 8l1\2 a; sm2 a; Y 

After some transformations this equality yields 
tan2 a = tan2 y + tan2 ~. 

59. We have 

a sin2 e + b cos2 e = 1, a cos2 cp + b sin2 cp = 1. 
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Hence 
a tan2 e + b = 1 + tan2 e, b tan2 cp + a = 1 + tan2 cpo 

Consequently 

(a - 1) tan2 e = 1 - b, (b - 1) tan2 cp = i-a, 

tan2 8_(i-b)2 
tan2 qJ - i-a . 

On the other hand, 
tan28 b2 

tan2 qJ -{i2. 

From the last two equalities we get (assuming that a is not 
equal to b) 

a + b - 2ab = O. 
60. Rewrite the first two equalities in the following way 

cos e cos· ex + sin a sin ex = a, sin e cos ~ - cos e sin ~ = b. 

Multiplying first the f~rmer by sin ~ and the latter by cos ex, 
and then the former by cos ~ and the latter by -sin ex and 
adding them, we find 

sin a cos (ex - ~) = a sin ~ + b cos ex, 
cos a cos (~ - ~) = a cos ~ - b sin ex· 

Squaring the last two equalities and adding them, we get 

cos2 (ex - ~) = a2 - 2ab sin (ex - ~) + b2• 

61. Since 

cos 3x = coss x - 3 sin2 x cos x, 

sin 3x = -sin3 x + 3 sin x cos2 x, 

the equation takes the form 

(cos3 x - 3 sin2 x cos x) cos3 X + 

or 

+ (-sin3 x + 3 sin x cos2 x) sin3 x = 0, 

cos6 X - 3 cos' x sin2 x + 3 sin' x cos2 x - sin6 x = 0 

(cos2 X - sin2 x)S = 0, cos 2x = O. 
62. Since 

sin 2x + 1 = (sin x + cos X)2, 

we have 

(sin x + cos X)2 + (sin x + cos x) + cos2 X - sin2 x = O. 



Hence 

or 
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(sin x + cos x) (1 + 2 cos x) = 0 

cos x (1 + tan x) (1 + 2 cos x) = o. 
And so 

1 
tan x = -1 and cos x = - "2 

are the required solutions of our equation. 
63. We have 

Hence 

or 

Hence 

sin2 x 1-cosx_O 
Cos2 X 1 - sin x -- • 

(cos3 x-sina x)-(cos2 x-sin2 x) = 0 
C032 x (i-sin x) 

(1 - tan x) (1 - cos x) = O. 

tan x = 1 and cos x = 1. 
64. We have 

cos 3ex = 4 cos3 ex - 3 cos ex. 
Therefore 

cos 6x = 4 cos3 2x - 3 cos 2x. 

On the other hand, 
6 (1+COS2X)3 cos x = 2 . 

The equation takes the following form 

or 

Thus 

4 (1 + cos 2X)3 - (4 cos3 2x - 3 cos 2x) = 1 

4 cos2 2x + 5 cos 2x + 1 = O. 

i 
cos 2x = -1, cos 2x = -T' 

65. We have 

sin 2x cos x -+ cos 2x sin x + sin 20£ - m sin x = O. 

Hence 
sill x [2 cos2 x -+ cos 2x + 2 cos x - m1 = 0, 

sin x [4 cos2 x + 2 cos x - (m + 1)1 = O. 

281 
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And so, one solution is 

sin x = o. 
The other is obtained by the formula 

-1 ± V4in+5 
cos x= 4 

Hence, first of all, it follows that there must be 

4m + 5 ~ o. 
Further, for one of the roots to exist it is required that 

I -1 + V 4m + 5/ :(; 4, i.e. that -4 :(; -1 + V 4m + 5:(; 
-< + 4 or-3 :(;V 4m + 5 :(; 5, i.e. m:(; 5. For tl.e other 
root to exist it is necessary that 

I -1 - V 4m + 5 I :(; 4, -4:(; -1 - V 4m + 5:(; 4, 

m:(; 1 

Thus if m < - ~ , then cos x has no real values; at m = - ~ 

it has one real value (cos x = -! ); for - ~ < m:(; 1 cos x 

1 ( - 1 + 1/ 4tn 1- 5 ) has two real va ues cos x = 4 and for 1 < 
< m :(; 5 cos x again has one real value (cos x = 

= -1 + Y 4m+5) and at m > 5 it has no real values. 

66. Rewrite the equation as 

-c-os-' ('-x---a-)- {( 1 + k) cos x cos (2x - a) -

- (1 + k eos 2£) eos (x -:x)} = o. 
But 

1 1 
cos x cos (2x- a) = 2 cos (3x-a) +2 cos (x-a), 

1 1 
cos 2x cos (x-a) =2 cos (3x-a) +2 cos (x +a). 
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Therefore 

-c-o;,-' ('--x-_-a""7)- {(1 + 1£) rcos (3x-a) + cos (x - a)l-

-2 cos (x- IX) -1£ [cos (3x- a) + cos (x+ a)]} = 0 
or 

cos (x-a) {cos (3x-a) _. cos (x- a) + 

+ 1£ [cos (x-a) -cos (x + a)]} = 0, 
sin :x 

-c-o-s (:-.x---a-:)- {k sin a - sin (2x-a)} ~ O. 

Hence 
sin x = 0 and sin (2x - a) = 1£ sin a. 

67. Since sin2 x + cos2 X = 1, we have sin4 x + cos4 X + 
+ 2 sin2 x cos2 x = 1 and sin4 x + cos4 X = 1 - ; (sin 2X)2. 

The equation takes the following form 

sin2 2x - 8 sin 2x + 4 = O. 
Hence 

sin 2x = 4 + V16-4, sin 2x = 4 + 2l!3. 

Rejecting one of the solutions, we get fmally 

si n 2x = 4 - 2 V3. 
68. We have 

1 1 
logx a = 1 logax a = 1 log,,2xa = 1 2 oga x oga ax oga a x 

The equation takes the form 
2 1 3 

loga x + loga x +1 + loga x+2 O. 
Put 

loga x = z. 

Finally, we have to solve the following equation 

2+ 1 + 3 -0 Z z+1 z+2 - . 
Hence 

(jZ2+ 11z+4 
z (z+1) (z+2) 

o. 
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The required roots are 

Thus 

69. We have 

Hence 

yX+Y = yX+Y . 
. 4a2 

Consequently, either y = 1 or x + y = -.~-. But at y = 1 
x ,- y 

x4a = 1 and, consequently, x = 1. Thus, we get one solu­
tion 

x=1, y=1. 

Let us now find a seeond solution. We have 

i.e. 

Therefore 

and consequently 

i.e. 

(x + y)2 = 4a2, 

x + y = 2a. 

x2a =ya, ( Xy2 )a=1, 

x2 = 2a - x. 

From this quadratic equation we fmd 

1 /1 
x= -2 + ~ T+ 2a. 

The positive solution is 

1, / 1 2 
x~-2+ V 4+ a. 

The corresponding vallle of y is found by the formula 

y = x 2• 
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70. Raising the fIrst equation to the power q anu the 
second to p, we oMain 

Dividing one of these equalities by the other termwise, we 
find 

and consequen tly 
Pl/-qx 

V = a p2_q2 • 

Analogously, we find 
xp-yq 

U = a p2_q2. 

Substituting these expressions for u and v into the third and 
fourth equations, we have 

Hence 

a P(x 2+y2) - 2xyq = bP2 - q2 , a2xyp -q(x2+y2) = Cp2 _ q2 • 

P (x2 + y2) _ 2xyq = (p2 _ q2) loga b, 

2xyp - q (x2 + y2) = (p2 _ q2) loga c. 

Consequently 

x2 + y2 = P loga b + q loga c, 2xy = q loga b + p loga c; 

wherefrom we find x and y, and then u and v using the for­
mulas (*). 

SOLUTIONS TO SECTION 6 
1. Let x = a + ~i, Y = Y + 13i. Then 

x + y = a + y + (~ + 13) i, x - Y = a - y + (~ - 13) i, 
1 x + y 12 + 1 x - Y 12 = (a + y)2 + (~ + 13)2 + 

+ (a - y)2 + (~ _ 13)2 = 

= 2 (a2 + ~2) + 2 (l + 132) = 2 {lxl2 +lyI2}. 
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2. Let x =-= a + ~i, hence x = a - ~i. 
1° By hypothesis, 

a - ~i = a 2 - ~2 + 2a~i. 
Hence 

Therefore 
~ (2a + 1) = 0, a = a 2 _ ~2. 

Assnme first ~ = 0, a = a 2 or a (a - 1) = O. And so, 
first of all we have the following solutions 

a = 0; ~ = 0, x = 0; 

a = 1, ~ = 0, x = 1. 
Let us now pass over to the case when 2a + 1 = 0, i.e. 

A2_~ V3 
1"-4' ~=+-2-' 

i. e. 
1 V3 1. -V3 

x=-2+ i -2-' x=-2-~-2-' 

Consequently, there exist fonr complex values of x sa­
tisfying the condition 

namely 

x=O, x= 1, 
1 . -V3 

x= -2+~ -2-' 

2° Let us solve the following system 

a (a2 - 3~2 - 1) = 0, ~ (3a2 - ~2 + 1) = O. 
We fInd the following solutions 

And so 

a = 0, 

a = 0, 

a = +1, 

~ = 0; 

~ = +1; 
~ = O. 

x = 0, x = +1, x = +i. 
3. Put 

at + bti = x, a2 + b2i = y, ... , an -l + bn_1i = u, 

an + bni = w. 
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Then the inequality to be proved may he rewritten as 

Ix+y+ ... +u+wl:(; 

287 

:(; 1 x 1 + 1 y 1 + ... + 1 u 1 + 1 w I, 
i.e. we have to prove that the modulus of a sum of several 
complex numbers is less than or equal to the sum of moduli 
of the addends. Let us fust prove this for two addends, Le. 
let us prove that 

But 
1 x + y 1 :(; 1 x 1 + 1 y I· 

I x+ y I = V(aj + a2)2 + (b j +b2)2, 

I x I = Va; + b; , I y J = V a; + b: . 
Consequently, it is required to prove that 

V(aj + a2)~ + (b j + b2)2:(;Va; + b: + -V a~ + b: . 

On squaring both members of this inequality and after 
some simplifications we get an equivalent inequality 

aja2 + bjb2 :(;V (a~ + b~) (a; + b;). 

This inequality is undoubtedly true if 

(aJa2 + bjb2)2 :(; (a; + bD (a: + b;), 
Le. if 

(aja2 + bjb2)2 - (a~ + bi) (a: + b~) :(; 0, 
- (a jb2 - a2bJ)2 :(; 0, 

which is obvious. Thus, it is proved that 

Ix+yl:(;lxl+ Iyl 
for any complex .1: and y. To prove our proposition for the 
general case proceed as follows. We have 

Ix+y+z+ ... +u-j-wl= 
= 1 (x + y + . .. t- u) + w 1 :(; 1 x + y + ... --f­

+ u 1 + 1 wi· 
Let us now apply an analogous operation to the fust term 

1 x + y + ... + u I. 
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Continuing this operation, we shall prove our proposition 
for the case of n terms. The above proof was carried out 
by the method of mathematical induction. Let us add to it 
another proof. Suppose the complex numbers are reduced to 
the trigonometric form, i.e. put 

x = PI (cos CPt + i sin CPt), 

y = P2 (cos CP2 t- i sin CP2), ... , w = pn (cos cP" + i sin cp,,). 
We then have 

n n 

X + y + ... + w = ~ p" cos cp" + i ~ p" sin cp", 
k=1 "=1 

n 

Ixl+lyl+ ... +Iwl= ~ p", 
"=1 

n 2 n 2 
I x + y + ... + w 12 = ( ~ p" cos cp,,) + ( ~ p" sin cp,,) . 

k=1 k=1 

It is required to prove that 
n 2 n 2 n 2 

t'!. = ( ~ p,,) - ( ~ Ph cos cp,,) - ( ~ Ph sin cp,,) >0. 
"=1 "=1 "=1 

we have 
n 2 n 

( 2j p,,) = ~ P~ + 2 ~ psPt, 
"=1 k=1 s4=t 

n 2 n 

( ~ Ph cos cp,,) = ~ p~ cos2 CPh + 2 ~ psPt cos CPs cos CPt, 
"=1 "=1 _'*t 

n n 

( ~ Ph sin cp,,)2 = ~ pr. sin2 f[l" + 2 ~ psPt sin CPs sin CPt. 
"=1 "=1 s,*t 

consf'quently 

t'!. = 2 ~ psPt - 2 ~ psPt cos (CPs - CPt), 
s,*t s*t 

4. Proved by a direct check, taking into consideration 
tha t 8 2 = - 8 - 1, 83 = 1. 
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5. fl is obvious that 

a2 + b2 + e2 - ab - ae - be ~'" 
= (a -+ eb + e2e) (a + e2b + ee), 

x2 + y2 + Z2 - xy - xz - yz = 

= (x + ey + e2Z) (x + e2y + eZ). 
Therefore 

(a2 + b2 + e2 _ ab _ ae _ be) (x2 + y2 + Z2 -

where 

- xy - xz - yz) = [(ax + ey + bz) + 
+ (ex + by + az) e + (b.T + ay + ez) e2] X 

X [(ax + ey + bz) + (ex + by -+ az) e2 + 
+ (bx + ay + ez) e) = 

= X2 + y2 + Z2 _ xy - XZ - YZ, 

X = ax + ey + bz, Y =--= ex + by + az, 
Z = b.T + ay + ez. 

6. 1° Solving the given systom with respect to x, y and z, 
we get 

A+B+C A+JlELt-CE A+&+Ce2 
X= 3 ,y= 3 ,z= :3 • 

2° We have 

1 A 12 + IB 12 + 1 C 12 = AA + BB + ce. 
But 

AA = (x + y + z) (x + Y + "Z) = 
= 1 X 12 + 1 y 12 + 1 Z 12 + X (y + z) + 

+ Y (x + z) + Z (x + y), 

BB = (x + ye + Ze2) (x + ye2 + Ze) = 

= 1 X 12 + 1 y 12 + 1 Z 12 + x (ye + Ze2) + 
+ Y (Xe2 + Ze) + Z (Xe + ye2), 

CC = (x + ye2 + ze) (x + ye + Ze2) = 

= Ixl2 + lyl2 + Izl2 + X (y/!,2 + Ze) + 
+ Y (Xe + Z82) + Z (Xe2 + ye). 
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Adding the three equalities term by term, we find 

I A 1'2 '+ I B 12 + I e 12 = AA + BE + ec = 

= 3 [I X 12 + I Y 12 + I Z \2] + x [y (1 + e + e2) + 
+ z (1 + e2 + e)] + Y [x (1 + e2 + e) + 

+ z (1 + e + e2)] -+ Z [x (1 + e + e2) + 
+ y (1 + e2 + e)]. 

But since 1 + e + e2 = 0, the last three expressions in 
square brackets are equal to zero and 

I A 12 + I B 12 + I e 12 = 3 [I X 12 + I Y 12 + I Z 12]. 

7. On the basis of the result obtained in 10 of Problem 6, 
we have 

"AA'+BB'+CC' "AA'+BB'e2 +CC'e 
X= 3 ,y= 3 ' 

Z" _ AA' +Bfl'I::.-~ CC'e2 
- 3 . 

Further 

AA' + BB' + ee' = (x + y + z) (x' + y' + z') + 
+ (x + ye + ze2) (x' + y'e + z'e2) + 

+ (x + ye2 + ze) (x' -+ y'e2 + Z'e) = 
= 3 (xx' -+ zy' + yz'). 

And so x" = xx' + zy' + yz'. Analogously y" = yy' + 
+ xz' + zx', z" = zz' + yx' + xy' (the last two expres­
sions emerge from the first one as a result of a drcular per­
mutation). 

8. Though this formula was already proved (see Prob­
lem 2, Sec. 1), we are going to demonstrate here another 
proof, using this time complex numbers. 

We have the identity 

(a6 - ~y) (a'6' - Wy') = (aa' + ~y') (yW -+ 66') -

let us put here 
- (aW + ~6') (ya' + 6y'), 

a = x -j- yi, ~ = z + ti, y = -(z - ti), 6 = x - yi. 

a' = a + bi, W = c + di, y' = -(c - di), 6' = a - bi. 
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Then 
aO - ~V = x2 -I- y2 + Z2 + t2 , 

a' 6' - W V' = a2 + b2 + e2 + d2 , 

aa' -\- ~y' = (fl.'}; - by - ez ~ dt) + 

2~1 

+ i( bx + ay + dz - et), 

vW + 06' = ~V' + aa' = (aa' + ~V')· 
Therefore 

(aa' + ~V') (vW + 06') = (ax - by - ez - dt)2 + 
+ (bx + ay + dz - et)2. 

Further 

aW + ~6' = (ex - dy + az + bt) + 
+ i (dx + cy - bz + at), 

va' + 6V' = -(ex - dy + az + bt) + 
-1 i (dx + ey - bz + at), 

i.e. 

-(aW +- ~6') (va' + 6V') = (ex - dy + az + bt)2 + 
+ (dx + ey - bz + at) 2 • 

Substituting the obtained expressions into the original 
identity, we find 

(a2 + b2 + e2 + d2) (x2 + y2 + Z2 + t2) = 
= (ax - by - ez - dt)2 + (bx + ay + dz - et)2 + 
+ (ex - dy + az + bt)2 + (dx + ey - bz + at)2. 

Replacing in it d by -d and t by -t, we get the required 
identity. 

9. Expand the expression (cos <p + i sin <p)n, by the 
binomial formula. We have 

(cos <p + i sin <p)n = cosn <p + n cosn- 1 <p i sin <p + 
+ n (n-1) cosn-2 <p (i sin <p)2 + 11 (n-1) (n-2) cosn-3 m X 

1·2 1·2·3 ~ 

X (i sin <p)3 + ... + n cos <p (i sin <p)n-l + (i sin <Pt. 
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Separating the real part from the imaginary one in this 
expansion, and using de Moivre's formula, we find 

cos ncp + i sin ncp = ( cosn cp - n (7.-; 1) cosn-2 cp sin2 cp + ... ) + 
+ i ( n cosn - 1 cp sin cp _ n (n -;.1J.~.-2) cosn-3 cp sin3 cp + ... } . 

Hence 
n n (n-1) n-2 . 2 

cos ncp = cos cp - 1 .2 cos cp sm cp + ... , 
sin ncp = n cosn - 1 cp sin cp _ n (n-;.1~.(;- 2) cosn-3 cp sin3 cp + ... 

Taking into account the parity of n and dividing both 
members of these equalities by cosn CPt we get the required 
formulas. 

10. First prove case 1°. We have 

(cos qJ + i sin qJ) + (cos qJ- i sin qJ) 
cos cp= 2 

Put cos cp + i sin cp = £. Then cos q> - i sin cp = £-1, 

Further 

In the second sum put m-k= -(m-k'). Then this 
sum is rewritten in the following manner. 

o m-1 
~ C 2m - k ' -2(m-k') ~ Ck -2(m-k) 
LJ 2m £ = LJ 2m£ • 

k'=m-1 k=O 

And so 
m-1 

22m cos2m q> = ~ C~m (£2(m-k) + £-2(m-k») + CZm . 
k=O 

However, 
£2(m-k) + £ -2(m-k) = 2 cos 2 (m - k). 
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Therefore, 
m-l 

22m-cOS2nl cp = S 2C~m cos 2 (m - k) cp + C~m. 
k=O 

293 

Replacing in thi.s formula cp by- ~ - cp, we get formula 2°. 

Formulas 3° and 4° are deduced as 1° and 2°. 
11. Form the expression 

Un + iVn = (cos ex + i sin ex) + 
+ r [cos (ex + 8) + i sin (ex + 8)J + ... + 

+ rn [cos (ex + n8) + i sin (ex + n8)] = 

= (cos ex + i sin ex) {1 + r (cos 8 + i sin 8) + ... + 
+ rn (cos n8 + i sin n8)}. 

Put 
cos 8 + i sin 8 = e. 

Then 

Un + iVn = (cos a + i sin ex) {1 + re + ... + (re)n} = 
(re)n+l-1 = (cos ex + i sin ex) 1. re-

(re)n+l-1 
Let us transform the fraction l' separating the 

re-
real part from the imaginary one. 

We have 
(re)n+l-1 [(re)'1+1_1) [rE-1) 

re-1 (re-1) (re-1) 

= r1t+2 [cos n8+i sin n8)-r [cos8-isin 8) + 
1 - 2r cos 8 + r2 

+ __ rn+1 [cos (n+1) 8+isin (n-j-1) 81+1 
t - 2r cos 8 + r2 

Multiplying the last fraction by cos ex + i sin ex and sepa­
rating the real and imaginary parts, we get the required 
result 

+ . rn+2 [cos(n8+a)+isin (n8+a)) + 
U w=----'--..;-+~"""'.,.......,.-'----'-~ n n 1 _ 2r cos 8 + r2 

+ -r [cos (a-8)+i sin (a-8)] , 
1 _ 2r cos 8 + ,.2 -r 

+ ~rn+l {cos [(n+ 1) 8+a)+i sin [(n+ 1)"8+a)} +cos a+i sin a 
1 - 2r cos 8 + r2 • 
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I-Ience 
cos a -r cos (a-8)-rn+1 cos [(n + 1) 8+ a) + rn+2 cos (n8+ a) 

u" = ------'----'----,1-----,,-2r--'c'-'-o-s-;;8....,+,:-r-;;2c-'---'---'----~-'---.:.-: , 

sin a- r sin (a - 8) - rn+l sin [(n + 1) 8+ a) + rn+z sin (110 + a) 
vn = 1-2rcos8+r2 . 

Putting in these formulas a = 0, r = 1, we find 
. n+1 n 

SIll -2- 8 cos T 0 
1 + cos 8 + cos 28 + ... + cos n8 = . 8 

SIll "2 

. (n+1)8 . n8 
sm -- Slll-

sin 0 + sin 28 + ... + sin n8 = 2. e 2 
SIllT 

12. We have 
n n 

S + S'i = ~ C! (cos k8 + i sin k8) = ~ C~ (cos 8 + i sin 8)h = 
k=O k=O. 

= (1 + cos 8 + i sin 8)n = [ 2 cos2 ~ + 2i sin ~ cos ~ r = 

2n n 8 ( () +. . 8)n = ·cos T cos T ~sm"2 = 

2" n 8 ( n8 +. . n8)' = cos "2 cos T ~ sm 2 . 
Hence 

S 2n n 8 n8 
= cos TcosT' S' = 2" cos" ~ sin n28 • 

13. Put 
n 

S = sin2P a + sin2P 2a + ... + sin2P na = ~ sin2J? lao 
1=1 

But (see Prohlem 10) 
1'-1 

sin2P la = 22:d (-1)P ~ (-1)" C~pcos 2 (p - If) la + 2!p C~p, 
k=O 

therefore 
1'-1 n 

( - 1)1' ~ "h ~ 2 If n Cp 
S = 221'-1 LI (-1) C2p LI cos (p- ) la+ 22P 2p· 

k=O /=1 
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Put 2 (p-k) a = s. Then 
"n'f: n-\-1 

Sill -" cos -- £ 2 2 
n 

~ cos 2 (p - k) la = cos S + ... + cos ns= 
l~ 1 sin ~ 

(see the solulioll of Problem 11). 
L8 t us deno le 

"Il~ n+1 
Sill -" cos -- ~ 2 2 -------,,.---- = (j It· 

sin t 
Then we can prove that a" = 0 if k is of the same parity as 
p {k = P (mod 2)} and a" = -1 if k and p are of different 
parity {k = p + 1 (mod 2)}, and we get 

Hence 

S=(-1)P+l 
22p 1 

p-l 

~ hCR 1 cP (-1) 2p+n 221) 2p· 

k=o 
h==p+l (mod 2) 

p-l 

R=O 
R==p+l (mod 2) 

R 1 cP C2p + n 22p 2p' 

p-l 

But we can prove that ~ C~p = 22p- 2 (see Pro­
h=O 

R==p+l (mod 2) 

blem 58 of this section) and our formula is deduced. 
14. 1° Rewrite the polynomial as 

xn_ an _ nx"u,n-l + nan = (xn _ an) _ na"-l (x - a) = 

=-_ (x - a) (X"-l + ax"-"l _+" ... + an - 1 - na'H ). 

At x = a the second factor of the last product vanishes and, 
consequently, is divisible by x - a; therefore the given 
polynomial is divisible by (x - a)2. 

2° Let us denote the polynomial by P n and set up the 
difference P" - Pn - 1• Transforming this difference, we 
easily prove that it is divisible by (1 - X)3. Since it is true 
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for any positive n, we obtain a number of equalities 

Pn - Pn - I = (1 - X)3 CPn (x), 

Pn - I - Pn - Z = (1 - X)3 CPn-1 (x), 

P a - P z = (1 - X)3 CP2 (x), 

P 2 - PI = (1 - X)3 CPI (x), 

where CPJ (x) are polynomials with respect to x. 
Hence 

Pn - PI = (1 - X)3 '\jJ (x). 
But since 

PI = (1 - x)3, 

it follows that Pn is divisible by (1 - X)3 and our proposi-
tion is proved. . 

15. 10 Considering the given expression as a polynomial 
in y, let us put y = O. We see that at y = 0 the polynomial 
vanishes (for any x). Therefore our polynomial is divisible 
by y. Since it is symmetrical both with respect to x and y 
(remains unchanged on permutation of these letters), it is 
divisible by x as well. Thus, the polynomial is divisible 
by xy. To prove that it is divisible by x + y, let us put in 
it y = -x. It is evident that for odd n we have 

(x - x)n - xn - (_x)n = O. 

Consequently, our polynomial is divisible by x + y. It only 
remains to prove the divisibility of the polynomial by 

x2 + xy + y2 = (y - xe) (y - xe2), 
where 

e2 +'e + 1 = O. 
For this purpose it only remains to replace y first by xe 

and then by xe2 and to make sure that with these substitu­
tions the polynomial vanishes. Since, by hypothesis, n is not 
divisible by three, it follows that n = 3l + 1 or 3l + 2. 
At y = xe the polynomial attains the following value 

(x+ xe)n_x" - (xe)n = xn {e2n + 1 + en} = xn (1 + e+ e2)=0. 
Likewise we prove that at y = xe2 the polynomial vanishes 
as well, and, consequently, its divisibility by xy (x + y) X 
X (X2 + xy + y2) is proved. 
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2° To prove this statement let us proceed as follows. 
Let the quantities -x, -y and x + y be the roots of a 
cubic equation 

a 3 - ra 2 - pa - q = 0. 
Then, by virtue of the known relations between the roots 
of an equation and its coefficients (see the beginning of 
this section), we have 
r = -x - y + (x + y) = 0, -p = xy - x (x + y) -

- y (x + y), 
q = xy (x + y). 

Thus, -x, - y and x + yare the roots of the following 
equation 

a 3 - pa - q = 0, 
where 

p = x2 + xy + y2, q = xy (x + y). 
Put 

(_x)n+(_yt+(x f-y),"=S". 

Between successive values of Sn there exist the following 
rela tionshi ps 

S n +3 = pS n + I + qS n , 

SI being equal to zero. Let us prove that Sn is divisible by 
p2 if n = 1 (mod 6) using the method of mathematical 
induction. Suppose S" is divisible by p2 and prove that 
then SnH is also divisible by p2. We have 

Sn+6 = pSnH +qSn+3, S"H = pS n+2+ qSn+l' 
Therefore 

Sn+G = P (pSn+2 + qSn+') + q (pSn+! + qSn) = 
= p2Sn+2 + 2pqSn+1 + q2Sn. 

Since, by supposition, S" is divisible by p2, it suffices to 
prove that Sn+1 is divisible by p. Thus, we only have to 
prove that 

(x + yt + ( - x)" + ( _ y)n 

is divisible by x2 + xy + y3 if n = 2 (mod 6). Proceeding 
in the same way as in 1°, we easily prove our assertion. And 
so, assuming that S" is divisible by p2, we have proved 
that SnH is also divisible by p2. But S 1 = ° is divisible 
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by p2. Consequently, 

Sn=(x+y)n_ x ll _yn 

is divisible by (x2 + xy + y2) at any n = 1 (mod 6). It 
only remains to prove its divisibility by x + y and by xy. 

16. Equality 1° is obvious. From Problem 15 it follows 
that (x + y)5 - x5 - y5 is divisible by xy (x + y) (x2 + 
+ xy + y2). Since both the polynomials (x + y)5 _ x5 _ y5 
and xy (x + y) (x2 + xy + y2) are homogeneous with 
respect to x and y of one and the same power, the quotient 
of division (x + y)f> - x5 - y5 by xy (x + y)(x2, + xy + y2) 
will be a certain quantity independent of x and y. Let us 
denote it br A. We then have 

(x + y)5 _ x5 _ y5 = Ay (x + y) (x2 + xy + y2). 

Since this equality represents an identity and, hence, 
holds for all values of x and y, let us put here, for instance, 
x = 1, y = 1. We get 

25 - 1 - 1 = A ·2 ·3. 

Hence A = 5, and we finally get 

(x + y)5 _ x5 _ y5 = 5xy (x + y) (x2 + xy + y2). 

Using the result of Problem 15 (2°), we can write similarly 

(x + y)1 - x7 - y7 = Axy (x + y) (x2 + xy + y2)2. 

Putting h~'I~e x = y = 1, we find A = 7. 
17. It is known that 

(x + y + Z)3 - x3 - y3 - Z3 = 3 (x + y) (x + z) (y + z). 

Let us prove that (x + y + z)m - xm - ym - zm is di-
visible by x + y. Considering our polynomial rearranged 
in powers of x, we put in it x = -yo We have 

(_y + y + z)m _ (_y)m _ ym _ zm -= 0, 

since m is odJ. 
Consequently, our polynomial is divisible by (x + y). 

Likewise we make sure that it is divisible by (x + z) and 
by (y + z). . 

18. The condition necessary and sufficient for a polyno­
mial t (x) to be divisible by x - a consists in that t (a) = 
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= O. Put 
f (x)' = X3 + kyzx = y3 + Z3. 

For this polynomial to be divisible by x + y + z it 
is necessary and sufficient that 

1 (-y - z) = O. 
However 

1 (-y - z) = -(y + Z)3 - kyz (y + z) + 1/ + Z3 = 

= -(k + 3) yz (y + z), 
wherefrom follows k = -3. Thus, for x3 + y3 + Z3 + 
+ kxyz to be divisible by x + y + z it is necessary and 
suffICient that k = -3. 

19. Divide n by p. We get n = lp + r, where l is a posi­
tive integer and 0 < r < p. Consequently, 
xn_ an ,,= xlPxr _ alPar = xlPxr _ alPxr + alPxr _ alPar =, 

= xr (xiP _ alP) + alP (Xr _ a r ). 

But x lp - alp = (xp)l - (aP)l is divisible by x P - aP, 

therefore for the di visi bili ty xn - an by x P - a P it is 
necessary and sufficient that xr - ar is divisible by x P - aP • 

But it is possible only when r = 0, and, consequently, 
n = lp. Finally, for xn - an to be divisible by x P - aP it 
is necessary and sufficient that n is divisible by p. 

20. Put 1 (x) = x4a + X4b+1 + X4c+2 + x 4d +3. On the other 
hand, 

x3 + x 2 + X + 1 = (x + 1) (x2 + 1) = 
= (x + 1) (x + i) (x - i). 

I t only remains to show that 
1(-1) =/(i) =/(-i) =0. 

21. We have 
. ., x 2"-1 

1 + x 2 + X4 + ... + X2n - 2 = x 2 -1 ' 

, 1 xn-1 
1 -\-.c+ x~+ ... -\- xn - = --1-. x--

x2n-1 xn-1 
It is required to fllld out at what n x2 -1 : x-l will 

be a polynomial in x. We fmd 
x2n-1 xn-l x"+l 
x2 -1 : --:x=-1 = x + 1 . 
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For xn + 1 to be divisible by x + 1 it is necessary and 
sufficient that .(-1)n + 1 = 0, i.e. that n is odd. 

Thus, 1 + x 2 + . . . + X 2n - 2 is divisible by 1 + x + 
+ x2 + ... + xn - 1 if n is odd. 

22. 1° Put 

t (x) = (cos cp + x sin cp)ll - cos ncp - x sin ncp. 

But x 2 + 1 = (x + i) (x - i) and t (i) = 
= (cos' cp + i sin cp)n - (cos ncp + i sin ncp) = 0 (by de Mo­
ivre's formula). Likewise we make sure that t (-i) = 0, and 
our supposition is proved. 

2° Resolve the polynomial x2 - 2px cos cp + p2 into 
factors linear in x. For this purpose find the roots of the 
quadratic equation 

x2 - 2p x cos cp + p2 = O. 
We get 

x = p cos cp + 11 p2 cos2 cp- p2 = P (cos cp + i sin cp). 

Let us denote 

xn sin cp - pn-lx sin ncp + pn sin (n -1) cp = t (x). 

We have to prove that 

t [p(cos cp + i sin cp) = O. 
23. Suppose 

X4 + 1 = (x2 + px + q) (x2 + p' X + q') = 

= X4 + (p + p') ,x3 + (q + q' + pp') x2 + 
+ (pq' + qp') x + qq'. 

For determining p, q, p' and q' we have four equations 

p+ p' =0, 

pp' +q+q'=O, 

pq' +qp' =0, 
qq' = 1. 

From (1) and (3) we fmd p' = -p, p (q' - q) = O. 

(1) 

(2) 

(3) 

(4) 

1° Assumep = 0, p' = 0, q + q' = 0, qq' = 1, q2=_1, 
q = ±i, q' = +i. 
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T he corresponding factoriza tion has the form 

X4 + 1 = (x 2 + i) (x 2 - i). 

2° q' = q, q2 = 1, q = + 1. 
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Suppose fIrst q' = q = 1. Then pp' = -2, p -I- p' = 0, 
p2 = 2, p = +Y2, 1" = +-y2. The corrpsponding facto­
rizat.ion is 

X4 + 1 = (x2 - Y2x + 1) (x 2 + Y2x + 1). 

Assume then 

q = q' = -1, p + p' = 0, pp' = 2, p = +Y2i, 
p' -= +V2i. 

The factorization will be 

X'l + 1 = (x2 + Y2ix - 1) (x2 -- Y2ix - 1). 

24. Put. 
-va=fbi = x + .IIi, 

whence 
a + bi = x2 - y2 + 2xyi; 

consequently, 
x2 - .112 ~= a, 2xy = b. 

To lind x andy it only remains to solve this system of 
two equations in two unknowns. 

We have 

(X2 + .112)2 = (X2 - y2)2 + 4x2y2 = a2 + b2, x2 + y2 = V a2 + b2 ; 

therefore 
x2 = a + V a2 + b2 , y2 = - a + V a~ + b2 , 

X= + V a+ V a2 +b2 , y= +V -a+ Y a2 +b2 , 

the signs of the roots being related as 2.];y = b. And so, 
the following formula takes place 

V a + bi = + (V a + V a2 + b2 + i V - a + y a2 + b2 ) 

if b > 0 (since then the signs of x and .II must be the 
same), and 

V a + bi = + (V a + V a2 + b2 - i V - a + -V a2 + b2 ) 

if b < O. 
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25. Tho roots of tho given equation are determined by 
the formula 

2kn .. 2kn 
Xk= COS--+lSIn--= 

n n 

( 2n +. . 2n)k = cos- lsm-
n n (k=O, 1, 

26. We have 

where 

Thus 

But 

n-1 

2n+ .. 2n e = cos - l sm - . 
n n 

~ x~= 1 + eP + e2P + ... + e(n-1)p. 
11=0 

P 2pn +. . 2pn e = cos -- l sm -- . 
n n 

n-1). 

It is obvious that eP = 1 if and only if p is divisible by n. 
In this case 

8=n. 

And if eP =;i: 1, then 8 = 1 + eP + e2P + ... + e(n-1)1' = 
enP-1 . 

= FP-1 = 0, SInce e np = 1-
Thus 

and 

n-1 

2; x'k = n if p is divisible by n, 
1<=0 

n-1 

~ x'k = ° if p is not divisible by n. 
h=O 

27. We have 
n-1 11-1 

~ IA,,12= ~ Ah~'. 
1<=0 1<=0 
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But 

AkAk= (x+yeh + ze2h + ... +we(n-1)k) X 

X (x + ye-k + ze- 2k + ... + we-(n-1)k) = 

=xx+yy+ ... +ww+x(Ye--k+ze- 2k + ... + 

+we-(n-1)k)+yek (x+ze- 2k + ... + we-{n-1)k) + 
+ ze2k (x + ye-k + ... + we-(n-1)k) + 

+we(n-1)k(x+ye-k+ ... +ue-(n-2)k). 

Therefore 
n-1 
~ AkAk = n ( 1 x 12 + 1 y 12 + ... + 1 W 12) + 

k=O . 

n-1 
+ X ~ (lie- k + ze- 2k + ... + we-(n-1)k) + 

k=O 

n-1 
+ y ~ (xek + ze- k + ... + we-(n-2)k) + ... + 

k=O . 

n-1 
+ W ~ (xe(n-1)k + ye(n-2)k + ... + ueh ). 

k=1 

n-1 
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But ~ elh = 0 if l is not divisible by n (see Problem 26). 
k=O 

Therefore all the sums in the right member vanish and 
we get 

IAoI2+IAlI2+ ... +IAn_d2=n{lxI2+lyI2+ ···+lwI2}. 
28. 10 Denote the roots of index 2n from unity by Xs 

so that 

2s1I: •• 2S11: (12 2) Xs = cos -n- + ~ SIn ---;:- s = , , ... , n. 

Therefore 
2n n-1 2n-1 
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since Xn = -1, X 211 = 1. But X2n-s = Is, consequently, 
n-l 

8=1 

n-l 

= (x2 - 1) IT (X2 - 2x cos S/~ + 1 ) . 
8=1 

The rest of the cases are proved similarly. 

29. 1° Rewrite the equality 1° of the preceding problem 
in the following way 

n-l 

x2n-2 + x2n-4 + ... + x2 + 1 = IT (X2 - 2x cos s: + 1) . 
,,=1 

Put in this identity· x = 1. We have 
n-l n-l 

n -= II (2 - 2 cos s: ) = II 4 sin2 s: = 

8=1 8=1 

22(n-l) . 2 n . ~ 2n . 2 (n-1):I1 
= sm -'SIll" - '" sm ----. 

n n n 
Hence 

. n . 2n . (n-1) n Vn 
SIll-n. SIll -n- ... SIn n = 2"-1 . 

2° Solved analogously to 1 0. 

30. We have 

x"-1 =(x-1)(x-a)(x-~)(x-l') '" (x-A). 
Hence 

xn- 1 +xn- 2 + ... +x+1=(x-a)(x-~) '" (x-A). 
Consequen tly 

(1-a)(1-~) ... (1-A)=n. 

31. Set up an equation whose roots are 

xl-1, X2-1, "', x n -1. 
This equation has the form 

(x+1t+(x+1)"-t+ ... +(x+1)+1=O, 
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i.e. 
(x+1)n+l-1 (X+1)n+l_1 

x+1-1 x 
0. 

Then set up an equation with the roots 
1 1 1 

xl-1' x2-1' ... , x n -1· 

I t has the form 

( 1 )n+l 
-;-+1 -1 

1 
-x 

(1 + x)n+I-xn+1 --'---'-----'----::,------- = 0. xn 

Expanding the last expression in powers of x, we find 

(n+1)xn+ (nt.~)n xn-1 + ... =0 

or 
n t- n n-l + X - TX •••• 
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n 
The sum of the roots of this equation is equal to -2". 
Consequently 

1 1 1 n 
xl-1 + x2~-1 + ... + x n -1 = -T· 

32. Consider the equation (with t as an unknown) 
x2 y2 z2 

-t-+ t-b2 + t-c2 = 1-

By virtue of the given equations this equation has three 
roots: ~2, y2, p2. 

Expanding the last equation in powers of t, we get 

t (t - b2) (t - c2) - x 2 (t - b2) (t - c2) -

- y2 (t - c2) t - Z2 (t - b2) t = 0, 

t3 + (Xt2 + . . . = 0, 

where (X = _b2 _ c2 _ x 2 _ y2 _ Z2. 

But as we know, the roots of this equation are ~ 2, y2, p2. 

Therefore, it must be 

~ 2 + y2 + p2 = b2 + c2 + x2 + y2 + Z2. 
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Hence 
x2 + y2 + Z2 = It 2 + V 2 + p2 _ b2 _ c2. 

33. Since cos ex + i sin ex is the root of the given equa­
tion, we have 

or 

But 

n 

~ Ph (cos ex + i sin ex)n-h = 0 (Po = 1) 
11=0 

n 

(cosex+isinex)n ~ pdcosex+isinexth=O. 
11=0 

(cos ex + i sin ext 1 = cos ex - i sin ex, 
therefore 

n n 

~ PII (cos ex - i sin ex)" = 0, 
11=0 

~ PII (cos exk - i sin exk) = O. 
11=0 

Hence, indeed, 
n 

~ PII sin kex = PI sin ex + P2 sin 2ex + ... + Pn sin nex = O. 
11=0 

34. On the basis of the given data we have identically 

xn + PIXn-1 + P2Xn-2 + ... + Pn-lx + pn = 

= (x-a) (x-b) ... (x-k). 

Substituting for x first i and then -i and multiplying term­
wise, we get the required result. 

35. Extracting the two given equations termwise, we 
find 

(p - p') x + (q - q') = O. (1) 
Multiplying the first equation by q' and the second by q and 
subtracting term by term, we have 

x3 (q' - q) + x (pq' - qp') = 0 

x 2 (q' - q) + pq' - qp' = O. 
(2) 

Eliminating then x from equations (1) and (2), we obtain 
the required result. 

36. The roots of the equation 

x' = 1 
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are 
2kn 0 0 2kn (k 0 1 2 6) cOS-7-+lsm-7- =", ... , . 

Therefore, the roots of the equation 

x6+x6+x4+x3+x2+x+1=0 (*) 

will be 
2kn + 0 0 2kn x.- cos-- lSlD--... - 7 7 (k= 1, 2,3,4,5,6). 

Put 
• 1 

x+X-=y, 
then 

1 1 X2+ X2"= y2-2, X3+--;3=y3_3y. 

Equation (*) may be rewritten in the following way 

(X3 + ;3 ) + (X2 + ~) + (x + ! ) + 1 = O. 

It is evident that 
1 - 2kn 

XI = 3 0 6, X2 = X5, X3 = X4, Xli. + - = Xh + Xh = 2 cos -7-' Xh 
Hence, we may conclude that the quantities 

2n 4n 8n 
2 cos -7-' 2 cos -7- , 2 cos -7-

are the roots of the following equation 
y3+ y2_2y_1 =0. 

Let us set up an equation with the following roots 

V 2n V 4n V3 ' 8n 1 2 cos -7- , 2 cos -7- , 2 cos -7- . 

Let the roots of a certain cubic equa tion 

X3 - ax2 + bx - c = 0 
be 

a, ~, 1'. 
We then have 

a+~+I'=a, a~ +al'+~1' = b, a~1' = c. 
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Let the equation, whose roots are the quantities ;/a, .v~, 
~y, be 

x3 - Ax2 + Bx - C = o. 
Then 

Va+V~+Vy=A, 
~,raV~+Va~/Y+nVy=B, V a~I'=C. 

Let us make use of the following identity 

(m-t- p+q)3= m3+ p3+ q3+ 

+3 (m+ p +q) (mp + mq+ pq)-3mpq. 
Putting here instead of m, p and q first Va, V~, Vy-, 
and then V a~, V aI', V ~I', we find 

A3 = a + 3AB - 3C, B3 = b + 3BCA - 3C2. 

In our case we have a = -1, b = -2, e = 1, C = 1. 
Hence 

A 3 = 3AB - 4, B3 = 3AB - 5. 

Multiplying these equations and putting AB = z, we 
find 

Z3 - 9z2 + 27z - 20 = 0, (z - 3)3 + 7 = 0, 

z = 3 - 7. V-
But 

3/­A3=3z-4=5-3V 7, 
Therefore, indeed, 

Va+V~+VY= 

V 2n y 4n V 8n =~ 2 cos -7-+ 2 cos -7- + 2 cos -7-= 

= V 5--3 V7~7 . 
The second identity is proved in the same way. 

37. Since by hypothesis a + b + e = 0, we may consi­
der that a, band e are the roots of the following equation 

x3 + px + q = 0, 
where 

p = ab + aC + be, q = -abc. 
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We have 

(a + b + e)2 = a2 + b2 + e2 + 2 (ab + ae + be), 
i.e. 

82 = -2p. 

Putting in our equation in turn x = a, x = b, x = e, we 
get the following equalities 

a3 + pa + q = 0, b3 + pb + q = 0, 
e3 + pc + q = 0. 

Adding them term by term, we find 

S3 + PS1 + 3q = 0. 

But since S1 = a + b + e = 0, w'e have S3 = -3q. 
Multiplying both members of the original equation by 

Xk, putting then x = a, band e, and adding, we find 

Sk+3 = -PSk+t - qSk' 

Putting here k = 1, 2, 3, 4, we find 

S4 = 2p2, S5 = 5pq, S6 = _2p3 + 3q2, S7 = _7p2q. 

Taking advantage of these relationships, we easily prove 
the first six formulas. The last one is also obtained readily. 

38. We have 

x - u =·v - y, x2 - u2 = v2 _ y2. 

The second equality may be rewritten as follows 

(x - u) (x + u) - (v - y) (v + y) = 0. 

Since x - u = v - y, the last equality is rewritten as 

(x - u) [x + u - (v -f y)] = 0, 

wherefrom follows 

1° x - u = 0, v - y = 0, x = u, y = v; 

2° (x + u) - (v + y) = 0, (x - u) - (v - y) = 0, x = 
= v, y = u. 

Consequently, indeed, 

xn + yn = un + vn. 
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Let us go over to the second case. Suppose x, y, z are the 
roots of a cubic equation 

a 3 + pa2 + qa + r = O. 

Prove that u, v and t are the roots of the same equation. We 
have 

x + y + z = -p, xy + xz + yz == q, xyz = -r. 

Hence, to prove that u, v, and t are the roots of the same 
equation (whose roots are x, y and z) it is sufficient to prove 
that 

u + v + t = x + y + z, uv + ut + vt = 

= xy + xz + yz, uvt = xyz. 

The first of these equalities is true by hypothesis. The se­
cond one follows immediately from the identity 

2 (xy + xz + yz) = {x + y + Z)2 - (x2 + y2 + Z2) 

and from the condition 

x2 + y2 + Z2 = U 2 + v2 + t2. 

Likewise, the third equality follows from the identity 

3xyz = x3 + y3 + Z3 + 3 (x + y + z) X 

X (xy + xz + yz) - (x + y + Z)3 

and from the condition 

x3 + y3 + Z3 = u3 + v3 + t3. 

Thus, u, v, t as well as x, y, z are the roots of the same third­
degree equation. Therefore, one of the six possibilities takes 
place 

x 
y 
x 
y 
z 
z 

11 

y 
x 
z 
z 
x 
y 

z 
z 
y 
x 
y 
x 
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It is obvious that in all cases we have 

;xn T yn+zn=un+vn+tn. 

39. Squaring the first trinomial, we get 

A2 = (;x: + 2;X2;X3) + (;xi + 2;X1;X2) e + (x~ + 2XtX3) e2 • 

Then 

A3 = (x: + ;x: + x: + 6;XtX2X3) + (3X:X2+ 3x;xt + 3X;X3) e + 

3ft 

+ (3x:xa + 3x~xt + 3xix2) e2 • 

Put 

a = X:X2 + .r~X3+ x:xj, ~ = XIX: + X2X;+ X3X~, 

Now 

x~ + x:+ x: = - (pXt + q) - (PX2 + q) - (PX3+q) = - 3q, 
since 

Furthermore 

therefore 
A3 = -9q + 3ae + 3~e2. 

Substituting X2 and X3, we also find 

B3 = -9q + 3ae2 + 3~e. 
Hence 

A3 + B3 = -18q - 3a - 3~ = -27q, 
since 

a + ~ = XtX2 (Xt + X2) + X2X3 (X2 + X3) + 
+ X3Xt (X3 + xd = -3XtX2Xa = 3q. 

Likewise we get 
AS .Bs = -27p3. 

It should be taken into consideration that 

a~=3x~x:x~ + (x~x:+ x~x: + x:x:) + x1xzxa + x:XtXa + 
+ 4 32 s3s(1+1+1), X3X2 Xt = q + Xt X2XS -1 ~ ~ i-

Xl X2 Xs 

+ X1X2Xa (X~ + x: + X~), 
and 

1 1 1 3 p3 x:r+--;a+x:r == --q --q3 . 
I 2 S 
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40. Put 

We have 

or 

[(x+ ~r+ab-~J[(x+ ~ )2+cd-~J=m. 
Let 

Then the equation takes the form 

( y + ab - ~ ) ( y + cd _ ~2 ) = m, 

i.e. 

y2 + ( ab + cd _ ~2 ) Y + ( ab _ ~2 ) (cd _ ~2 ) - m = O. 

It only remains to solve this quadratic equation. 
41. Make the following substitution 

then 

a+b x=Y--2- , 

a-b x+a=Y+-2- , b a-b x+ =y--2-. 
The equation takes the form 

( a-b)4 ( a-b )'. y+-2- + Y--2- =C. 
But 

(y+ a--;b f=y4+ 4y3 a--;b +6y2( a--;b )2+ 

+ 4y ( a --; b r + ( a --; b f. 
Therefore the equation takes the form 

y4 + 6 ( a --; b ) 2 y2 + ( a --; b r = + . 
Thus, the problem is reduced to solving a biquadratic 
equation. 
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42. Put for brevity 

a+b+e=p 

and make the substitution 

x + p = y. 
We have 

(y - a) (y - b) (y - c) p - abc (y - p) = O. 

Hence 
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p {y3 _ (a + b + c) y2 + (ab + ae + be) y} - abey = 0 

or 

y {(a + b + c) y2 - (a + b + e)2 y + 
+ (ab + ae + be) (a + b + c) - abc} = O. 

And so, we find three values for y: one of them is zero, the 
other two are obtained as the roots of a quadratic equation. 
Then it is easy to find the corresponding values of x. 

43. Rewrite the equation in the following way 

(x + a)3 - 3be (x + a) + b3 + e3 = O. 
Put x + a = y. The equation takes the form 

y3 _ 3bey + b3 + e3 = O. 

But it is known (Problem 20, Sec. 1) that 

y3 + b3 + e3 - 3bey = 
= (y + b + c) (y2 + b2 + e2 - yb - ye - be) 

Consequently, one of the roots of the last equation will be 
-b - e, the other two are found by solving the quadratic 
equation. Then we find the corresponding values of x. 

44. The equation contains five coefficients: a, b, e, d 
and e, and there exist two relationships among them. Thus, 
three coefficients remain arbitrary. Let us express all the 
coefficients in terms of any three. 

We have 
a = e + d, e = b + e. 

The equation takes the form 

(e + d) X4 + bx3 + ex2 + dx + (b + c) = 0, 

e (x4 + x2 + 1) + dx (x3 + 1) + b (x3 + 1) = o. 
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But 
:r + 1 = (x + 1) (x2 - x + 1), 

X4 + x2 + 1 = (x4 + 2x2 + 1) _ x2 = (x2 + 1)2_ x2 =z 

= (X2 + X + 1) (x2 - X + 1). 

The equation is now rewritten as 

(X2 _ x + 1) {c (x2 + X + 1) + dx (x + 1) + 
+ b (x + i)} = O. 

Equating the first factor to zero, we find 

1 +. Y3 x=2"- t-2-· 

The remaining two roots are found by solving the second 
quadratic equation. 

45. We ~ave the following formula 

(a + b + X)3 = a3 + b3 + x3 + 3a2 (b + x) + 
+ 3b2 (a + x) + 3x2 (a + b) + 6 ab.r. 

Using this formula, reduce our equation to the form 

x3 - (a + b) x2 - (a - b)2 x + (a - b)2 (a + b) = 0. 

Hence 
x2 (x - a - b) - (a - b)2 (x - a - b) = 0, 

(x - a - b) [x2 - (a - b)2] = 0, 

(x - a - b) (x + a - b) (x - a + b) = 0. 
Thus, the given equation has three roots: 

x = a + b, x = a - b, x = b - a. 

46. Rewrite the equation as follows 
T! 

2 a2x2 2ax2 2 2ax2 
x + (a+x)2 - a+x =m - a+x . 

Consequently 

Hence 
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x2 
Put --= y. Then the equation takes the form 

a+x 
y2+2ay-m2=O, 
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wherefrom we find y and then x. For y we find the following 
values 

y = - a ± Va2 + mi. (1) 

The corresponding values of x are determined by th1l 
formula 

(2) 

Let us take the plus sign in formula (1). In this case the 
value of y will exceed zero. Computing, by formula (2), 
the corresponding values of x, we make sure that x has two 
values: one positive, the other negative. And so, our equa­
tion always has at least two real roots, positive and nega­
tive. 

Consider the case when the minus sign is taken in formu­
la (1). Now the value of y is negative, and for x to be real 
it is necessary and sufficient that y2 + 4ay ,? O. And, con­
sequently, it must be 

i.e. 
y + 4a ~ 0, 

-a-Va2+m2+4a~0, 
m2 ,?8a2 • 

With this condition satisfied, all the four roots will be 
real. Since ay < 0, we have 

I V--"--Y42 +-ay I < I ~ I 
and, consequently, both real roots, found from formula (1) 
taken with the minus sign, will be negative. Thus, if all 
the four roots are real, then one of them is positive, the 
remaining being negative. 

47. Put for brevity 
5x4 +1Ox2 +1 
x4 +10x2 +5 = f (x). 

Then the equation takes the form 

f (x) ·f (a) = ax. 
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Further, we have 
(x-1)6 

x-f (x)= x4 +10x2 +5 ' 

Dividing the first equation by the second one, we find 

x-f (x) _ ( x-1 )5 (*) 
x+f(x) - x+1 . 

Put 
x-1 a-1 
x+1 ~y, a+1 =b. 

From the equation (*) we get 

x- f (x) = y5x -\- y5f (x), x (1- y5) = f (x) (1 -+- y5), 
f (x) 1- y5 
-x-= 1+y5 

Likewise we have 
f (a) 1-b5 

a 1 +b5 • 

Now our equation can be rewritten in the following way 

whence 

The last equation has five roots, namely 

But 

consequently 

'y,,= _be" (k=O, 1, 2,3,4.); 

211 +. . 211 
e=cosT ~sIllT' 

x- 1+11 
- 1-y , 

1+y" 1-be" x,,=--= 
1-y" 1+be" 

(a+1)-(a-1)e" 

(a+1)+(a-1)e" 
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Further 
k k 

(a+1) e-2 -(a-1) e2 
k k 

(a+1)e-2" +(a-1)e2 
k k k k 

a(e-2 _e2 )+e- 2 +e2 
nk . nk 

cos -5- - ia sm -5-

k k h k 

a(e-Y +e2 )+e-2 _e2 
nk ., nk 

a cos -5-- 1 sm -5-

In particular, at k = 0 the solution is 
1 

xo=--;z· 

31.7 

48. Transform the left member of the equation. Denote 
the sum on the left by Sm. Then 

S t = 1 + _a_t_ .t a2x = x2 . 
x-at (x-at) (X-a2) (x-at) (X- a2) 

Prove that 

Suppose this equality is true at m = n, and prove that it 
will be true also at m = n + 1. We have 

S x2n + a2n+tX2n + 
n+1 = (x-at) '" (X-a2n) (x-at) .. , (X-a2n) (X-a2n+t) 

+ a2n+2x2n+t 
(x-at) .,. (X- a2n+2) 

Reducing the right member to a common denominator 
and accomplishing all the necessary transformations, we get 

x2n+2 
Sn+1 = ( ( x-at) .,. X- a2n+2) 

Now our equation takes the form 
x2m-2pxm+ p2 = 0 

(x-at) '" (X-a2m) 
or 

(xm_ p) (xm_ p) = O. 

The equation has m double roots. 
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49. 1° We have XJ + X2 + Xa = - p, XjXZ + XjXa + XZXa = 
=q, XtX2X3= -r. 

From the second equality we get 

whence 

XjX2 + XjXa + x: = Xj (Xj+ X2 + xa) = q, 

Xj= _.!.L. 
p 

Using the first equality, we find 

+ q_p2 
Xz Xa=--· 

p 

From the third equality we have 
rp 

X2 Xa=- • q 

It only remains to set up a quadratic equation satisfied 
by X2 and Xa. . 

2° Solved analogously to the preceding one. 
50. 1° Using the identity of Problem 4 of this section, 

we can rewrite our system in the following way 

(y + z + a) (y + ze + ae2) (y + ze2 + ae) = 0 

(z + x + b) (z + xe + be2) (z + xe2 + be) = 0 

(x + y + c) (x + ye + ce2) (x + ye2 + ce) = O. 

To find all the solutions of the given system it is neces­
sary to consider all possible (27) combinations. Thus, we 
get 27 systems, each containing three equations linear in 
the unknowns x, y, and z. 

If each of these systems is designated by a three-digit 
number in which the place occupied by a certain digit 
corresponds to the number of the equation and the digit it­
self to the number of the factor in this equation, then the 27 
systems will be written as 

111, 112, 113, 121, 122, 123, 131, 132, 133, 

211, 212, 213, 221, 222, 223, 231, 232, 233, 

311, 312, 313, 321, 322, 323, 331, 332, 333. 

Let us explain, for example, system 213: taken from 
the first equation is the second factor, from the second-
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the first factor and from the third-the third factor. Thus, 
system 213 will have the following form 

y + ze + ae2 = 0, z + x + b = 0, x + ye2 + ee = 0. 

Let us decipher some more systems 

y+z+a=O, z+x+b=O, x+y+e=O; 
y+ze+ae2 =0, z+xe2 +be=0, 

y+ze2 +ae=0, z+xe2+be=0, 

y+z+a=O, z+xe+be2 =0, 

and so on. 
2° We have 

x -t- ye + ee2= 0; 
x+ye2+ee = 0; 

x+ye+ee2 =0 

X4 = xyzu + a, y4 = xyzu + b, Z4 = xyzu + e, 

(111) 

(232) 

(333) 

(122) 

u4 = xyzu + d. 

Multiplying these equations and putting xyzu = t, we find 

t4 = (t + a) (t + b) (t + c) (t + d). 

Thus, for determining t, we have the following equation 

(a + b + e + d) t3 + (ab + ae + ... ) t2 + 

However, 
+ (abc + aed + ... ) t + abed = 0. 

a + b + e + d = 0, 

therefore, for finding t we get a quadratic equation. Know­
ing t, we easily obtain x, y, z and u. 

51. We have 
2 n (1 +x)n+l-1 

1+(1+x)+(1+x) + ... +(1+x) = (1+x)-1 = 

n+l n+l 

= ! {~ C~+lxl!-1} = ~ C~+IXIl-l. 
Il=O 11=1 

WhE'refrom follows that the term containing xl! will be 

52. We have 
CII+1 II 

n-\-l,T • 
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Since this IJolynomial is multiplied by the second-degree 
trinomial 

(s - 2) x 2 + nx - s, 

it is clear that the coeffICient of X S in the product will be 
equal to 

(s-2) C~-2 +nC~-l-sC~. 

Carrying out all the necessary transformations, we see that 
the last expression is equal to 

Cs - 2 n n . 

53. Put x = 1 + a, where a > ° (since x> 1). 
Then we have 

'pxq -qxP- p+q= p(1+a)q -q (1+a)P- p+ q = 

= p {1+qa+ q(i~1) a 2+ ... }_ 

--q{1+pa+ p~.-;1) a2+ ... }_p+q= 

=(pC~-qC~)a2+(pq-qC~)a3+ ... 

Since q > p, we can prove that all the terms of the above 
expansion are positive [the coefficient of a lt (if k > p) will 
be equal to pql. Thus, to prove the validity of our asser­
tion, it is sufficient to prove that 

~ = pC~ - qC; > ° 
if q > P and k ~ p. 

We have 

~=pq(q-1) ... (q-k+1) _qP(p-1) ... (p-k+1)= 
1·2·3 '" k 1·2·3 ... k 

= ~f {(q-1)(q-2) ... (q-k+1)-(p-1)(p-2) ... x 

X (p-k+1)} > 0, 
since 

q - 1 > P - 1, q - 2 > P - 2, 

54. Let the greatest term be 

T Cit n-h h 
It= nX a. 
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This term must not be less than the two neighbouring terms 
T k-1 and Tk+t. Thus, there exist the following inequalities 

Whence 
Tk ~ Tk-1, Tk ~ Tk+l' 

n-k a 1 
k+1 ·x~ . 

The first of them yields 

k& (n+1) a 
"'" x+a 

From the second one we get 

k~(n+1)a 1. 
~ x+a 

First assume the (n+1)a is a whole number. Then 
x+a 

(n~1) a -1 is also a whole number, and since k is a 
x a 

whole number satisfying the inequalities 

(n+1) a -1 &k& (n+1) a 
x+a "'" "'" x+a ' 

it can attain two values 

k=(n+1)a 
x+a ' 

k= (n+1)a -1. 
x+a 

In this case there are two adjacent terms which are equal to 
each other but exceed all the rest of the terms. Now consider 

the case when (n++1)a is ~ot a whole number. We then have 
x a 

(n+1)a =[ (n+1)a ]+e 
x+a x+a ' 

where 0 < 8 < 1 (for the symbol [ ] see Problem 35, 
Sec. 1). In this case the inequalities take the form 

k';;:'[ (n+1)a J+8 k~[ (n+1)a J-(1-8)-
'"<::: x+a ,:;- x+a 

I t is apparent that in this case there exists only one value 
of k at which our inequalities are satisfied, namely 

k=[ (n+1)a J. 
x+a 
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And when (n +1 l)a is not a whole number, there exists so, x -a 

only one greatest term Tk • 

55. Let i and rii be positive integers. We have 

(x+1)m_xm=mxm-1+ m(~.;1) xm-2+ ... +mx+1. 

Heplacing here x by x+l, we get 

(x +2)m_ (x-t- 1)m = 

= m (x+ 1)"'-1 + m (7.; 1) (x+ 1)m-2+ ... + m (x+ 1) + 1. 

Subtracting the preceding equality from the last one, 
we fmd 

(x+ 2)"'_2 (.x+ 1)m + xm = m (m -1) xm-2+ pJxm-:1 + .... 
Analogously we obtain 

(x+ 3)'" -- 3 (x+ 2)m +3 (x+ 1)m -x'" = 
= m (m-1) (m-2) X"'-3 + P2.X'11-4 + ... 

Using the method of mathematical induction, we can prove 
the following general identity 

(x+i)m- y(X+i-1)m + i(i1~1) (x+i-2)m+ ... + 

+(-1)ixm=m(m-1) ... (m-i+1) X",-i +px",-i-1-t- ... , 

wherefrom it is easy to obtain that at i = m 

(x+m)m-7 (x+m-1)"'+ ... +(_1)mxm=m!. 

If i > m, we get 

(x·-t- i)m_+ (x+ i- ~)m + 

+ i(i1----:21) (x+i--2)m+ ... +(_1)ixm=o. 

Putting in the last equalities x = 0, we find the required 
identities. 

56. We have 

(x+ai)n= xn+C~xn-l ai+C~xn-2a2i2+C~xn-3a3i3+ ... = 
= {xn_C!xn-2a2+C~xn-4a4_ ... }+ 

+i {C~xn-la __ C:lxn-3a3 + ... }. 
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Going over to the conjugate quantities, we get 
(x-ai)n ={xn_C!xn-2a2+C~xn-4a'_ .. . }­

_i{C~xn-la_C;xn-3a3+ .. . }. 

Multiplying these equalities term by term, we find the 
required result. 

57. 1° We can write our product in the following way 
n n 2n 

~ x8 ~ xt= ~ Alxl, 
8=0 t=o 1=0 

wherefrom it follows that 

Al= ~ 1. 
8+,=1 
O~s~r, 
O~t~n 

First assume l ~ n. Then s can attain the values s = 0, 
1,2, ... , l and, consequently, 

Al = l + 1 
if l ~ n. 

"If n -< l ~ 2n, then we put 

l = n + l', 
where 1 ~ l' ~ n, l' = l - n. 

In this case s can take only the following values 

s = l', l' + 1, . . ., n. 

The total number of values will be 

n - (l' - 1) = n - (l - n - 1) = 2n - l + 1. 
And so, 

Al = 2n + 1 - l if n < l ~ 2n. 

It is easily seen that A n- k = An+k = n - k + 1. 
Indeed, expanding the product, we get immediately 

(1 +X+X2+ .. . +xn) (1+x+x2+ .. . +xn) = 

= 1 +2x+3x2+ ... +nxn-1+ 
+ (n+ 1) xn+nxn+l + ... +2xsn-l+xsn. 

2° In this case we have 
n n 2n 
~ (_1)8 XS ~ xt = ~ Alxl. 

8=0 1=0 1=0 
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Hence 

Solutions 

A,= ~ (-1)'. 
l=s+t 
O~.~n 
O~t~n 

Considering again separately the cases when l -<: nand 
l> n, we arrive at the following conclusion 

if l-<:n, then Az= 1+(;1)1 , 

if l > n, then A, = 0 when l is odd and 
A, = (_1)n when l is even. 

Thus, A, = 0 for any odd l, i.e. the product contains 
only even powers of x, and if n is even, then all the coeffi­
cients (of even powers) are equal to +1; if n is odd, then 
half of them is equal to +1, the other half to ~1 

Ao = Az = ... = A n-1 = +1, 
An+1 = A n+3 = ... = Azn = -1. 

3° We have 
n n 2n 

~ (k+1) Xli ~ (s+ 1) X8= ~ A,X'. 
k=O 8=0 1=0 

Hence 
A , = ~ (k+1)(s+1)= ~ (ks+l+1). 

1i+8=1 k+8=1 
O~k~n O~k~n 
O~.~n O~a~n 

Let us first assume that l ::;;;; n, then k can take on only 
the following values: 0, 1, 2,' ... , l, the corresponding 
values of s being l, l - 1, ... , o. 

Therefore 

k=O 
I I 

= l ~ k- ~ k 2+ (l+ 1)2=(l+1)(l1 2)(l+3) , 

k=O k=O 

taking as known that 
f2+ 22+ ... + l2 = l 0+ 1)6(2l+ 1) 

(see Problem 25, Sec. 7). 
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Then assume n < l ~ 2n and put l = n + l', where 
1 ~ l' ~ n. Then k can attain only the following values 

l', l' + 1, . . ., n 
and, consequently, 

n n 

k=/-n k=l-n 
= (2n-l+1) (l2+2l+2) -I- (l-n-1)(l-n)(2l--2n-1) 

2 6 

4° Solved as the preceding case. 
58. 1° We have 

n (n+ 1) (2n+1) 
6 

1 +~+~ +C~ + .,. +C~-l+C~= (1 + 1)n=2n, 

1-C~+C~ -C~ + .. , + (-1)nc~= (1-1)n= O. 

Adding the two equalities and then subtracting, we get 
the required identity. 

2° as well as 3° is reduced to 1° if we take into account 
that 

Ck C2n-k 2n = 2n . 

59. Consider the identity 

(1+xt=C~+C~X+C~X2+C~X3+ ... +C~-lxn-l+C~xn. 

Putting in this identity in succession x = 1, 8, 82 , where 
82 + 8 + 1 = 0, we get 

2n = C~ + C~ + C~ + C~ + ... 
(1 + 8)n=c~ +C~8+C~82+C~e3+ ... 

(1 + 82t = C~ + C~ 82 + C~ 8' + C~ 86 + . . . . 
But 1 + 10k + e2k = 0 if k is not divisible by 3 and 1 + ek + 
+ 82k = 3 if k is divisible by 3. 

Consequently, 
2n+ (1 + lOr + (1 + 82)n = 3 {C~ +C~ +C~ + ... }. 
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Since for e we can take the value 

2:rt + .. 2:rt 
e=cosT ~sIllT' 

we have 

1 2 4:rt. . 4:rt :rt +.. :rt + e = - e = - cos -3- - £ SIll T = COS 3" £ SIll ""3 

1 + 2 2:rt ., 2:rt :rt. . :rt 
e = -e= -cosT-£SIllT=cos3"-£SIllT' 

Therefore 

2n + (1+e)n+ (1 + e2)n= 2n+ 2 cos n; . 
Hence, we obtain 

C~ +C~ + C~ + ... = -} ( 2n + 2 cos n3:rt ), 

the other two equalities are obtained similarly by consi­
dering the sums 

2n+e (1+e)n+e2 (1+e2)n, 

2n + e2 (~+ e)n+ e (1 + e2)n. 

60. The solution is analogous to that of the preceding 
problem. Consider (1 + i)n. 

k(k-1) k2 k 
61. Since C~ = we get 1·2 -2-2' 

2C'k=k2_k. 
Consequently, 

n n n 
2 ~ C'k = ~ k2 - ~ k, 

1<=2 1<=2 1<=2 

wherefrom our identity is obtained. 
62. Let at = C~, a2 = q+l, aa = C~+2, a, = C~+3 . 

Then 
a2 n-k a4 n-k-2 
a;-= k+1 ' 0;= k+3 

It only remains to prove that 
1 1 ---+---

1+.!2 1+~ 
at aa 

2 
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63. If we rewrite the equality in the form 

n! I n! + n! + + n! = 2n-l. 
1! (n-1)! T 3! (n-3)! 5!(n--5)! ... (11-1)! 1! 

then the problem is reduced to proving the following 
relationship (see Problem 58) 

C; + C~, + ... + C~-l = 2n - l. 
64. Consider the equality 

( 1 + . V3)n ( 2n +.. 2n)n -"2 l 2"" = cos -3- l sm 3 = 

Further 

2nJt +. . 2nn 
= cos -3- l sm -3- . 

(-{+i ~3 r = (-;~)J1 (1-iV3t= 

= (-;~)n (1 + C; (- i V3) + 
+C~ (- i V3)2+C~ (-i V3)3 + ... l = 

(-1)n ( 2· I = 2n 1 - 3Cll I ... -

- i V3 (C; -3C~ +32C~ -33C~ -l- ... )l. 
\ 

Equating the coefficients of i in both members of the 
equali ty (*). we get 

- V3 (C; -3C~ + 32C~ _-33C~ + ... ) = (-1t2n~in 2~n • 

Hence 

_ C1 3C3 32C:; 33C7 _ ( 1 )Ml 211 • 2nn s - 11;- 11 + 11 - 11 + ... -- - . V3 sm -3- I 

wherefrom we easily obtain 

s=O if n==O (mod 3). 
s=2n- 1 if n = 1 or 2 (mod 6). 

s= _2n-1 if n=4 or 5 (mod 6). 

65. Consider the expression 

{1+ir· 
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We have 

Hence 

(1 + i) n = (1 - C~ + C~ - C~ + ... ) + i (C~ - C; + C~ - ... ). 

But 

1 + i = V2 (cos ~ + i sin ~ ). 
Therefore 

n 

1 C2 C4 C6 22 nrt o = - n + n - n + ... = cos -4- , 

n 

, C1 C3 + Co C7 22 . nll o = n - n n - n + ... = SIn 4 . 

Hence, if n == ° (mod 4), i.e. n = 4m, then 
0=(_1)m22m, 0'=0. 

If n=1 (mod 4), i.e. n=4m+1, then 

. 0=0'=(_1)m22m . 

If n = 3 (mod 4), i.e. n = 4m + 3, then 
0= ( _1)m+! 22m+!, 0' = ( _1)m 22m+l. 

Finally, if n==2 (mod 4), i.e. n=4m+2, then 
0=0, 0' = (_1)m 22m+!. 

66. 1° Let us write our sum in the following way 
k=n 

s=1.C~+2C~+3C~+ ... +(n+1)C~= ~ (k+1)C~, 
k=O 

and introduce a new summation variable. Put k = n - k'. 
Then the sum is rewritten as 

k'=O k=n 
s= ~ (n-k'+1)C~-k' = ~ (n-k+1)C~= 

k~n k=O 
k=n 

= ~ [n+2-(k+1)lC~= 
1<=0 

k=n k=n 
=(n+2) ~ C~- ~ (k+1)C~=(n+2)2n-s. 

1<=0 k=O 
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Consequently, 
2s={n+2)2n, s=(n+2)2n-1• 

This sum can be computed in a somewhat different way. 
Rewrite it as follows 

s= (C~ +C~ + ... +C~) + (C~ +2C~ + ... + nC~) = 2n+n+ 

+2 n(n-1)+3 n (n-1)(n-2)+ + (-1)+ .1-
1.2 1.2.3 ... n n n-

=2n+n {1+(n-1)+(n-it- 2)+ ... +(n-1)+1} = 

= 2n+ n{C~_1 + C~_1 + ... + C~.::-D = 2n+n2n-l=2n-l (n+2). 

2° We have 

C~-2C~+3C~+ ... +(-1)n-lnC~=n-2 n(;.-;1) + 

+ 3 n (n-;.1~.~-2) + ... + (_1)n-l n = 

=n {1- n~1 + (n-i.~-2) + ... +(_1)n-2 n~1 + 

+ (- 1)n-l } = n (1_1)n-l = o. 
67. Rewrite the sum in the following manner 

1 1 1 2 1 3 ( -1 )n-I n 
"2Cn-TCn+TCn-···+ n+1 Cn= 

n n(n-1) n(n-1)(n-2) (_1)n-1 
="2- 1·2·3 + 1·2.3.4 + ... + n+1 = 

=_1_ {(n+1)n _ (n+1)n(n-1) + ... +(_1)n-1 } = 
n+1 1·2 1·2·3 

=_1_ {[1- n+1 + (n+1)n _ (n+1)n(n-1) + + 
n+1 _ 1 1·2 1.2.3 ... 

+(-1)n+1]_1+ n+1} =_1_{(1_1)n+l+n}=_n_. 
1 n+1 n+1 

68. 1° Consider the following polynomial 

(1 + x)n+l = 1 + C~+1x + C~+1X2 + ... + C~:!xn+l. 
Hence 

(1+x)n+I-1=co _1_ q. 2+ C~ 3+ +~ n+l 
n+1 nX 2 x 3 x ... n+1 x . 

Putting x = 1, we get the required identity. 
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20 Obtained from the preceding identity at x = 2. 
69. Put 

C1 1 C2 1 C3 + (_t)n-l Cn 
n-T n+"3 n+ ... n n"'" un· 

Then we have 

_ _ { _-.!.. n (n-t) +..!.. n (n-1) (n-2) + }_ 
Un U n-l - n 2 1 .2 3 1 .2.3 ... 

_{ __ 1_..!..(n-1)(n-2)+..!..(n-1)(n-2)(n-3)_ }= 
n 2 1.2 3 1.2.3 ..• 

} 1 {n(n-1) (n-1)(n-2)}+ 
={n-(n--1) -T 1.2 1.2 

+..!.. {n(n-1)(n-2) _(n-1)(n-2)(n-3)} -1- ••• = 
3 1·2·3 1·2·3 ' 

-1 n-1 (n-1) (n-2) __ - -1."2+ 1·2·3 + ... -
=-.!..{n- n(n-1) _L n(n-1)(n-2) } 

n· 1·2'- 1·2·3 . .. = 

And so, 

=..!.. {1- (i-1t} = -.!.. • n n 

1 
U n -Un-l=n: . 

Therefore we may write a number of equalities 
1 

U2- Ul=T' 
1 

ua- u2=3 ' 

1 
un -Un-l = -,; . 

Adding them term by term, we find 
1 1 1 

un = 1 + T +"3 + ... + -,; . 
70. 10 We may proceed as follows. The expression on 

the left is the coefficient of xn in the following polynomial 

s= (1 +x)n+ (1 +xt+l + (1 +xt+2+ .. , + (1 +xt+k , 
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Transforming this polynomial, we have 

s= (1 +xt{1 + (1 +x) +(1 +X)2+ ... + (1 +X)h} = 

=(1+x)n (1+x)h+I-1 =..i..{(1+x)rt+h+1_(1+x)n}. 
x x 

The coefficient of xn+l in the braced polynomial is equal 
to C~t~+I. Thus, our proposition is proved. 

2° The expression on the left is the coefficient of xn in 
the following polynomial 

xn(1+xt_xn-l(1+x)n-j- xn-2 (1 +x)n+ ... + 

+( _1)h xn- h (1 +x)n = (1 +xt{xn_xn-l + ... + 
+ (_1)h xn- h} = (1 + x)n-l {xn+l + (_1)h xn- h }. 

It is obvious that the coefficient of xn in the last 
expression is equal to 

(-1)" C~_l. 

71. 1° Consider the following polynomials 
n m 

(1+x)n= ~ C~X8, (1+x)m= ~ C:nxt . 
8=0 t=O 

We have 
n m 

(1+x)Il(1+xf"= ~ C~xS ~ c~xt= 
8=0 t=o 

m+n 

= (1 + x)m+n = ~ C~+nxP, 
p=o 

wherefrom follows the required equality. 
2° Follows from 10. 
72. 1 ° Consider the product 

We have 

Hence 

(1+x)n(1 +x)n= (1 +x)2n. 

n n 2n 
~ C~x' ~ C~XI = 2j qnXI. 
8=0 t~o 1=0 

Cl -- ,,1 CS CI 
271 -.LJ n n· 

~+t=1 
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Consequen tly 
n n 

C~n = ~ C~ .C~ = ~ C~C~-8 = ~ (C~)2. 
8+t=n 8=0 8=0 

2° In this case we consider the following product 

(1+xt(1-x)m=(1-x2)m. (*) 
Consequently 

m m m 

~ (_1)8 C:,.x· ~ C!nxt = ~ (_1)1 C!nx21 , 
8=0 1=0 1=0 

therefore 

Let us assume first that m is even and put m = 2n. Let 
l=n. Then 

Hence 
2n 
~ (-1)' (G;n)2 = ( -it C~n' 

8=0 

3° If m is odd, then we put m = 2n + 1. The coefficient 
of 'x2n+1 in the left member of the equality (*) is equal to 

2n+1 
~ ( _1)8 C~n+1qn+l = ~ (-1)' (G;n+I)2. 

8+t=2n+1 8=0 

But the right member 'of the equality (*) shows that this 
coefficient must equal zero (since it is evident from the 
expansion that odd powers of x are absent). Therefore 

2n+1 
~ (_1)8 (G;n+l)2 = 0 

8=0 

and equality 3° is proved. 
4° We have two equalities 

C~x + 2C~X2 + ... + nC~xn = nx (1 + x)n-l, 

C~+C~x+ ... +C~xn=(1+xt. 
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Multiplying them term wise, we find 
n n 

~ sC~xs ~ C~xk = nx (1 + x)2n-l. 
8=0 1=0 

Equating the coefficients of xn in both members of these 
equalities, we get the required identity. 

73. Since the product (x - a) (x - b) is a second-degree 
trinomial, when divided by it, the polynomial t (x) will 
necessarily leave a remainder which is a first-degree polyno­
mial in x, (Xx + ~. Thus, there exists the following identity 

t (x) = (x - a) (x - b) Q (x) + (Xx + ~. 
I t only remains to determine (X and ~. Putting in this iden­
tity first x = a and then x = b, we get 

t (a) = (Xa + ~, 
t (b) = (Xb + ~. 

But we know that the remainder from dividing t (x) by 
x - a is equal to t (a), therefore, 

t(a) =A, 

t (b) = B. 

Thus, for determining (X and ~ we get the fQllowing system 
of two equations in two unknowns 

Hence 
t (X=--(A-B) 

a-b ' 

~_aB-bA 
- a-b' 

74. Reasoning as in the preceding problem, we conclude 
that the remainder will have the following form 

(Xx2 + ~x + y. 
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For determiuing a, ~ and y we have the following system 

aa2 + ~a + y = A 

ab2 + ~b + y = B 

ac2 + ~c + y = C. 

On deterp1 ining a, ~ and y, we may represent the requi­
red remai.nder ax2 + ~x + y in the following symmetric 
form 

(x-b) (x-c) A+(x-a)(x-c) B+(x-a)(x-b)C 
(a-b)(a-c) (b-a) (b-c) (c-a)(c-b)' 

75. The remainder will be 
(X-X2) (X-X3) .,. (x-xm) + 

(Xt-X2) (Xt- X3) ... (Xt-xm) Yt 

+ (x-Xt) (X-X3) ... (x-xm) 
(X2- Xt)(X2- X3) ... (X2- Xm) Y2+ .•• + 

+ (x-Xt) (X-X2) '" (x-Xm-t) 
(xm-Xt) (Xm- X2) .. ' (Xm-Xm_l) Ym' 

76. The required polynomial (see thp preceding problem) 
takes the form 

(X- a2)(a:-a3) .. , (x-am) At + 
(at-a2) (at- a3)'" (at-am) 

+ (x- at)(x- a3)'" (x-am) A 
(a2-at) (a2- a3) .,. (a2- am) 2 + ... + 

+ (X- al) (X- a2)'" (x-am_t) A 
(am-at) (am -a2) ... (am-am-i) m' 

77. Our equality states the identity of two polyno­
mials. For this purpose it is sufficient to establish that 
the polynomial 

f ( ) (X-X2)(X-X3) ... (x-xm) + 
Xl (Xt- X2) (Xt- X3) ... (Xt-Xm) 

(X-Xi) (X-X3) ... (X-Xm) + + 
(X2-Xl) (X2-X3) '" (X2- Xm) ... 

+ f (Xm) (X-Xt) (X-X2)'" (X-Xm_t) - t (X) 
(Xn\-xtl··· (Xm-Xm-t). 

is identically equal. to zero. Since the degree of this polyno­
mial is equal to m - 1, it suffices to establish that it vani-
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shes at m different values of x. Indeed, it is easy to check 
that this polynomial is really equal to zero at 

x = Xl' XZ, X3, ••• , X m • 

78. Obtained from the previous problem by equating 
the coefficients of xm-l. 

79. If we put in the preceding' problem f (x) = 1, X, 

X2, ••• , x m - 2 , then it will be proved that Sn = 0 if 0 ~ 
~ n < m - 1. To prove the identity 

Sm-l = 1 

it is sufficient to put f (x) = xm - 1 in the identity of Problem 
77 and to equate the coefficients of x m - 1 in both members 
of the identity being obtained. To compute Sn for n > 
> m - 1 it is possible to proceed in the following way. 
Suppose Xl, Xz, ... , Xm satisfy an equation of degree m 

am + Pla1n- 1 + pzam - 2 + ... + Pm-la + Pm = 0, 
where 

-Pl=Xl+XZ+'" +Xm , 

pz = XIXZ + XZX 3 + ... + X m-1 Xm, 

- P3=XI XZX3+ ••• , 

Multiplying both members of our equation by a k , we 
get 

a m +h + Plam+k-1 + Pzam +k - 2 + ... + Pm_lak+1 + Pmak = O. 

Putting in this equality successively a = Xl, Xz, ..• , Xm 

and adding, we find 

Sm+k + P1Sm+k-l + PZSm+k-Z + ... + Pm-1Sk+! + PmSk = O. 

At k = 0 we have 

Consequently 

Sm = -Pl = Xl + X2 + ... + X m • 

At k = 1 we obtain 

Sm+l + P1Sm + P2Sm-l = O. 
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Further 

Sm+t = (Xt -I- X2 -I- X3 -I- • . . -I- xm)2 -

- (Xt X2 -I- • • • -I- Xm-tXm) 

= x~ -I- x; -I- .•. -I- x~ -I- XtX2 -I- Xt X3 -I­
i.e. Sm+! is equal to a sum of products of the factors 

taken pairwise. 

. . -, 

Here the factors may be both equal and unequal. Similar 
results can be obtained for Sm+2, Sm+3 and so on. The same 
results can be obtained using a more elegant method (Gauss, 
Theoria interpolationis methodo nova tractata). Put 

1 
""'"(x-t---X""":"2)--:('-X-l --X-:3)-'-'-' -:(x-t---x-m"""'") = at 

1 
-:----:--:------:---:----,- = a2, 
(X2-Xt) (X2-Xa) '" (X2- Xm) 

1 
) =am' (xm-Xt (Xm- X2) '" (xm-xm-t) 

Then we have 
Sn = x7a t -I- x~a2 -I- ... + x::tam. 

Let us form the following expression 

p = ctt -I- a2 + ... + am ( .) 
1-xtz 1-X2Z 1-xmz 

Using the formula for an infinitely decreasing geometric 
progression and assuming that z is chosen so that I Xtz 1<1, 
I X2Z 1<1, ... , I XmZ 1<1, expand the sum in an in­
finite series in the following way 

p =at (1 +Xtz-I-x~z2+x~za+ ... ) -I-a2(1 -I-x2z + X;Z2 + 
+X~Z3 + ... )-1- ... -I-am(l +xmz-I-x~z2-1-xi!nz3 -I- ... ). 

Or 

P =(at +a2-1- '" + am) + (Xtat -I-x2a2+ •.. +xmam) z+ 
+ (x~at + x;a2 + ... + x~am) Z2 + ... , 

i.e. 
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Put for hrevity 

(1 - Xtz) (1 - X2Z) 

Expanding Q in powers of z, we can write 

Q = 1 - UtZ + U2Z2 + ... +umzm , 

where 
Ut = Xt + X2 + ... + X m , 

U2 = XtX2 + XtX3 + ... ....L Xm-tXm, 

Multiplying both members of (*) by (1 - Xtz) (1 - X2Z) ... X 
X (1 - xmz), we have 

PQ = at (1 - X2Z) (1 - X3Z) ..• (1 - xmz) + 
+ a2 (1 - Xtz) (1 - X3Z) ... (1 - xmz) + 

+ a3 (1 - xJz) (1 - X2Z) (1 - xaz) ... (1 - xmz) + ... + 
+ am (1 - XIZ) (1 - X2Z) ... (1 - Xm_IZ). 

Thus, the product PQ is an (m - 1)th-degree polynomial 
in z. Let us show that it is simply equal to zm-l, i.e. the 
following identity takes place 

PQ=zm-l . 

Indeed, the expression PQ - z"!-l becomes zero at Z = 

1 1 1 1 =-, -, ... , -. At Z=- we have 
XI X2 Xm XI 

( 1_xm ) __ 1 = 
Xt xr-1 

1 1 
= --m=l- --m=t = o. 

Xl Xl 

Let us show in the same way that PQ - zm-l vanishes 

at z =~, ... , ~. But if a polynomial of degree m-1 
X2 Xm 

vanishes at m different values of the variable, then it is 
identically equal to zero. Thus, PQ - zm-l = o. Conse­
quently 

zm-I 
--P Q - . 
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Or 
Zlll-l 1 _ 

1-fTjz+fTzz2_(T3Z3+ 000 ± omzm 

= So + SIZ+ ••• + Sm_2Z"'-2 + S",_lZln- t -+- .... 
If we expand the left member in an infInite series in powers 
of z, then this series will begin only with a term containing 
zm-l. Therefore the coeffIcients of ;:;0, Zl, ... , zm-2 must 
also be equal to zero on the right, i.e. we have 

So = S, ,~, S2 --, • • • = Sill -2 ~ o. 
Besides, the coefficient at zm-l in the left member is equal 
to 1. Therefore 

Sill -I ,= 1. 
Now our eqnality takes the followillg form 

zm-t _ zm-1 \-s zm +s ~m·l \-
1-0jZ+02Z2_03Z3+. 00 ± fTmZm - - III m+l"" - ••• 

Reducing both members by zll1-1 , we find 

1 

or 

1 = (1- (JjZ + (J2Z2 - (J3Z~ + ... -+- (JlIlzm ) (1 + s",z + 
+ S'''+IZ2 + ... ). 

Arranging the right member in powers of z and equating 
the coefficients of these powers to zero (sillce the left mem­
ber contains only 1), we find 

SIt, -(J1 =0, 

02 -- (J1Sm + S",+1 = 0, 

Thus, we get a possihilily 10 compule Sm. SI/l+h "',"+2, 
However, 10 determille Ihe general strllctllrt:' of S/)/+I. le.t liS 
c()lIsider 

00 

1 
Q = 1-orjz 1-.1°2Z 
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But, on the other hand, 

1 _ 1 + + 2 + + k+l -l 7j - SIllZ Sn/+1Z . • . SIIl+hZ - .•. , 

therefore we get 
S "'\.~ s ~' s" 
m+k= £.., Xi X2 X3 •••• 

s+.,'+s"+ ... --k-f-1 

Thus, we get the following final result: sm+k is equal to a 
sum of products of k + 1 equal or unequal quantities taken 
from the totality Xt, x 2, ••• , X m . In particular 
SIll+I=X;+X~+", +X~+XIX2+XIX3+'" + 

+XjXm +X2X3+'" +Xm-IXm , 

Sm+2=X~+X~+" ,+X~+X:X2+" ,+x~_lxm+XIX2X3+"" 
80. Let us introduce the following notation 

xn 
sn(X\l X2, •.. , xm)= ) ( 1 ( + 

(Xt-X2 Xt-X3) .. · Xt-xm) 

x~ + ... + + (J'~-Xj) (X2-.l'3) '" (X2-·Xm) 
n + Xm 

(xrn-Xt) (Xm- X2) ... (xm-Xm_t) 
We have 
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82. Set up the expressioll 

_X_t_-L~~ I Xn 
;',-bt I }.-b~ i ••• -;- '.-bn = 

= 1- (A-at) (A- a2) '" (A-an) H 
(J,-b t ) (i.-b2) ••• (A-b n ) 

If all the terms are transposed to the left and reduced to a 
common denominator and then the latter is removed, then 
the left member becomes a polynomial in A of degree n - 1. 

By virtue of existence of the given system of equations 
this polynomial vanishes at n different values of 'A, namely 
at A = at, a2' •.. , an' Therefore it is identically equal to 
zero, and, consequently, the original equality (*) is also 
an identity. But then the equality (*) represents an expan­
sion into partial fractions of the following fraction 

(A-bt ) (A-b21 ••. (A-bn}-(A-at) O.-a2) ... (I.-an) 
(A-bt ) (t.-b2) ••• (/.-b n ) 

Therefore, the unknowns XI, X2' ... , Xn are found by the 
formulas of the preceding problem, and we get 

(bt-at) (b t - a2)' .. (bt-a n) 
Xt = - (b t -b2 ) (bt-bJ } ••• (bt-b n) , 

(b2-at) (b2 - a2) ••• (b2 -an ) 
X2 = - (b2-bt) (b2 -b3) .,. (b2 -bn) ' 

83. Readily obtained by applying the result of Prob­
lem 81. 

84. Consider the following frae tion 
(X-al) (X-a2) .. , (x-an) 
(x-b t) (X-U2) '" (x-b n) 

It is obvious that the difference 
(X-al) (x-a 2) .. , (x-an) -1. 
(x-bt}{x-b2) ". (x-bn ) , 

on reducing to a common denominator, will be a fraction in 
which the 'power of the numerator is less than that of the 
denominator. This fraction can be expanded into partial 
fractions. Therefore, the following identity takes place 
(X-al) (X- a2) ... (x-an) -1 AI A2 An 
(x-bt) (x-b2 ) .•• (x-b,,) - + x-bl + x-bz + ... + x-bn . 
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Multiplying both members of this identity by x - bb we 
find 

In this identity we may put 

x=bt • 

We then have 

Similar expressions Clre ohtained for A2 , A3 , ••• , An. 
Thus, we have the following identity 

(x- at)(x- a2) ... (x-an) = 1 +(bt-at ) (b t - a2) '" (b,-a n) X 
(:r-bt)(x-b2) ... (x-b n) (b t -b2) (b t -b3) ... (bt-bn) 

, _1_+ (b2-al) (b2-a2)'" (b2 -an). _1_-1.. + 
>( x-bt (b2-bl ) (b 2 -b3) ... (b2-bn) x-b2 I ••• 

, (b n - al) (b n - a2) ... (bn - an) 1 
'(bn-bl) (b n -b2)· .. (bn-b n- t )' x-bn 

At x=O we get the required identity. 
85. As in the preceding prohlem, it is easy to see that 

n 
(x+~) (x+2~) .'. (x-\-n~) -1 + ~ Ar 
(x-~) (x-2~) ... (x-n~) - L...J x-rB . 

r=1 

where 

A _ (r~+~) (r~-1-2~) .'. (rB+n~) 
r - (rB-~) (r~-2~) '" [r~-(r-1) ~l [r~-(r+1) ~J ... (r~-nB) • 

I t only remains to simplify this coefficient. 
86. We have 
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and formula 10 holds at n = 1. Assuming that it is true at 
n, let us prove its validity at n + 1. Indeed 

Ck+n+1 = Ck+n + flCh+n"" 

( + n A +n(n-1) A2 + n(II-1)(n-2) A3 + + 
= Ck TUCk 1.2 1..1 Ck 1.2.3 u ch ••• 

+ flnCk) + fl (Cit + ~ flclt+ n (;:; 1) fl2C1t + ... + flnCIt) = 

= Ck+ ( ~ + 1) flCh + (n(;:;1) + ~ ) fl2Ck + ... + fl n+1Ch = 

+ n+1 A +(n+1)n A .) + +An+l =c" -1- UCk 1.2 U-Ch '" U cR., 

and the proposition is proved. 
Formula 2° is proved likewise. It is obviou~ that at 

n = 1 it holds true. Let us assume that it is valid at n. 
Then we have 

n+l A n A +n(n-1) A 
fl Ck= UCh+n-T uCk+II-1 1.2 uCl!+n_2-'" + 

+ (-1) lIflck = (Ck+n+1- Clt+n)- ~ (C"+n-CI, ... ,,_,) + 
n(n-1)( +( 1n( + 1.2 Ck+n-l - CI,+n-Z) + . . . -) C',+l- Ck) = 

11+1 +(n+1)n +( 1)n+l = C't+n+1- -1- c/t+n 1.2 c"+n-1 - • • • - C'I" 

87. It is not difficult to check the validity of this for­
mula. We see that the right member is an nth-degree poly­
nomial in x. Let IlS designate it by <p (x), i.e. let us put 

t (0) + ~ !If (0) + x (;:; 1) fl2j (0) + ... + 
+ x (.1'-1) ... /.1'-11+1) fl"t (O)=cp (x). 

II. 

Let in this equality x= O. We get q, (0) = f (0), at x = 1 
we find 

Cf (1) =c: f (0) + M (0) = j (1). 

Using formula 1" of the preceding problem we may state 
that in general 

<p (k) = t (k) at k = 0, 1, 2, .... n. 
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Thus, two polYllomials [q; (.1:) and j (x)] of degree n are 
equal to each othel' at n + 1 different values of the iJJ(ie­
pendent variable :r. consequently. they are equal identical­
ly, and we have 

cp (x) =- j (x) 
for any x. 

And so, we han' checked the yalidity of the fornllllas. 
It is not difficult to deduce this formula. 

Let f (x) be all nth-degree polynomial. First of all we assert 
that it is always possible to choose the coefficieJlts 
Ao, AI, A 2 • .... A" such that the following idelltity takPs 
place 

'(x) = Ao - Alx -+- A 2x (x - 1) -;-- A3X (x - 1)(.1' - 2) + 
-+- ••. ~ Anx (x - '1) (.r - 2) ... (x - n + 1). 

Indeed, let us divide the polynomial j (x) by (x - 1) >< 
>~ (x - 2) ... (.1' - n). Since the last polynomial is also 
of degree n. the qnotient will be a constant, and the remain­
der a polynomial of degree 1I0t exceeding n - 1. Dividing 
this polynomial hy x (x - 1) ... (x - n + 1), we find 
the constant A" -I and so Oll. 

Let us !lOW compute the conlltants Ao. AI' ..1 2 •••• , 

An-I, An· 
Put for brevity 

x (x - 1) (x - 2) (x - k -'-- 1) ---, <Ph (x) 

(k ~= 1, 2, 3, ... ). 
Then we have 

~<Ph (x) = <Ph (x - 1) - <Ph (x) 

,-= (x + 1) x (x - 1) ... (x - k + 2) -

- x' (x - 1) ... (.1' - k + 1) ~~ 

~= k·x (x - 1) ... (x - k + 2) = k<pk-l (x). 

To determine A n. A I' A 2, .... A" proceed in the following 
way. Put ill our identity x = O. Since <Ph (0) = 0, we find 

Ao = f (0). 
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Let us now take the difference between the members of the 
identity. We obtain 

M(x) =AI~q:I(x) -[-A2~(j)2(X) + ... + 
+ An ~(j)n (x) = Al + 2A 2(jJ1 (x) -[- . 

+ nAnft'n-l (x). 
Putting here x = 0, we have 

Al = M (0). 
Further 

~2j (x) = 2A 2~(j)1 (x) + ... --+- nAn :1(j)n _I (x) 

Hence 
= 2.4 2 + ... + n (n - 1) A n fPn-2 (x). 

A _ ;l;2f (0) 
2-~' 

Continuing this operation, we find all the coeffIcients 

Ao· AI .... , An. 

88. Replacing x hy x + 1, we have 

(.J:+1)It=A o-;-A j .£+ ~f x(x-1)+ ~!3 x(.r-1) (.1'-2)+ ... + 
+ ~~ .,,(x-1) '" (.1'-n+1). 

Putting f (x) = (x + l)n and l1~ing the result of the pre­
ceding problem, we find 

A 5 = (}.Sj (0). 

From formula 2° of Problem 86 \ve get the reqllin'd expres­
sion for As. 

89. Putting k = 0 in formula 2° of Problem 86, we get 

~ 11 n --1- n (n -1.) ( 1 n 
....l Co = CII - TC"-l 1.2 C"-2 - ... + - ) co· 

Put 
1 

Co = (x+ n)2 

and take 
1 

co= (x-i- n )2' 
1 

ell == x2. ; 
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to prove our identity it only remains to prove that 

~n f _ n! {..!.+_1_+ +_f_} 
(x+n)2 - x(x+1) ... (x+n) x x+1 .,. x+n . 

Use the method of induction. At n = 1 the formula is 
true. Assuming, as usual, its validity for n, let us prove 
that it is also valid for n+1. We have 

~ n+l 1 = ~ (~n f ) = 
(x+n+1)2 (x+n+1)2 

_~{ nl (_1 +_1 + + 
- (x+1) (x+2) '" (x+n+f) x+f x+2 ... 

+ X+!-j-1)} x (x+1) ~I .. (x+n) {; + X~1 + '" + x!n}-

nl {1 1 1 } 
(x+1) (x+2) ... (x+n+1) x+1 + x+2+'" + x+n+1 = 

_ nl {(x+n+1) (~-L_1_, +_1_)_ 
- x (x+ 1) .•• (x+n+1) x I X+(I' .. x+n 

-x (X~1 + x!2+ ... + X+!+1)} = 

(n+ 1)1 { 1 1 1} 
=x(x+1) ... (x+n+1) X-+x+1+"'+x+n+1 . 

At x = 1 our identity yields 

_1_ {..!.-L.!+ _1_} __ 1 _ c~+ -L(_1)n_f_ 
n+1 l' 2 ···+n+1 -12 22 ... I (n+1)2· 

90. The expression Cjln (x + y) is an nth~degree polynomial 
in x. Therefore we may represent it as (see Problem 87) 

where As=M[p~(y) (since Cjln(x+y) turns into Cjln(Y) at 
s. 

x = 0). However, "it is known (Problem 87) that t.Cjln (y) = 
= nrpn_1 (y), consequently 

t. 2Cjln (y) = n (n-1) Cjln-2 (y), 

t. sCjln(y)=n(n-1) ... (n-s+1) Cjln-s (y). 
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Thus 
A _n(n-l)(1l-2).,.(n-s+t)<Pn_s(!I) C ( 

'. - , ~'<PI1.-S y), S. 

alia our formula is valid. 
However, the validity of this formula call be pro\'ed 

using other reaf'ons. Let x and y be positive integers 
greater than n. Then the following equalities take place 

(1+ )X=,1_L ~,J ,r(x-l) 2-,-x(x-l)(x-2) 3+ 
z I x~ r 1.2 z I ,l.2.a z ... , 

(1-f-z)!I=1+yz-\- Y(~~1) Z2+ Y(Y-:;~rr-2) Z3+ .. .. 

(1+z)"'+w=1+(x+y)Z+ (x+Y)~~t!l-1) Z2+ 

, (x+y) (.r+y-1)(.1'+y-2) 3 ' 
-, 1.2.a z 7 

On the other hand, 

(1 + z)'" .(1+Z)11 = (1 + Zr+ w, 
i. e. 

~ <ji~~X) Z". ~ "':iY) z' = ~ ~" (:~ Y) zll. 

Equating the coefficients of zn in both members of this 
equality, we get 

{j)1l (x -\- y) = (Pn (.:r) + Ch<f'n-, (x) (PI (y) -\- ... -\-

-\- C~-t(f't (x) q, Il-l (y) + <fn (y) . 

Let Yo be a whole Jlositive number exceeding n. Then 

CPn (x+Yo) and cP" (x) + Chcpll-' (x) CPI (Yo) ---L ••• + <p" (Yo) 
are two nth-degree polynomials in x, and they are equal to 
each other at all whole \"alues of x exceeding n. Consequent­
ly, they equal identically at all values of x. But Yo may 
attain all whole values exceeding n. Consequently, as in 
the previous case, we conclude that Yo can attain any values 
and the equality 

CPn (x+y) = CPIl (x) + Ch<p,,_, (:.r) <PI (y) -\- ... + 
I C~-t<p I (x) q:'I1-1 (y) -i- cP" (y) 

is valid for any values of x and y. 
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91. First of all, both identities 10 and 2° can be readily 
proved using the method of mathematical induction. Indeed, 
at n = 1 identity 1° takes place. Suppose it takes place for 
all values of the exponent, not exceeding n, so that we have 

n+ n n II 11-') +11 (11-3) 1l-4·J 
X Y = P - T P -q 1.2 P q--

n (n-4) (n-;)) 

1·2·3 

Multiplying both members of this equality by x + Y = p, 
we get 

xn+1 + ylI+1 + xy (x"-1 + yll-1) = 

_ n+1_..!!:. n-l +11(11-3) 11-32_ n(n-4)(1I-5) 
- p 1 P q 1.2 P q 1.2.3 X 

X pn-&q3 + .. , 
Hence 
xn+1 + yn+l === 

11+1 11 1l-1 + /I (n - 3) pll-3q 2_ 
=p -TP q 1·2 

n (11-4) (n-5) 11-5 3 3 
- 1.2.3 P qT"'-

( I n - 1 (II -1) (11 - 4) - q pn- _ -1 - p11-3q + 1.2 p"-5q2 _ 

(11-1)(11-5)(11-6) "-73-1- )_ 
- 1.2.3 P q I ". -

_ n+l 11+1 n-l + {II (1t-3) , 11--1} n-3 2 
- P - -1- P q 1·2 T -1- p. q-

_{"(1-4)(n-5)+(n-1)(1-4)} 11-;;2+ = 
1·2·3 1·2 P q ... 

11+1 n+ 1 n-l + (11+ 1) (n -2) n-3 2 
=p --1- P q 1·2 P q-

(n+1)(n-3)(n-4) 11-52 + 
- 1·2·3 p q ... , 

and the theorem holds at n + 1. 
Proposition 2° can he proved just in thE' samE' way. 
Bear in mind that if x and yare the roots of a quadratic 

equation, then both formulas represent none other than 
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the expression of symmetric functions of the roots of this 
equation in terms of its coefficients. 

If we put in these formulas x = cos q;+ i sin q;, Y = 
= cos q;- i sin (P, then 

xn+yn=2cosmp, p=x+y=2cosq;, q=xy=1, 
siB (n + 1) cp 

x-y sin cp 
'[h bt . . f aJld sin (n+ 1) cp us, we 0 am an expanslOll 0 cos nq; 

sin cp 
in powers of cos.-.p. 

92. Put 
xR + yh = S", xy = q. 

We have to prove that 

Sm + C~,qSm-l + C~+lq2Sm_2 + ... + C~n~~2qm-lS\ = 1. 

Assuming the validity of this C'quality, let us prove thaI. 

Sm+l+C;n+lQSm +C;;'+2q2Sm_1+ .. . +C~~lqm-lS2+ 
+ C~mqm S 1 = 1-

We may consider that x and yare the roots of the 
quadratic equation a;2- a +q=O. 

Hence 

for any whole k. 
Consequently 

Sm+l = Sm - qSm-l' 

Sm = Sm-l- qSrn-z, 

Sm-l = Sm-2 - qS m-3, 

S3=S2-qS l, 

S2=SI-qS(J, 

S\=S\. 

Let liS multiply these equalities in turn by 

1 Cl c2 2 Cm - 1 m-l . m+lq, In+ZQ,· ... 2m-lq , 
and add them, 
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Then we obtain in the left member 

S +el s' e:! 2S I em-I "'-IS' . em ms 
m+1 m+lq m--;- m~-2q ",-1+"" 2m-lq 2--;-- 2mq I' 

We ollly haye to prove that the right member is equal 
to 1. The right member is equal to 

S + e l S 'e2 ·'S ' 'em-I m-1S ' 
m m+lq "'-I-t- m+zq- m-2T'" -t- 2m-lq 1\ 

or 

, em )"S S e I 2S e 2 3S "I 2mq I -q 111-1- m+lq m-2 - m-!-Zq m-3 - ... -

e"'-I 11IS - :!m-Iq o· 

Sm+(e,l" + 1)qSm_j+(e~+1 +e~+d q2Sm_2 + ... + 
I (em- 1 . e m - 2 ) m IS em ms S T 2m-2+ ~m-2 q - 1+ 2mq j-q m-l-

e l·s e m- 2 m-1S e m- 1 1I1S' - m+lq" m-2-'" - 2m-Zq 1- 2m-Iq 0 = 

= {Sm + e~qSm-l +e~+lq2Sm_2 + ... -+ e~';;-~Zqm-lS1} + 
+ e m 1IlS em-I ms' :!mq 1- 2m-lq o· 

But, by hypothesis, the braced expression is equal to 1 
and eTmSj - e;'';;-~ls0 = 0, since SI = 1, and So = 2. And 
so, the right member is equal to 1. Furthermore, it is appa­
rent, that at m = 1 our equality is true. Now we can assert 
that it is valid for any m. 

93. If u+v = 1, then 

U m (1.-Lel v+e2 v2 + + em-I vm - 1) , I m m+1 • • . Zm-2 -, 

+vm(1+e~U+e~+IU2+ ... +e2';;-~2Um-l)= 1. 

Put 
x-a x-b 

u=b_a' V=a_b' 

Then U + v = 1. Further 

_1_= (_1 +e l _'_+e2 _1_+ ' em-I ~)-I-
umum um m um-l m+1 vm- 2 •.. ,- 2m-2 t' 

-+- (_1_+e 1 _1_ .. Le2 _1_+ +em-I...!..) 
'um m u m - l I m+l u m - 2 . • • Zm-2 u 

Hence we get our identity. 
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94. It is easily seen that we can always choose constants 
A I. A 2. • . .• so tha L the following identity takes place 

(1 + t)n =c 1 + tn + Alt (1 + tn- 2) + 
+ A 2t2 (1 + tId) + . . . . 

Indeed. (1 + t)n is a polynomial of degree n in t. Divi­
ding it by tn + 1. we obtain a remainder (a polynomial of 
degree not exceeding n - 1). We divide it by t (tn - 2 + 1) 
and so on. It is clear. that the quotients thus obtained will 
be constants determined uniquely in the process of division. 

Putting t = J!.. in the identity being formed, we find 
x 

(x + y)n = X" + y" + Alxy (X"-2+ yn-2) + 

+ A2X2y2 (x'l-4 + y IH) + ... 
To di:ltermine the coefficients A I. A 2 •••• let liS put in 

this identity 

x = cos q.J + i sin (P. Y = cos q; - i sin (p. 

Then we have 

(2 cos (p)1t = 2 cos nq.J + 2AI cos (n - 2) (p + 
+ 2A 2 cos (n - 4) cp + 

Taking advantage of the known formulas for the expan­
sion of cosine's power in terms of the cosinl' of multiple 
arcs (see Problem 10, 1° and 3°), we find the expressions for 
AI' A 2 , •••• 

!)5. Let YI and Y2 be the roots of some quadratic equation 

y2 + py + q = O. 

Let us set up this equation, i.e. find P and q. 
For this purpose we multiply the fIrst equation by q, 

the second by p, the third by unity and add the results. 
We get 

XI (y~ + PYI+q)+X2 (y; + PY2 + q) = u,g+aaP + (/3 = 0. 

since 

y~ + PYI +q= Y~+PY2 +q =0. 



Solutiuns to Sec. (j 3;>1 

We then IIlIdtiply the second equation by q. the third by P 
and the fourth hy tlnity. We get 

Thus. for determining P a/ld q we obtain a iinpar system 

alq + a2P + a3- U. 

a2q + aaP + al. ~~ O. 

On finding p and q. we determine Yl and Y2 from the 
equation y2 + py + q = O. Knowing Yl and Y2. we then 
determine Xl and X2. say. from the first two equations. The 
general system is solve« ill the same way .. ~amely. suppose 
YI' Y2 • ...• y" are the roots of a certain equation of degree n: 

11 I 11-1, 11-2' , + 0 Y -, PlY -,- P2Y '-:- •.. -1- P"-IY p" = . 

To set up this equation multiply equation (1) by p", 
eqnation (2) by P,,_I and so on. and, fmally. eqnation (n + 1) 
by 1 and add the results. We get 

alPII + a2Pn-1 + ... + an+1 = O. 

\Ve then multiply equation (2) by P,,, equation (3) by 
Pn-I and so on and, fmally, equation (n + 2) by 1 and thus 
obtain a second linear relationship for determining Pn' 
Pn-I, .... Continuing this operation, we finally get n 
linear equatiolls for determining the unknowns PI, P2, ... , 
Pn' If PI, P2, ... , p" are found, then to determine y" 
Y2' ... , y" we have to solve the equation 

yn + Pyn-1+ ... -+ PIl-IY + Pn c-= O. 

To find .1'1' X2' ' •• , X" it only remains to solve a system 
of linear eqlla tions. 

Demonstrated below is the original metbod of solving 
this system belonging to S. Ramanujan. Consider the follo­
wing expression 

<D (0) 3'1, X2 I ,x" 
= i-BYI "1-UY2 -r'" T i-Oy" . 
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But 
XI _ (1 + 8 + 82 2 -L- 83 3 , ) i-BYI -Yl Yl Yt, YtT 000 , 

X2 (1 '8 '82 2+83 a -1-u-=X2 --;-- Y2T Y2 Y2+ 000), 

-VY2 

Xn (1 I 8 82 2 +83 3 I ) 1-e =Xn --;-- YIl+ Yn YnT o. 00 Yn 

Consequen tl y , 

<D (8) = (xcr X2 -:- 000 + xn) -+- (XtYt +X2Y2 Too 0 + XnYn) 8-i­

+ (XtYI + 0 0 0 + XnY;) 82 + 0 0 0 + (Xtyin- 1 + X2y~n-1 + 0 0 0 + 
+Xny~n-I) e2n- 1 + (Xtyin + 000 + Xny;n) S2n + 000 0 

But by virtue of the given equations we get 

<D (8) =al+az8+a382-t- 0 0 o+a2n82n-1+ 0000 

Reducing the fractions to a common denominator, we find 

<1> (8) = At +A28+A382+ .. 0 + An8n- 1 

i +Bte+~28z-t- 000 + Bn8n 
Hence 

(at +a2S + aa82 + 000 -+-a2n82n-l+ 0 0') (1+B1S+B282+ ... + 
+ Bnsn) =A1+A,8+ '" + AnSn-l. 

Therefore 
At = all 

Az=a2+ atB t, 

Aa=aa+azBI + alBz, 

An = an + an-IBt + an-zBz + ... + alB n-h 

o = an+t + anBt + ... + atBn. 

o = an+z + an+tBt + ... + a2Bn. 

o = a2n + a2n-tB t + ... + anBn. 

Since the quantities at, az, ... , an, an+1! 0 •• , a2n are 
known, the last equations enable us to find first B t , B 2 , ••• , 

Bn and then. At, A 2 , ••• , An. Knowing the quantities 
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Ai and Bio we can construct a rational fraction <l> (8) and 
then expand it into partial fractions. Let, for instance, the 
following expansion take place 

<l> (8) ;--1~ + 1 P2 8 + 1 P3 8 + ... + 1 Pn 8 . 
-qlv -q2 -q3 -qn 

ThC'n it is clear that 

XI = PI! Yl = ql; 

xz=pz, Y2=q2; 

Xn = pn, Yn = qn· 

The system is solved. 
96. Eor the given case we have 

2 + 8 + 382 + 283 + 84 

<l> (0) = 1-8-582 +83 +384-8& . 

Expanding this fraction into partial ones, we get the 
following values for the unknowns 

3 
x=-"5' p=-1, 

18+ Vs 
Y= 10 ' 

18-V5 
Z= 10 ' 

u = __ 8 +":",,,V""",,=-5 
2V5 ' 

8-VS 
V= 2V5 

97. 1° We have 

(m, It) = 

3+VS 
q= 2 ' 

3-V5 
r= 2 ' 

V5-1 
s= 2 • 

= (i-x) (1-xZ) ... (1_xm-J.l.) (1_xm-J.l.+1) ... (1-xm-1)(1-xm) 

(i-x) (1-x2) •.• (1- x J.l.) (i-x) (1 ~xZ) ... (1_xm-J.l.) 

Hence it is clear that 

(m, It) = (m, m - It). 
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2° Indeed, 
m 1 _ (1-xm) (1-xm- 1) ••• (1_xm-Il+1) (1_xm- Il ) _ 

( ,I-t+ ) - (1-x) (1-x2) ... (l_xll)(1_xll+1) -

(t-xm-1) ... (t_xm-Il) (l_x"'-1l- 1) I-x'" 

= (1-x) (1-x2) ... (l_xll+ 1) • 1_.["'-11- 1 

Thus 
l-xm 

(m, 1-t+1)=(m-1, 1-t+1) 1_xm - Il - 1 

=(m-1, 1-t+1)+xm - Il - 1) (m-1, I-t). 
3° Using the result of 2°, we get a number of equali­

ties 
(m, 1-t+1)=(m-1, 1-t+1)+xm - Il - 1 (m-1, I-t), 

(m-1, 1-t+1)=(m-2, I-t+ 1)+x"'-1l-2 (m-2, I-t), 

(1-t+2, 1-t+1)=(I-t+1, ~t+1)+x(I-t+1, I-t), 

(1-t+1, 1-4+1)=(1-t, I-t). 
Adding these equalities termwise, we find 

(m, 1-t+1)=(I-t, I-t)+x (1-t+1, I-t)+ .. . +xm - Il - 1 (m-1, I-t). (*) 

4° It is required to prove that (m, I-t) is a polynomial. 
We have 

( 1) 1-xm 1 + 2+ m-l m, = 1-x = +x x ... + x . 

Thus, our proposition is true at I-t = 1 and any m. Assuming 
that (m, k) is a polynomial at k ~ I-t, by virtue of the for­
mula (*), we may assert that (m, I-t + 1) is also a polyno­
mial. And so, our proposition is proved by the method of 
mathematical induction. 

5° Introduce the notation 

f (x, m) = 1 - (m, 1) + (m, 2) - (m, 3) + ... + 
+ (_1)m (m, m). 
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First let us prove that 

f (x, m) = (1 - xm - 1) f (x, m - 2). 
We have 

1 = 1, 

(m, 1) = (m-1, 1) +xm - 1 , 

(m, 2) = (m-1, 2)+xm-2 (m-1, 1), 

(m, 3)=(m-1, 3)+xm- 3 (m-1, 2), 

(m, m-1) = (m-1, m-1)+x (m-1, m-2), 

(m, m)=(m-1, m-1). 
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Multiplying these equalities successively by ± 1 and 
adding the results, we get 

f (x, m) = (1_xm-1) - (m -1, 1)(1-xm-2 ) + (m-1, 2) X 

But 
X (1_xm- s)_ ... + (_1)m-z (m-1, m-2) (i-x). 

(1_xm- 2) (m-1, 1) = (1_xm- 1)(m_2, 1), 

(1-xm- s)(m-1, 2)= (1-xm-1)(m-2, 2), 

Therefore 

f(x, m)=(1-xm-l){1-(m-2, 1)+(m-2, 2)- ... + 
+(-1)m-2(m-2, m-2)}=(1-xm-1)f(x, m-2). 

Thus 
f(x, m)=(1-xm-1)f(x, m-2), 

t (x,. m -2) = (1_xm- s) f (x, m-4), 

First let us assume that m is even. We get 
f(x, m)=(1_xm-l) (1_xm - s) (1_xm-o) ... (1-x3) t(x, 2). 

But 
1 f_x2 

t(x,2)= -(2,1)+(2,2)=2-· i-x =1-x. 

Consequently, indeed, 

t(x, m)=(1_xm-1) (1_xm-s) '" (1-x3)(1-x) 

if m is even. 
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If m is odd, we have 

t (x, m) = (1_xm- l )(1_xm- a) ... (1-x 2) t (x, 1). 

But t (x, 1) = 0, consequently t (x, m) = ° for any odd 
m. However, the last fact can be readily established imme­
diately from the expression for t (x, m) 

t(x, m)=1-(m, 1)+(m, 2)--(m, 3)+ ... +(-1)m(m, m). 

98. 1° Put 

n h(h+l) 1+ ~ !1-xn) (i_xn- 1) ••• (i_xn- h+1 ) x-2-zh=F(n). 
Ll (i-x) (i-x2) ... (i-xh) 

Then 
n+l k(k+l) 

F (n+ 1) = 1 +"'\1 (i-xn +1)(i-xn ) .•. (i_xn- h +2) x-2-z". 
Ll (i-x) (1-x2) ... (i-x h ) 
h=1 

Hence 

F (n+ 1)-F (n) = 

~n (i-xn) ... (i-xn-I<+2) h (h+1) 
- x-2- z" {t- x n ;! -1 + 
- (i-x) (i-x2) ... (i_.lh) 

h=1 

(n+1) (n+2) 
+ X n- h+1 } + X 2 zMl = 

n 
(i-xn) ... (i_.:vn-h+2) h\I<+1) 

= ~ --;-j--~;-----n7'-------:C'--';:-:- X-Z- Zh xn-h+! (1 - x") + 
"'-J (1-x) (i-x2) ... (i-xII) 
k=1 

And so 

i.e. 

(n+l)(n+2) 
+x 2 Zn+1 = 

n(n+1) 
+ ZXMlX-2-Zn = zxn+1F (n). 

F (n+ 1)-F (n) = ZXn+1 F (n), 

F (n+ 1) = (1 + zxn+l) F (n). 
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F (n) = (1 + zxn) F (n -1), 

F (n-1) = (1 +zxn - 1) F (n-2), 

F (3) = (1 + zx3 ) F (2), 

F (2) = (1 + zx2) F (1), 

F (1) = 1 + xz. 

Multiplying these equalities, we actually get 

F (n) = (1 + xz) (1 + x2z) ... (1 + xnz). 

2° is proved similarly. 
From 1° it also follows that 

(1-xn) (1-xn-1) '" (1_xn- h+1) 

(1-,x) (1-x2) ... (1-xh) 

is a polynomial in x (see Problem 97). 
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From the same equality we can obtain Newton's binomial 
formula as well. Indeed 

1- xn- h+1 

1-xh 

1 +x+x2+ ... +xn- h 

1+x+x2+ ... +xh- 1 

Therefore, at x = 1 the last expression attains the value 
n-k+1 

k 
sion 

Consequently, we may consider that the expres-

(1- xn) (1- xn-1) ... (1- xn-h+1~ 

(i-x) (1-x2) ... (1-xh) 

at x = 1 turns into 
n (n-1) ... (n-k+1) C~ 

1·2 '" k 

and formula 1° at x = 1 yields 
h=n 

(1 + zt = 1 + ~ C~Zh (Euler). 
h=1 

99. Readily obtained from 1° of Problem 98 at z = -1. 
100. Put 

Co + C1 (z + Z-l) + C2 (Z2 + Z-2) + 
+ . . . + Cn (zn + z-n) = <\In (z). 
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We then have 
1 +.£211+1z 

Cjl,,(x2Z)={rn (z) xz+x2n 

(expressing Cjln (z) in terms of a product). Making use of 
Cjln (z) expressed as a sum, we find with the aid of the last 
identity 

ChX2k+1 (1- x2n-211) = Ch+1 (1- ;l2IH2h+2) 

(k=O, 1, 2, ... , n-1). 

Furthermore, it is obvious that Cn ~= xn2. Putting in the 
last relation the following values for k in succession: 
n - 1, n - 2, .... , ° and multi plyi ng the equali ties thus 
obtained, we find 

C (1_x2n+2h+2) (1 - x 2n+21'+4) ... (1- x4n) k2 
k= X 

(1-x2)(1-x4) '" (1_x2n- 2h ) 

(k=O; 1, ... , n-1). 
101. 1° Put 

cos x + i sin x = e. 
Then 

cos x - i sin x = e-1• 

Further 

cos lx + i sin lx = el , cos lx - i sin lx = e- l . 

Consequently 
e1 I sinlx =2f (1-8-2 ). 

Stlbstituting this value of sin lx into the expression for 
Uk, we find 

1 (1- q2n) (1- q2n-l) ... (1- q2n-h+l) - 7) k(2n-k) 

Uk = (1-q) (1_q2) '" (l- qk) . q -

where q = e-2 • 

The required sum is rewritten as follows 

1- Uj + U2 - U3 + ... + U2n = 1 + 
2n 1 + 'Y 1 k(1_ q2n)(1_ q2n-l) '" (1_ q2n-k+l) -'2 k(2n-h) 

~ (-) (1--q)(1-q2) .. ' (1-qh) .q 
h=1 
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Now let us take advantage of formula 1° of Problem 98 
1 

and, replacing in it n by 2n, put x = q and z = _q -n-2:. 
We then have 

2n 1 
h-n--

1- UI + U 2 - Ua + ... + U2n = II (1- q 2) = 
11=1 

2n n 

11=1 11=1 
n n 

= II 2 [1-cos (2k-1) xl = 2n II [1-cos (2k-1) xl· 
11=1 h=1 

2° Put (as in Problem 97) 

Then 

..:...( 1 __ ~q2,....n );,...(:...1-..,_.,.:q:...2n_-,,",1 )_._ • • _('-;-2 __ ....:q'-;-2n_-_h---'-+ I) = (2n, k). 
(1-q) (1- q2) ••• (1- qll) 

- 1. h(2n-lI) 
UII = (2n, k) q 2-

where q = cos 2x- i sin 2x. 
We have to compute the following sum 

2n 2n 
~ (_1)11 Uk = ~ (_1)k (2n, k)2 q-h(2n- h), 

h=O 11=0 

where (2n, 0) = 1. 
From Problem 98, 1° we have 

2n 11(11+1) 

(1- qz) (1- q2Z) ... (1- q2nz) = 2' (_1)h (2n, k) q-2- Zh. 
h=O 

Put 
(1-qz) (1- q2Z) ... (1_q2nz)=Cjln(Z, q). 

We then have 
Cjln (z, q). Cjln (- z, q) = Cjln (q2, Z2). 

Hence 
2n 11(11+1) 2n 8(S+1) 

~ (_1)h (2n, k) q-2- Zh. ~ (2n, s) q-2 -z· = 
11=0 s=O 

2n 

= 2: (_1)m {2n, m} qm(m+llz2m, 
1'1=0 
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where {2n, m} is obtained from (2n, m) by replacing q by 
q2. Consider the coefficient of z2n in both members of this 
equality. On the right this coefficient is equal to 

(-1t {2n, n} qn(n+l). 

In the left member we obtain the following expression 
k(I<+1) + 8(s+l) 

~ ( _1)" (2n, k) (2n, s) q-2 - -2-. 
h+s=2n 

But 
(2n, 2n - k) = (2n, k), 

therefore the last sum is equal to 
2n 

q2n2+n ~ (_1)k (2n, k)2 qh2-2nh. 
1<=0 

And so, we have 
2n 

q2n2+n ~ (_1)1< (2n, k)2 ql<2-2nk = ( _1)n {2n, n} qn2+n. 
h=O 

But 

hence 
2n 
~ (_1)huk=(-1tq-n2{2n, n}. 

1<=0 
Further 

!. n 2 
(2n, n) = u"q2 , {2n, n} = unq-n2, 

where Un is obtained from Un by replacing x by 2x. 
Finally, 
2n 
~ (_1)hu2 =(_1)n sin(2ni:-2)xs~n(2n+4).x ... sin41l.r 
L.J h Sill 2x Sill 4x ... Sill 2nx 
h=O 

We proceeded from 
2n 
2J (-1)" (2n, k)2 qh2-2nk = (_1)n {2n, n} q-n2. 

h=O 
Likewise we can obtain the following formula 

2n+l 
~ (-1)" (2n+ 1, k)2 qh2-(2n+l)1< = 0, 

4=0 
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If we put q = 1, then (n, k) turns into C~ and we get the 
formulas 

2n 2n+l 
~l (_1)h (Ch )2 = ( _1)n Cn 
'::"'1 2n 2n' 2,' (_1)k (qn+l)2 = o. 

h=O 

Likewise, 

we get 

and hence 

h-=O 

if we take advantage of the identity 

Cj)n (z, q). (jl" (qnz, q) = 1'p2n (z, q), 

n 

~ (n, k)2 qk2 = (2n, n) 
h=O 

n 

'" (Ch)2 = e" L.J n 2n 
h=O 

( see Problem 72). 

SOLUTIONS TO SECTION 7 
1. VVe have to prove that 

1 1 1 1 
c+a - b-t-c = a+b - a+c . 

However, this equality is equivalent to the following 
b-a c-b 

or 
b-a c-b 
b+c = a+b ' 

i.e. 
b2 _ a2 = c2 _ b2 • 

The last equality follows immediately from the condition of 
the problem. 

2. If an is the nth term and am the mth term of the arithme­
tic progression, then we have 

an = at + d (n - 1), 

am = at + d (m - 1), 

where d is the comr,pon difference of the progression 
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Hence 
an - am = (n - m) d. 

By hypothesis, we have the following equalitiE's 
b - c = (q - r) d, 

c - a = (r - p) d, 

a - b = (p - '1) d. 

~hiltiplying the first of them by a, the second by b. and 
the third by c, we ~pt 

d [(q - r) a + (r - p) b + (p - q) c] = 
= a (b - c) + b (c - a) + c (a - b)= 0, 

whpnce 
(q - r) a + (r - p) b + (p - '1) c = O. 

3. We have 
a p - aq = (p - q) d, 

where d is the common difference of the progression. 
Since, by hypothpsis, 

a p = q, a'l = p, then a p - a q = q - p, 

therefore 

and, consequently, 
q - p CO" (p - q) d, 

d =-1 
(we assume p - q =1= 0). 

Further 

hence 
am = ap + (m - p) d = '1 - m + p. 

4. We have 
ap+k = a" + pd. 

Let k in this ('quality attain successively thp values: 
1,2,3, ... , q. Add termwise the q obtained equalities. We 
get 

ap+t + a p+2 + ... + a p+q = 

= at + a2 + . . . + a'l + pqd, 
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+ ap+q = Sp+q - SP' 

at + a2 + ... + aq = Sq, 
therefore we have 

Sp+q = Sp + Sq + pgd. 

On the other hand, it is known that 

Hence 

or 

Consequently 

aj+ap at+aq 
S p = 2 p, Sq = 2 q. 

2S p 2Sq 
---= ap - a'l = (p-q) d 

p q 

2 (pSp-pSq) 
-----=pqd. 

p-q 

S -S +S + 2(qSp-pSq) (p+q)Sp-(p+q)Sq 
p+q- p q p-q p-q 

Finally 
p+q 

Sp+q= --(Sp-Sq) = -(p+q). p-q 

5. Follows from Problem 4. However, the following 
method may be applied. We have 

at+a" aj+aq 
S p = 2 p, Sq = 2 g, 

hence 

or 
[2aj + d (p - 1)] p = [2aj + d (g - 1)] g, 

2aj (p - g) + d (p2 _ P _ g2 + g) = 0, 

2at + d (p + g - 1) = 0. 
Hence 
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since 

But 
ap+ q = al + d (p + q - 1). 

at --L a p+q 
Sp+q= 2 (p+q). 

Consequently, indeed, 

6. We have 

S at + am 
m= 2 m, 

From the given condition follows: 

at + am m 
at+an =n:' 

i.e. 
2at+(m-1)d m 
2at+(n-1) d n 

Hence 
2aJ (n-m) +{(m-1) n- (n-1) m}d=O, 

therefore 
d 2m 1 2n-1 

am =at+(m-1)d=2"+(n:'--1)d ;- d, an=-2-d 

and fmally 
2m-1 
2n--1 

7. It is necessary to prove that at the given nand k 
(positive integers k ;;;;:: 2) we can find a whole s such that 
the following equality takes place 

(2s + 1) + (2s + 3) + . . . + (2s + 2n - 1) = nk. 

The left member is equal to 

(2s + n) n. 

Therefore it remains to prove that it is possible to find an 
integer s such that the following equality takes place 

(2s+ n) n = nk, s= n (n k;2_ 1) • 

But n can be either even or odd. In both cases s will be an 
jnteger, and our proposition is proved. 
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8. Let a2 = fl. Then all. = at + d (k - 1) = d (k - 1), 
since, by hypothesis, at = O. 

Consequently 

n-2 n-2 n-2 

= ~ k+1_ ~ ..!.+_1_= ~ (1+..!.)-
LI k LI k n-2 ~ k 
k=1 k=1 k=1 
n-2 n-2 n-2 n-2 

_~ ..!.+_1_=y 1+~ "!'_"'-' ..!.+_1_= 
LI k n-2 ~ LI k LI k n-2 
k=1 k=1 k=1 k=1 

=n-2+ _1_= (n-2) d + d _ an_t +~ . 
n-2 d (n -2) d a2 an-t 

9. Multiplying both the numerator and denominator of 
each fraction on the left by the conjugate of the denomina­
tor, we get 

s= va;-~+ va;- va; + ... + v~-V~ = 
a2- al a3- a2 an-an-l 

= ! ev a2 - V al + V a3 - V a2 + ... + Van - -V an-I) = 

V~-V~ 
d 

since 

a2-al=a3- a2= ... =an-an-l=d. 

Hence 
S _ v~- va; _ an-al _ n-1 

- d - d (Van + Val) - Van + Val . 

10. We have 

a~-a;= (al-a2) (aj +a2) = -d (aj +a2), 

a:-a! = (a3- a4) (a3 + a.) = -d (a3 + a.), 

a~k-l - ah = (~k-l- a2k) (~k-l +a2k) = -d (a2k-l + a2k). 

Therefore 

s= -d(al+a2+a3+a.+ ... +a2k-l+a2k)= _dal~a2" 2k. 
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But 
a2k = a1 + d (2k-1), al-a2k = -d (2k-1), 

co nseque n tl y , 

8 = -d (2k- 1) a~:~~k k = 2k~1 (a;-ah). 

11. 1° We have 

8 (n+ 2) -8 (n+ 1) =an+2, 

8 (n + 3) - 8 (n) = an+l + an+2 + an+3. 
Consequently, we only have to prove that 

an+l + an+2 + an+3 - 3an+2 = o. 
But it is possible to prove that 

ar+as 
2 = as +r 

2 

(if rand 8 are of the same parity). 
Indeed, 

ar + a8 = 2al + (8 -1) d + (r -1) d = 

= 2 [ad - ( r-~ s -1) dJ = 2ar+s , 
2 

therefore 

and, consequently, 

an+l + an+2 + an+~ - 3an+2 = o. 
2° First of all 

8 (2) 8 ( ) an+1+a2n n - n = an+! + ... +a2n= 2 .n. 

Now we have 

8 (3n) = at + az + ... + an + (an+! + ... + a2n) + a2n+l + ... + 
an+t +a2n ( ) + a3n = 2 n + an + a2n+l + 

+ (a n-l +- azn+z) + ... + (a1 +a3n). 
But since the sum of two terms of an arithmetic progres­
sion equidistant from its ends is a constant, we have 

aIL -f-- aZ IL +1 = an-l + a2,,+2 = ... = a 1 + a3n = a"+l + a2n· 
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Therefore 

S (3n) = an+t:a2n n+(an+1+ a2n).n=3 an+tia2n n= 

=3 (S (2n)-S (n)). 

12. According to our notation we have 

Sk = a(k-1)n+t + aCk-tln+2 + ... + akn, 

S k+1 = akn+1 + akn+2 + ... + a(k+t)n· 

Consider the difference 

We have 

S k+1 - S k = [akn+n - akn] + ... + [akn+2 - ack-1)n-d + 
+[akn+t- all.-I,n+d, 

But since 

we have 
Sk+t-Sh = nd+ ... +nd+nd = n2d. 

13. We have 

b-a=d(q-p), c-b=d(r-q), c-a=d(r-p); 

on the other hand, 

a = UtWP-1, b = Utwq-1, C = UtWr-1, 

where Ut is the first term of the geometric progression, 
and w is its ratio. 

Therefore 
ab- c • bc- a • ca- b = ad(q-r) • bdcr-p) • Cdc p-q) = 

= Ud(q-r)+dcr-p)+dcp-q). Wd{(q-r)(p-l)+Cr-P)cq-l)+(p-q)(r-l)}. 
1 

But it is easily seen that 

d (q-r) +d (r- p) +d (p-q) =0, 

(q-r) (p-1) + (r- p) (q-1) + (p-q) (r-1) =0. 

And so 

14. We have 
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Consequently 

1 2 n 2 n (Xn+l_i)2 
( +X+X + ... +X ) -x ~-= x-i _Xn= 

(xn+l-i)2_Xn (x-l)2 X2n+2_2xn+l + i_Xn+2+2xn+l_Xn 

(x-i)2 (x-i)2 

(xn-i) (xn+2-i) 
= (x-i)(x-i) =(1+X+X2+ ... +Xn-l)X 

X (1 + x + X2 + ... + Xn+l) . 

15. Let t he considered geometric progression be 

Hence 

S3n - SZn = U2n+l + ... + 113", 8 211 - 8 n = Un+l + .... + 112n· 

But 

Therefore 

consequently, 

S3n - 82n = U2n+1 + ... + U3n = q2n (Ul + U2+ ... +un) = q2ns n, 

8 2n - 8 n = Un+l + ... + 112" = qn (111+112+ ... +Un) = qnSn. 

Therefore 

8 n (S3" - 8 2,,) = q2ns;, (82n - 8,,)2 = q2ns~, 
and the problem is solved. 

16. Using the formula for the sum of terms of the 
geometric progression, we get 

1 1 

Consequen tly 

But, on the other hand, 

p2 = (al a 2 ... a,,)2 = (alan)", 
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hence 
n 

p=( ;, )2. 
17. Let us consider Lagrange's identity mentioned in 

Sec. 1 (see Problem 5) 

(x~ + x~+ ... + x;-t) (y~ + yi + ... + Y~-l)-
-- (XIY1+X2Y2 + ... + Xn_1Yn_t)2 = (XIY2 - X2Yl)2 + 

+ (XIYa - xaYt)2 + ... + (Xn-2Yn-l- Yn_2 Xn_l)2. 
Put 

Yl=a2, Y2=aa,···, Yn-l=an. 
We then have 

(a~+ai+ ... +a;-t) (ai+ai+ ... +a;)-

-(al~ +a2aa+ . .. +an_lan)2 = (alaa-ai)2+ 

+(ala4-a3~)2+ .. . + (an_2an- a;_1)2. (*) 

The bracketed expressions on the right have the following 
structure 

and k + s = k' +s'. It is evident that if a1t az, ... , all 
form a geometric progression, then (provided k + s = k' + 
+s') 

Indeed 
ak = a1qh-l, as = alq"-l, 

ah,= a1qh'-I, as,=alqs'-I. 
Therefore 

and 

akas = ah,as" 

Thus, if ai' a2, ... , an form a geometric progression, 
then all the bracketed expressions in the right member of 
the equality (*) are equal to zero, and the following rela-
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tion takes place 
(a; + a~ + ... + a;_t) (a~ + a; + ... + a;) = 

= (ata2 + a2a3 + .... + an _IG n)2. 

Now let us assume that this relation takes place. It is 
required to prove that the numbers ai' a2' ... , an form a 
geometric progression. In this case all the bracketed expres­
sions in the right member of the equality H are equal to 
zero. But among these expressions there is the following one 

(alak - a2ak_l)2 (k = 3, 4, ... , n). 

Therefore we have 

~=~ (k=3, 4, ... , n), a't-l al 

i.e. the numbers at. a2, ... , an really form a geometric 
progression. 

18. 10 I t is known that 
8 _ amq- a l 
m- q-1 

Let us make up the required sum. We have 

8 +8 + +8 - alq- al +a2q-a1 + +anq-a1 _ 
I 2 .,. n- q-1 q-1 .. . q-1-

(al + a2 + ... + an) q ain (anq- al) q air. 
q-1 q-1 = (q-1)2 - q-1 

20 

1 1 1 {1 1 1} U2(j2+ ... + a2 a2 = 1- q2 (l2" +(l2" + ... +a"2""1 = 
t - 2 n-l - n 1 2 n-

_1_.~ __ 1 (~_~) 
1 a~_1 q2 at 2' a~ ar 

= 1- q2 1 = q (1_q2)2 
--1 q2 

qk (1 1) 
1_ q2k a~ - a~ • 

19. Let the given progression be ai' a2, ... , an' Let aii. 
designate the kth term from the end of the progression. Then 

a"k = an - (k - 1) d, ak = al + (k - 1) d. 
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Consider the product aka"k. We have 

aka"k = alan - (k - 1)2 d2 + (k - 1) d (an - al) -

=alan - (k - 1)2 d2 + (k - 1) (n - 1) tP. 
And sO" 

aka"k = alan + tP {(k - 1) (n - 1) - (k - 1)2}. 

It only remains to prove that the expression 

Pn = (k - 1) (n - 1) - (k - 1)2 

. . h· . fin n+1 Increases WIt an Increase III n rom to "2 or -2-. 

We have 

Pk = (k - 1) (n - k), PHI = k (.n - k - 1). 

Hence 
PHI - P k = n - 2k. 

Consequently, PHI> P k if n - 2k > 0, i.e. if k < ~,and 
our proposition is proved. 

20. Let ai' a2' •.. , an be an arithmetic progression, 
and Uj, U2, •.. , Un a geometric progression. By hypothesis, 
at = Uj, an = Un. Let the ratio of the progression be 
equal to q. Then 

Put 

al + a2 + 
Prove that 

We have 
al + an al + alqn-l 1 + qn-l 

Sn = -2-' n = 2 n = al 2 n, 

unq-ul qn-1 
On= 1 al--1-· q- q-

Since, by hypothesis, al > 0, it only remains to prove 
that 
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Let us write' the left member of the supposed inequality 
in the following way 

qn-1
1 =1+q+q2+ ... +qn-3+ qn-2+ qn-1= 

q-

= ~ {(1 + qn-1) + (q + qn-2) + ... + (qk + qn-k-1) + ... + 
+ (qn- 1 + 1)}. 

Let us prove that 

Indeed 

qh + q"-k-1 -1-- qn-1 == (qk -1) + qn-h-1 (1- qk) = 
= (qk -1) (1- qn-k-l) -< 0, 

since if q> 1, then qk - 1 ~ 0, 1 - qn-k-l ~ 0, and if 
q < 1, then qk - 1 ~ 0, 1 - qn-k-l ~ 0. At q = 1 it is 
clear that the product contained in the left member of our 
inequality is equal to zero. And so, indeed, 

qk + qn-k-1 -< 1 + qn-1. 

The braced expression contains n bracketed expressions each 
of which does not exceed 1 + qn-l. Therefore 

qn-1 1+qn-t 
~<n 2 ' 

i.e. 

which solves the problem. 
21. Let the first common term of the progressions be a, 

and the second b. Then the nth term of the arithmetic pro­
gression will be equal to 

a + (b - a) (n - 1), 
and the corresponding term of the geometric progression has 
the form 

And so, we have to prove that 

a+(b-a) (n-1) <a ( : r- 1
, 
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in other words, that 

a+ (b-a) (n-1) -a (~)n-l -<0, 

or 

a { ( ! - 1 ) (n - 1) ~ [ ( ! ) n-l - 1 J } -< 0. 

Let us rewrite the left member of this inequality as fol­
lows 

a ( : _ 1 ) { (n -1) _ [ ( ! ) n- 2 + ( ! ) n - 3 + ... + ( ! ) + 1 ] } . 

Considering separately the three Cases: ~ > 1, ~ < 1, 
a a 

~ = 1, we easily prove the validity of our inequality. 
a 

22. We have to compute 

Sn = 1 ·X + 2x2 + 3x3 + ... + nxn. 

Multiplying both members of this equality by x, we have 

Snx = 1·x2 + 2x3 + 3x' + ... + (n - 1) xn + nxn+l. 

It is evident that the right member is equal to 

Sn - X - x2 - x3 - ••• - xn + nxn+l. 

Thus, we have the identity 

Snx= Sn+ nxn+l_ x(1 + x+ X2+ ... + xn- 1) , 

S xn-1 
n (x-i) = nxM1 _ x--1-, 

x-

Sn (x-1)2 = x {nxM1 + 1- (n + 1) xn}. 

And, finally, we have 

Sn = (x~ 1)2 {nxMl_ (n + 1) xn+ 1}. 

23. We have 
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Let u~ multiply both members of this equality by q (where q 
is the ratio of the geometric progression). We obtain 

n 

sq= ~ ahuh+1 
"=1 

(since u"q = Uh+l). 
Subtract s from both members of the last equality. We 

have 
n n 

sq-s= ~ ahU"+l- ~ a"uh. 
11=1 11=1 

Transform the right member as follows 
n+1 n+1 

~ a"_lu ,, - ~ a"u" - alul + an+1Un+1 =-
=2 11=2 

n+1 

= - h (a" - a"-11 u" - alu l + an+1Un+1 = 
"=2 
n+1 

= - ~ du" + an+1Un+1 - alel], 
"=2 

where d is the Common difference of the arithmetic progres­
sion. 

Thus 

Finally 
_ an+1 U n+l- a l u l d 1l,,+lQ-1l2 

s- q-l - (q-l)2 . 

24. The required sum can be rewrit ten in the following 
way 

2+ 4 + 2n 1 1 1 2 x x + ... x +-2+-' + ... +'-2 + n. x x~ X n 

Summing each of the geometric progressions separately and 
joining the partial sums thus obtained, we have 

( x + ! ) 2 + ( x2 + ;2 ) 2 + ... + ( xn + :n ) 2 = 
(x2n+2+1) (x2n-l) 2 

= (x2-1)x2n + n. 
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25. The sum 8 1 is readily computed by the formula for 
an arithmetic progression. Let us now compute 8 2• Consider 
the following identity 

(x + 1)3 - r = 3x2 + 3x + 1. 

Putting here in succession x = 1, 2, 3, ... , n and sum­
ming up the obtained equalities termwise, we have 

n n n n 

~ (X+1)3- ~ r=3 ~ x2+3 ~ x+n. 
x=1 x=1 x=1 x=1 

Or 

{23+33+ .. . +n3+(n +1)3}_{f3+23 + ... +n3}_= 

=382 +381 +n. 

And so 382 +381 +n=(n+1)3-1. But 

8 _ n(n+1) 
t - 2 . 

Now we find easily 

8 2 =n (n+1)6(2n+1) • 

The formula for 8 3 is deduced in a similar way. We only 
have to consider the identity 

(x + 1)4 - X4 = 4x3 + 6x2 + 4x + 1 

and make use of the expressions for Stand 8 2 found before. 
26. We have identically 

(x+ 1)h+1_ XIlH == (k+ 1) Xh + (kt.~ k xJt- 1 + 
+ (k+~).~.(~-1) Xh-2+ ... + (k+ 1) x+ 1. 

Putting here successively x = 1, 2, 3, ... , n, and sum­
ming up, we get the required formula. 
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............ . 
111 211 311 411 ... nil 

The sum of terms of each line is equal to 1 II + 211 + 
+ ... + nil = Sk (n). Thus, the sum of all the terms of 
the table will be nS II (n). 

On the other hand, summing along the broken lines, we 
get the following expression for the sum of all the terms of 
the table 

111+(111+2.211)+(111+211+3.3k)+(111+211+ 311 +4.411) + 
+ ... + (111+211+311 + .. , + (n-1)II+ n.n ll ) = 

= 1 + [Sk (1) + 211+1] + [Sk (2) + 311 +1] + [SII (3) + 411+1]+ ... + 

+ [Sk (n-1) + n1l +1] = 

=SII(1)+Sk(2)+ ... +SII(n-1)+ 
+ (111+1 + 2R+l + 311+1 + ... + nll+1). 

And so 

nSk (n)=SII+I (n)+SII (n-1)+Sk (n-2)+ ... +Sk (2)+S~(1). 
28. Both e and 2° are readily obtained from the formu­

la of Problem 26. Let us rewrite it as 

S kS k(k-1)S S So 
k=-T 11-'- 1.2.3 k-2-"'- '-k+1+ 

+ (n+k1~~1_1 (.) 

n2 +n 1 2 1 
At k= 1 S,= 1+2+3+ ... +n=-2- -:-T n +Tn. 

Thus, both propositions (1° and 2°) are valid at k = 1. 
Suppose they hold true for any value of the subscript less 
than k and let us prove that they are also valid at the sub­
script equal to k. Since, by supposition, Sk-' is a polynomial 
in n of degree k, Sk-2 a polynomial of degree k - 1, and 
so on, it is easily seen from the formula (*) that Sk is indeed 
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a polynomial of degree k + 1. Further, since Sk_l, Sk-2, ... , 
So do not contain the term independent of n, it follows 

( n+1)k+l_ 1 
that S k also does not contain such a term k -1-1 ' 

when expanded in powers of n, will not contain a constant 

term). As is evident from the same formula (*), the coef­

ficient of the term of the highest power in the expansion of 

Skin powers of n will be k! 1 . It only remains to prove 

that the coefficient of the second term, i.e. B, is equal to 

~ . In the expansion (*) there exist only two terms contai-

ning nit. One of them is contained in - ~ Sk-I, and the 
(n+1)k+I-1 

other in k+1 . From what has been proved we have 

- ~ S k-I = - ~ { ! nit + ... } = - ~ nit + ... 
Further 

(n+1)k+I_1 1 k+l+ k I 

k-t 1 k+! n n T ... 

Hence, it is obvious that 
1 

B=2· 
As to the structure of the rest of the coefficients (C, ... , L), 
we may assert the following: the coefficient of nk +1-1 will 
be equal to 

1 A 
Ck+1k +1 , 

where A is independent of k. This proposition is proved using 
the method of induction with the aid of the formula (*). 

29. S, can be computed using, for instance, the formula 
from Problem 26. 

However, we may also proceed in the following way. 
From the result of the previous problem it follows that 

1 1 
S, ="5 n5 +2 n4 + Cn3 + Dn2 +En. 

It only remains to determine C, D and E. Since the last 
equality is an identity, it is valid for all values of n. Put­
ting here in succession n = 1, 2, and 3, we get a system of 
equations in three unknowns C, D and E. Namely, we have 
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. 3 13 89 
C+D:tE=W' 8C+4D+2E=5" ' 27+C+9D+3E=1O' 

Hence 
1 1 

C=3' D=O, E= -30' 

It only remains to factor the expression 
n& n' n3 n 
5+T+""3-30 

and the required result will be found. 
The remaJning three formulas are obtained similarly. 
30. The validity of the identities is established by a 

direct check, using the expressions for 8n obtained before. 
31. Put k = 1. We have 

(B + 1)2 - B2 = 2, 
or 

B2 + 2B, + 1 - B2 = 2. 
1 

Consequently, B, = 2"' 
Then. put k = 2. We get 

i.e. 
(B + 1)3 - B3 = 3, 

1 
B3+3B2+3B,+1-B3 =3, i.e. B2 = "'6 . 

Proceeding in the same way, we get the following table 
1 1 3617 

B 1=,[, B6= 42' B l1 =O, B 16 = -'51() , 

691 
B 12 = -2730' 

1 
B S =-30' B I3 =O, 

5 
B5 =O, BIO=66 , B 15 =O, 

Knowing this table, we may easily solve Problem 29, i.e. 
arrange 8 4 , 8 5 , 8 6 and 8 7 according to powers of n. These 
numbers play quite an important role in many fields of 
mathematics and possess a number of interesting properties. 
They are called Bernoulli's numbers (J. Bernoulli, Ars 
Conjectandi). We can show that for odd k's exceeding unity 
Bk will be equal to zero. And Bernoulli's numbers with an 
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even subscript will increase rather fast. Let us consider 

the value of B'9~. If we put B'96 = - ~ , then it turns out 

that 
N = 171390, 

Z =62753 13511 04611 93672 55310 66998 
93713 60315 30541 53311 89530 55906 
39107 01782 46402 41378 48048 46255 
54578 57614 21158 35788 96086 55345 
32214 56098 29255 49798 68376 27052 
31316 61171 66687 49347 22145 80056 
71217 06735 79434 16524 98443 87718 
31115 

Thus, the numerator of this number contains 215 digits 
(D. H. Lehmer, 1935). 

Let us now prove relationship 2°. 
On the basis of the results obtained in Problem 28 we 

may put 
(k+1) (1 11+2 11 +3 11+ .. . +nk) = 

= nll+l + kt 1 nll + Cnll- 1 + Dn"-2+ ... +Ln, 

where C, D, ... , L are independent of n, but undoubtedly 
depend on k. Put 
(k+ 1) (1 11+2 11 +3 11 + ... +n") = nll+1+Ck+,ajnll + 

+C2 h-l+ +C"-' 2+C" 1I+,a2n . . . k+,ak-ln k+,akn . 

We may then write the following symbolic equality 
(k + 1) (1 h+2h + ... + nk) = (n + a)h+l_ a k+1. 

On removing the bracket.s in the right member by replacing 
as by ex s (s=O, 1, 2, ... ), we pass over from the symbolic 
equality to an ordinary one. 

Since this equality is an identity with respect to n, we 
may put in it n + 1 instead of n and obtain 

(k+1) [1h + 2h + ... + (n + 1)h] = (n + 1 + ex)k+l_ exh+1 

Subtracting from the last equality the preceding one, we 
find 

(k+ 1) (n + 1)h = (n+ 1+ex)h+1 _ (n+ex)h+ 1. 
Putting here n = 0, we have 

(ex + 1)1I+1_exk+1 =k+1. 
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Besides, it should be remembered (see the solution of Prob­

lem 28) that ex's are independent of k and that exl = ; . 
And so, the numbers exk and Bk are determined by one 

and the same relation, and exl = B I • Therefore 

exk = Bk 
for any k. 

32. Let d be the common difference of our progression. 
Then 

Xk = Xl + d (k - 1). 

From the first equality we have 
xI+xn n(n-1) 

2 n=a, nXI+d 1.2 =a. 

On the other hand, 

xli = X~+2Xld (k-1)+d2 (k-1)2. 

Therefore, from the second relation we get 
n n n 

~ xli=nx~+2xtd ~ (k-1)-t d2 ~ (k-1)2=b2. 
R=l R=l R=l 

Hence 
21_2 d n (n-1)+d2 (n-1)n(2n-1)=b2 

nX11 Xt 1.2 6 (1 ) 

(see Problem 25). 
Squaring both members of the equality (*) and dividing 

by n, we find 
2 '-2 'd n (n-1)+d2n (n-1)2 =~ 

nX11 XI 1.2 4 n • (2) 

Subtracting (2) from (1), we get 
d2n(n2-1) b2n-a2 

12 n 

Consequently 

d = + 2 V3 (b2n-a2 ) • 

- n Vn2 -1 

Substituting d into the equality (*), we find Xl! and, con­
sequently, we can construct the whole arithmetic progres­
sion. 



Solutions to Sec. 7 381 

n n 

33. 1° Put s= ~ k2x R- 1 • Hence x.s= ~ k2x R• 
R=1 R=1 

Subtracting the first equality from the second, we find 
n+l n 

s(x-i)= ~ (k __ 1)2X"-l_ ~ k 2x R- 1 • 

R~2 R=1 

Consequently 
n n 

n n 

k=1 R=1 

(see Problem 22). 

Finally 

i+4x+9x2 + ... +n2x n- 1 = 

n2x n (x-1)2_2nxn (x-1) -+ (xn-1) (x+ 1) 
(x-1)3 

2° Proceed as in the previous case. Put 
"n 

s= f3+23x+33x 2 + ... +n3x n- 1 = ~ k3x R- 1 • 
R=1 

Make up the difference 
n n n 

sx-s=n3x n -3 h k2x'l-1+3 ~ kX"-l- h x R- l . 
k=1 k=1 R=1 

Substituting the expressions obtained before for the sums 
on the right, we have 

s (x-i) = n3xn -3 n2xn (x-1)2_2nxn (x-1)+(xn-1) (x+1) + 
(x-1)3 

nxn+l- (n+1) xn -+ 1 xn-1 + 3 (x_1)2 x-1 • 
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Finally 
s (x-1)4 = n3xn (x-1)3- 3n2xn (x-1)2 + 

+3nxn (x2-1) - (xn-1) (x2+4x+ 1). 
34. To determine the required sums first compute the 

following sum 
n 

1+3x+5x2+ ... +(2n-·1)xn-1= ~ (2k-1)x"-I= 
"=1 

n n 
-2"~ k "-1_ ~ h_l_2nxn(x-1)-(x+1)(xn-1) 
- Li x LJ x - (x_1)2 . 

"=1 "=1 
For computing the first of the sums put in the deduced 

formula x = ~ . We then have 
3 5 7 2n-1 1 n 

1+2"+7;+8+ ... + 2n-l = 2.t-! {3(2 -1)-2n}. 

And putting x = - ~ , we fmd 

1-~ +~_2-+ + (_1)n-12n-1 = 2n+( _1)n+l (6n+1) 
2 4 8 . . . 2n- 1 9.21l 1 . 

35. 1° First assume that n is even. Put n ==- 2m. Then 
1-2+3-4+ ... +(_1)n-1n = 
= 1-2+3-4+ ... +(2m-1)-2m= (1 +3+ ... --\ 

+2m-1)-(2+4+ ... +2m)=-m=- ~. 
Now let n be odd and put n = 2m -1. Then our su m 
takes the form 
[1- 2 +3-4+ ... - (2m-2)] + (2m-1) = 

1 n+ 1 
= -(m-1)+2m- = m=-2-

Thus, if we put 
1-2+3-4 + ... + (_1t-l n =8, 

then 
8 n· f · 8 n+1· f . dd = - 2 I n IS even, = -2- I n IS 0 • 

However, this result can be obtained in a simpler way. 
Indeed, if n is even, we have 
8=[1- 21+[3--41+[5-61+ ... +[(2m-1)-2m1= 

= -1·m= -m=-~ 2 . 
Hence we also get the resul t for odd n. 
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2° First assume that n is even and put n = 2m. We 
have 
12_22+32_ ... +(_1)n-1n2= (12_22) + 

+ (32_43) + ... + [(2m _1)2_ (2m)2] = - (1 + 2)-

--(3+4)- ... -(2m-1+2m)= -[1+2+3+4+ ... + 

+2m-1+2m]= 
(2m+ 1) 2m n (n+ 1) 

2 =- 2 

Thus, if n is even, then 

12-22+32- ..• +(_1)n-1n2= _n(;~1). 

If n = 2m + 1 is odd, then 
12-22+ 32_ .. , + (_1)n-1n2= 12 _22+32_42_ ... -

-(2m)2+ (2m+ 1)2= -2m ~m+1) + (2m+ 1)2= 

n(n-1) n(n+1) 
2 = 1·2 

3° The required sum is equal to - 8n2• The result is 
obtained as in the previous case. 

4° Rewrite the required sum as 
n n n 

~ (kS +k2) = ~ k3 + ~ k2 = n (n+1) (3;:+7n+2~ 
k=l k=l k=l 

(see Problem 25). 
36. The. considered sum may be rewritten as 

10-1 102 -1 103-1 10n-1 
-9 -+-9-+-9-+"'+-9-' 

wherefrom we easily find its value 

! { 10 10n
9-1_ n }. 

37. Consider the first bracketed expression on the right 
and rewrite it in the following way 
2X2n+l_ 2x2n-1y2 + 2X211 - Sy 4 _ ••• ± 2xy2n _ X2n+1 = 

x2n+2 + y2n+2 q = 2x - X·'l+l. 
x2+y2 
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The second bracketed expression arises from the first one 
as a result of permutation of the letters x and y, therefore 

x2n+2+y2n+2 
it is equal to 2y x2+y2 y2n+l. Squaring both obtained 

expressions and adding the results, we easily prove the 
validity of the identity. 

38. The required product is equal to 

(1.a+1.a2+ ... +1.an- 1)+(a.a2+ ... +aan- 1)+ 
+ (a2a3 + ... + a2.an-1) + ... + an-2 ·an-1 = 

= a (1 + a + ... + an- 2) + a3 (1 + a + ... + an- 3) + 

+ a5 (1 + a + ... + an- 4) + ... + a2n- s (1 + a) + a2n- 3 = 
an- 1 _1 an-2-1 an- 3 _1 

=a--1-+a3--1--t-a5 1 + ... + a- a- a-

+ an+2+ ... + a2n-3+a2n-2) _ (a+a3 +a5 + ... +a2n - s + 

I a2n- 3)} _ (an-i) (an-a) 
T - (a-i) (a2-1) . 

39. The sum on the left may be rewritten as follows 

( 1 2 n-1) [n-1 2 n-2 ( . 1) 1+ xn- 1 +X1i=2+'" + -x- + X + X + ... + n- x n. 

The first bracketed expression is equal to 

_1_[ +22+ +( -1) n_ll=xl(n-1)xn-nxn-l+1J 
xn X X . . . n x xn (x-1)2 

(see Problem 22). 
The second bracketed expression is obtained from the 

first one by replacing x by.!.. Hence, we get the required 
x 

result. 
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40. 1° We have 
1 1 

1.2=1-2 ' 

2.3=2-"3 ' 
1 1 1 

3.4=3-4" 

1 
n(n+1) =n- n+1 • 

Adding the right and left members, we get the required 
result. 

2° The required sum may be rewritten in the following way 

n 

s= ~ k(k+1~(k+2) • 
k=1 

1 1 1 1 1 1 
But k(k+1)(k+2) =2'];- k+1 +2· k+2 . 

Therefore 

n 
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Hence 
n n n 

16S= "\' 16k4 -1+1 = "\' (4k2 . 1)+.!. "\' (2k+1)-(2k-1) 
LJ 4k2-1 LJ --t- 2 LJ (2k-1) (2k+1) . 
k=t k=l k=! 

n 
16S-4 n(n+1)(2n+1) + +.!. ~ (_1 ___ 1_) 

- 6 n 2..:.J 2k -1 2k + 1 ' 
k=l 

16S - 2n(n+1)(2n+1) + +.!.. {1.-.!...L.!.-.!.+.!.+ +_ 
- 3 n 2 3;355'" 

1 1} + 2n-1 - 2n+1 ' 

16S - 2n(n+1)(2n+1) + +_n_ 
- 3 n 2n+1' 

Finally 

16S 
1 

where m = 2n+ 1. 
42. We have 

al~n = al +a" . a~~:n = ad an (L + ;1 ), 
_1___ 1 a2+a,,_1 _ 1 (_1_+_1_) 
a2an_l - a2 + a ll _l a2an_l - a2 + a,,_l a2 an-I' 

But 
at + an = a2 + an-l = a3 + a n-2 = . .. . 

Therefore, adding our equalities termwise, we 1lnd 

_1_+_1_-+- ... +_1_= 2 (~+_1 + ... +_1 ). 
alan a2an_!' anal al + an al a2 an 

43. 1° It is obvious that tho following identity takes 
place 

1 n+k-1 
(n+k-1)! (n+k)! = (n+k)! 

Putting k= 1,2, ... , p+ 1 and adding the obtained equa­
lities termwise, we prove that 

n I n+1 /liP 1 
(n+1)! T (n+2)! + ... + (n+p+1)! =-;;r- (n+p+1)! 
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2° We have 

n -l-- n + + n < n 
(n+I)! . (n+2)! '" (n+p+I)! (n+l)! + 

n+I n+p 1 1 
+ (n+2)! + .. , + (n+p+l)! =nr- (n+p+l)! 

(see 1°). 
Therefore 

44. The following identity holds true 

112 
-;=-r- z+1 = z2-1 • 

In our case we have 

1 1 2 
x-I - x+l = x2 -I ' 

1 i 2 
x2-I - x2 +1 = x4-I ' 

1 1 2 
x4-I - x4+1 = x8 -1 ' 

1 1 2 
2 n 1 - 2 n +1 l' 

x + x -

(2) 

(3) 

(n+ 1) 

Multiply both members of equality (1) by 1, of equality (2) 
by 2, of equality (3) by 22 and so forth, finally, multiply 
both members of the equality .(n + 1) by 2n. Adding the 
obtained results, we find 
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45. We have 

n-p 

- -- n- -Ie 1-1 ~ (1 1) 
- n-p+1 p+k + n-k+1 ( p + )--

1<=1 
n-p 

1 ",(n+1 p) 
= n-p+1 ~ p+k - n-k+1 = 

1<=1 

1 [- (1 1 1) 
= n-p+1 _(n+1) p+1 + p+2 + ···+n -

- p ( ~ +n~1 + ... + P~1 ) J = 
1 (1 1 ) = n-p+1 p+1 + ···+n (n-I-1-p)= 

1 1 (1 1) 
= p+1 + ···+n= 1+ 2 + ···+n -

( 111) - 1+ 2 + 3 + ... +p =Sn-Sp. 

46. We have 

, n+1 {1 2 n-2 } 
Sn= -2-- n(n-1) -+ (n-1) (n-2) + ... + -r.3 = 

n-2 
_n+1 __ ", k 
- 2 ~ (n-k+1)(n-k) = 

1<=1 
n-2 

n+1 '" -k 
=-2-+ ~ (n-k+1)(n-k) 

1<=1 

Let us expand the fraction (n-k+~~(n-k) into two partial 
fractions. Namely, let us put 

-k A B 
(n-k+1)(n-k) n-k+1 + n-k ' 

-k= A (n-k) +B (n-k+ 1). 
Hence, putting fIrst k = n and then k = n + 1, we find 

A=n+1, B= -no 
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Therefore 
n-2 n-2 

n+ 1 "', 1 ~ 1 
S=-2-+(n+1) LJ n-k+1 -n LJ n-k = 

h=1 h=l 

= nt1 +(n+1) (~ + n~1 + ... + !)­
-n (_1_+_1_+ .. " +.!.) = 

n-1 n-2 2 

= nt 1 +n (! + n~1 + ... + ~) + 

+ ( ~ + n~1 + ... + ! )-
-n [( ~ + n~1 + ... + !) -! + ~ ] = 

n+ 1 ( l' 1 1 ) n 
=-2-+ n+ n-1 + ... +3 +-1- 2 = 

389 

1 1 1 
=1+ 2 +"3+ .. . +n-. 

47. Let the nth term of the required progression be an, 
its common difference being equal to d. Then 

S Ul+ux 
x = 2 ·x, 

S Ut+uhx k 
hx= 2 x. 

Hence 

Skx = ul+ uhx .k= 2Ul+d(kx-1) k= 2ul-d+kxd.k 
Sx Ul+ ux 2Ul+d(X-1) 2Ul-d+dx· 

For the last relation to have a value independent of x it is 
necessary and sufficient that 

2al - d = 0, 

i.e. the common difference of the required progression must 
equal the doubled first term. 

48. We can prove the following proposition 

ah + al = ah' + ai' 

if k + 1 = k' + l'. 
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Indeed 

uk=al+(k-i)d, az=at+(l-1)d, 

ak,=al + (k'-i) d, al,=al + (l'-i) d. 

Hence 
ak +az = 2at + (k+l-2)d, 

ak' + ai' = 2al + (k' + l' -2) d. 

But since by hypothesis 

k + l = k' + l', 
it follows from the last equalities that 

And so we have 

ai + ai+2 = ai+l + ai+l = 2ai+l. 

The given sum is therefore transformed as follows 

But 

therefore 

n n 

s= ~ ~ (aT+l-d2)= ~ ~ [ar+2a 1 di+W-i)d21= 
i=1 i=1 

49. As is known 
sin ~ 

tan (a+k~)-tan [a+(k-i) ~1=cos(a+k~)cos[a+(k-1)~I· 
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Therefore 

n 

= ~ "', {tan (a+k~) - tan la + (k-1)~]} = 
Sin p LJ ,,-I 

1 
=-.-R {tan (a+~)-tana+tan (a+2~)-tan (a+~)+ ... + sm p 

+ tan (a+n~) _ tan (a+(n -1) ~)} = tan (a.+.n~~ -tan a. 
sm 

50. We have 
2cot2a-cota= -tana, 

a. a. 
2cota-cot2"= -tan 2"' 

a. a. a. 
2cot2"-cot T = -tanT' 

2 a. a. a. 
cot 2n-2 - cot 2n - 1 = - tan 2n- 1 • 

Multiplying these equalities in turn by 1, ~ , ! , ... , 2n~1 
and adding termwise, we get the required result. 

51. Consider the following formula 

cos [a + (k - 2) h] - cos [a + kh] = 
= 2 sin h sin [a + (k - 1) h1. 

Putting k = 1, 2, 3, ... , n - 1, n, we find 

2 sin h sin a = cos (a - h) - cos (a + h), 

2 sin h sin (a + h) = cos a - cos (a + 2h), 

2 sin h sin (a + 2h) = cos (a + h) - cos (a + 3h), 

2 sin h sin [a + (n - 2) hJ 

= cos [a + (n - 3) h] - cos [a + (n - 1) hl, 

2 sin h sin [a + (n - 1) h] -

= cos [a + (n - 2) h] - cos [a + nh1. 
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Adding these equalities term by term, we fmd 

2 sin h {sin a+ sin (a+ h) + sin (a+2h) + " . + sin [a+ 

+(n-1) h]} = cosa+cos (a-h)-cos (a + nh) -cos [a+ (n-

-1) h] = {cos a-cos [a+ (n-1) h]} + 

+ {cos (a- h) --cos (a + nh)} = 

2 . n-1 h . ( n-1 h) 2' ( n-1 h) =. sln-2- sm a+-2- + Sill a+-2 - X 

. n -+ 1 h 2' ( n -1 h) 2 . nh h X sm -2- = sm a + -2 - . SIllT cos 2 . 
Hence 

f:i n a + si n (a + h) + sin (a + 2h) + ... + sin [a + (n - 1) h] = 

. ( n-1 h) . nk 5m a-+-2 - 5mT 

. h 
sm 2 

The second formula is obtained similarly. However, it can 
also he readily obtained from the above deduced formula by 

replacing a by ~ - a. 

52. Putting in the previous formulas a = 0, h = ..::., 
n 

we get 

S = cot 2l'tn ' S' = 0. 

53. Taking advantage of the results of Problem 51, 
we have 

. . 3 . [(2 1)] sin nasin na sm a + sm , a + ... + SIll n - a = . , 
sma 

sin na cos na 
cos a + cos 3rz + ... + cos [(2n-1) a] = . . sm a 

The rest is ohviollS. 
54. The required sums can be computed, for instance, in 

the following way. Make up the sums S~ and S~. It is easi­
ly seen that 

S~+S~=2n. 
On the other hand, 

s~ - s; = cos 2x + cos 4x + ... + CO'5 4nx. 
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Using the second formula from Problem 51, we find 
sin 2nx cos (2n -+- 1) x cos 2x + cos 4x + ... + cos 4nx =- --~--,.--.:...-.:..-~ 

smx 
And so 

S' -8" _ sin 2nx cos (2n+t) x 
n n - sinx 

S~+S~=2n. 
Hence 

S' _ n + sin 2nx cos (2n-+- t) x 
n- 2sin x ' 

S" _ n _ sin 2nx cos (2n -+- t) x 
n- 2sinx 

55. Let us make use of tho formula 

sinAsinB=; [cos(A-B)-cos(A+B)]. 

We then have 
p 

S "'" . nmi . n:n;i 
= L..J sm p-+-1 ·sm p+1 = 

i=l 

p p 

393 

1"", (m - n) ni t"" (m+ n) ni 
=2" LJ cos p+1 -2" LJ cos p+1 

i=l i=l 

But if m + n is divisible by 2 (p + 1), then cos (m :;~ ni = 

=1 and 

Using formula 2° from Problem ))1, we easily find 
p 

~ (m-n) ni __ 1 
cos t 1 --- - . p--

i=l 

Hence 
S __ p+1 

-- 2' 

All the remaining cases are proved analogously. 
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56. We have 

arctan (k+ 1) x+ arctan (- k,r) = 
kx+x-kx x 

= arctan 1-(k+1)x(-kx) = arctan 1+k(k+1)x2 , 

since (k + 1) x ( - kx) < 1 (see Problem 25, Sec. 3). 
Hence 

arctan 2x - arctan x = arctan x 
1+1·2x2 ' 

arctan 3x - arctan 2x = arctan 1 + ~. 3xZ , 

x 
arctan (n + 1) x - arctan nx = arctan 1 + It (n + 1) x2 

Adding these equalities termwise, we find that the 
required sum is equal to 

1 nx arctan (n + ) x-arctan x = arctan 1+(n+1) xZ 

57. I t is obvious that 

a/t-a/t-l 
arctan a/t + arctan ( - a/t-l) = arctan 1 + a/tah_l 

= arctan r 
1+a/ta/t_l • 

Now we find easily that our sum is equal to 

58. Put 
1+k2 +k'= -xy, x+y=2k. 

(This is done to use the formula 

Then 

arctan 1x + y =arctanx+arctany if xy < 1.) 
-xy 

arctan (k2+k + 1) - arctan (k2 - k + 1), 
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therefore 

n 
~ 2k 
.LJ arctan 2+k2 +k4 = arctan 3-arctan 1+arctan 7-
1<=1 . 

-arctan 3 + ... + arctan (n2 + n + 1)-arctan(n2 -n+ 1) = 

= arctan (n2 +n+1)- ~ . 

59. Let k be one of the numbers 1, 2, ... , n-1. Multi­

ply the first equation by sin k.!!:..., the second by sin k~ , n n 

the third by sin k ~ and, finally, the last one by 
n 

sin k (,,-1) n . Adding the obtained products termwise, we 
n 

find 

. (n-1) n +an-l sm k . n 

And 

A . In. k n . l 2n . k 2n . l 3n . k 3n + I=sm -SUI -+sm -sm -+sm -sm -n n n n 11. n 

+ + . l~(n-1)n . k (n-1)n ... sm ·sm . n n 

Taking advantage of formula 2° of Problem 51, let us 
prove that 

Hence 

Al = 0 if l ::f= k, 

Al =; if l =k. 

2(' . n 2n . \n-i)n) x,.=- aj sm k-+~cosk -+ '" + an-l smk...:--!.....-n n n n 

(k= 1,2,3, ... , n-1). 
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SOLUTIONS TO SECTION 8 
1. We have 
11 1 1 1 1 1 1 

2n = 2n' 2n -1 > 2n' ... , n + 2 > 2n ' n + 1 > 2n . 
Adding these inequalities termwise, we find 

1 1 111 1 n 1 
n+1 + n+2 + ... +2n" > 2n"+2n+ .. ·+2n=2n=Z· 

2. It is obvious that 

But 

1 1 1 
(n+k+1)(n+k) < (n+k)2 < (n+k-1) (n+k) 

1 1 1 
(n+k+1) (n+k) = n+k - n+k+1 ' 

111 
(n+k-1) (n+k) n+k-1 - n+k ' 

therefore 
1 1 1 1 

n+k - n+k+1 < (n+k)2 < n +k-1 n+k· 

Summing these inequalities (from k= 1 to k= p), we 
get the required relation. 

3. Let us have n fractions (n~1) 
1 1 1 1 1 
a' b' c' d' ···'k' T· 

Let us assume 

2~a<b<c<d< ... <k< l. 
Then 

b>a+1, c~b+1, d:;;:,c+1, ... , l~k+1. 
Consequently 

h~a+1, c;;;:'a+2, d;;;:'a+3, ... , l~a+n-1. 
Therefore 
1 1 1 1 1 

az-+/iZ+ ... +12~1l2+ (a+1)2 + ... + 
1 1 

+ (a+n-1)2 < a-1 - a+n-1 
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Hence 
1 1 1 n 

-;j2+-W+'" +[""2"< (a-1)(a+n-1) 

But 

a-1~1, a t-n-1~n+1, (a-1) (a+n-1)~n+1 

and 
1 1 1 n 

-;2+-W+ ... +[""2"::::;;; n+1 < 1. 

4. Indeed 

(n!)2 = (1·n) .(2 (n - 1)) ... (n .1). 
But 

k (n - k + 1) ~ 'n, 
since 

k (n - k + 1) - n = (n - k) (k - 1) ~ O. 

Therefore 

Hence 

5. Since 

we have 

1'n = n, 

2· (n - 1) ~ n, 

3· (n - 2) ~ n, 

n·1 = n. 

a<VA<a+1, 

JlA+a<2a+1, 

lIenee 
CVA'+a) eVA-a) <'/' A-

2a+1 V a, 
A-a2 ,/,- 1- A-a2 

2a + 1 < v A - a, J! A > a + 2a _-1_ 1 . 

Let us now prove the second inequality. 
For any x there exists the following inequality 

x (1-x) = X_X2-< ! . 
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Indeed, we have 

x-x2 - ~ = - (x- ; r ~O. 
It is obvious that we have an equality only at x = ; . 

Since it is possible to assume that V A - a =J= ; , we have 

[1-(VA-a)1 (V A-a) < ~ , 

1-(VA-a) < 4T-V~-a) , 

(2a + 1) - (VA + a) < Cv 1 ) 
4 A-a 

Multiplying both members of this inequality by V A -a> 
> 0, we find 

(2a + 1) tV A - a) - (A - a2) < -~ . 
Whence finally 

r- A-a2 'I 
VA<a+ 2a+l + 4(2a+l) . 

6. We have v;; > 2 V n + 1- 2 Vii, 
since 

V- V- 1 1 
n + 1 - n = , / -, / < -,;- . 

vn+1+vn 2v n 
Consequently, 

1 >2 V2-2, 

~2 > 2 V3-2 V 2, 

~3 > 2 Y4-2}./3, 

1 V- V­Vn > 2 n + 1-2 n. 

Adding these inequalities, we obtain the required result. 
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7. Put 

A = 18 C28 = ~ , ~ . i- .. , 2S~ 1 , 

Then 
24 2s 246 28 

A<3'5'" 2s+1 =1'3'5'" 2s-1 2s+1' 
i.e, 

Hence 

1 1 
A<A'28+1' 

A2 < 28~1' A < V2:+1 

But, on the other hand, 
1 2 4 28-2 

A>T'3'5'" 28-1 ' 

A =~,~,~ 28-1 
2 4 6'" 28 

Multiplying these relationships, we find 
1 

A> V-' 
8. Since 

we have 

2 s 

o 
2tan z 

tan e = ------,0;:- , 
1-tan2 "2 

1- 1 
o 

cot2 -
cot e = __ -:--_2_ 

2_1_ 

o 
cot2 2"-1 

o 
cot 2" 

o 
2 cot "2 

Consequently 

399 

-1 { 2 8 2 0 } = 0 cot "2 - cot "2 + 1 =-
2cot "2 

( 1-cot ~ r 
o :::;;0, 

2cot2' 
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since 
8 

cot 2" > ° (0 < 8 < Jt). 

9. We have 
tanA+tan B 

tan(A+B}= 1-tanAtanB =tan(n-C)= -tanC>O, 

since C is an obtuse angle. 
And so 

tanA+tanB >0 
1 - tan A tan B • 

Bu t since' A and B are less than ~, it follows that 

tan A + tan B > 0, and hence 

1 - tan A tan B > 0, tan A tan B < 1-

10. Indeed 

tan(8- )= tan8-tanqJ =(n-1)tanlp 
cp 1+tanOtanqJ 1+ntan2 (p 

Therefore 
t 2 (8) (n-l)2 \n-l)2 __ (n_-_1_)2 
an - cp = (cot rn -f- n tan (p)2 - ( 2 4:::::::: 4 . ",- cot(fJ-n tan cp) + n n 

11. We have 
1-tanZ '\' 

cos 2y = 1 + tan2 '\' • 

To prove that cos 2')' :::;; 0, it is sufficient to prove that 

1 - tan2 ')' :::;; 0. 
But we have 

1-tan2 = cos2acos2~-(1+sinasin~)2. 
y cos2 a cos2 ~ 

We only have to prove that 

cos2 a cos2 ~ - (1 + sin a sin ~}2 :::;; 0. 
But 

cos2 a cos2 ~ - (1 + sin a sin ~)2 = 

= (1 - sin2 a) (1 - sin2 ~) - (1 + sin a sin ~)2 = 
= - (sin a + sin ~)2 :::;; 0. 
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12. Let m be the least and M the greatest of the given 
fractions. 

Then 

m~ :~ ~M (i=1, 2, 3, ... , n). 
I 

Hence 
mbi ~ at ~ Mbi • 

Summing all these inequalities (from = 1 to = n), 
we find 

And so indeed 
~ai 

m~~~M. 
£..J bt 

13. We assume, of course, that all the quantities a, b, ... , 
1 are positive, and the principal value of the root is 
taken everywhere. Besides, m, n, ... , p are positive inte­
gers. Let us take logarithms of our roots, i.e. consider the 
quantities 

log l log a 

m-' ..• , p 

Let fA. be the least and M the greatest of these fractions. 
On the basis of the results of Problem 12 we have 

fA. < loga+logb+ ... +logl <M. 
m+n+ ... +p 

Consequently 
fA. < logm+n+·· .+p Vab '" l < M, 

wherefrom follows our proposition. 
14. See Problem 12. 
15. We have 

xA _ yA _ ZA = y2 (XA-2 _ yA-2) + Z2 (XA-2 _ ZA-2), 

since 
x2 = y2 + Z2. 

From the same equality follow x> y, x > z. Therefore, if 
A - 2> 0, 
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then 
XA-2 _ yA-2 > ° and X A- 2 - zA-2 > 0, 

and, consequently, for J. > 2, 
XA - yA _ ZA > 0, i.e. XA > yA + ZA. 

We prove in the same way that 

XA < yA + ZA if J. < 2. 

16. (See Problem 7, Sec. 1). It can be proved, for instance, 
in the following manner. If a2 + b2 = 1, then, obviously, 
W8"can find an angle cp such that 

a = cos cp, b = sin cpo 

Likewise we can find an angle cp' such that 

m = cos cp', n = sin cp'. 

Then we have 

I am + bn I = I cos cp cos cp' + sin cp sin cp' I 
= I cos (cp - cp') I ~ 1. 

17. We have 
a2 ~ ti2 - (b - C)2, 

b2 ~ b2 - (c - a)2, • 
c2 ~ c2 - (a _ b)2. 

Multiplying, we get 

a2b2c2 ~ (a + b _'C)2 (a + c - b)2 (b + c - a)2. 

Hence follows the required inequality. 
18. It is known that if A + B + C = n, then 

A B A C B C 
tanT tanT+ tan 2" tanT+tanT tanT= 1 

(see Problem 40, 4°, Sec. 2). 
Put 

ABC 
tan T = x, tanT = y" tanT = z. 

It only remains to prove that 

X2+y2+Z2~1 
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if 
xy + xz + yz = 1. 

But we have 

2 (x2 + y2 + Z2) - 2 (xy + xz + yz) = 

= .(x - y)2 + (x - Z)2 + (y - Z)2 ~ o. 
Hence 

2 (X2 + y2 + Z2) - 2 ~ 0, 

x2 + y2 + Z2 ~ 1. 
19. We have 

. A -. /(p-b){p-e) 
SInT=V be ' 

. B -. /(p-a) (p-e) 
SInT= V ac • 

. C -. /(p-a) (p-b) 
SInT= V ab . 

Consequently, it is sufficient to prove that 
(p-a) (p-b) (p-e) ~~ 

abc -...:::: 8 

But 
a+b+c b+e-a a+c-b 

p-a= 2 -a= : 2 ,p-b= 2 t 

a+b-c 
p-c= 2 

Therefore, we have to prove only the following 

(b+c-a) (a+c-b) (a+b-c) ~1 
abc -...:::: • 

provided b+c-q.>O, a+c-b>O and a+b-c>O (see 
Problem 17). This inequality can be proved in a different 
way. Put 

. A . B . C t 
SIn 2 sm TSInT='o; 

then we have 

1 (A-B A+B) A+H £ ="2 cos -2-- cos -2- eos -2- . 

Hence 
2 A+B A-8 A+B cos -2- - cos-2- cos -2-+ 2£ = 0. 
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Consequently 
A-B -./ A-B 

A + B cos -.-2- ± JI cos2 -2- - 86 
cos -2-= 2 

. A..J...B A-B 
Smce cos -2- and cos -2- are real, there must be 

2 A-B 8t 0 cos -2-- "';;;=:: , 

8t 2 A-B 8t 1 t 1 
",~cos -2-' "'~, "'~8· 

20. 1° We have the relationship (see Problem 40, 2°, 
Sec. 2) 

cos A + cos B + cos C = 1 + 4 sin ~ sin ~ sin ~ . 

Using the result of the preceding problem, we get the 
required inequality. 

2° Since there exists the following relationship 

cos ~ cos ~ cos ~ = ! (sin A + sin B + sin C), 

the given problem represents a particular case of Problem 48 
of this section. 

21. It is sufficient to prove that 

i.e. that 

But 

(a + c) (b +d);;;=::ab + cd + 2 V abed, 

eb+ ad~2 Vebad. 

eb+ad-2 V cbad= (V eb-V ad)2 ,?!o. 
22. We have 

Hence 

Consequently 

a2 +b2 -2ab= (a-W~O. 

a2-ab+b2~ab, 

a3 + b3 ~ab (a+ b). 

3a3 + 3b3 ;;;=:: :Ja2b + 3ab2 • 

Add a3 + b3 to both members of the last inequality. 
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We have 

And so, indeed, 

a3+b3 ( a+b )3 
2 ;;;:. 2 . 

23. 1° It is required to prove that the arithmetic mean 
of two positive numbers is not less than their geometric 
mean. Indeed, 

a+b V- 1 ( V-) 1 (V- V-)2 -2-- ab=Z a+b-2 ab ="2 a- b ~O. 

2° To prove that 

a-t b -Vb~~ (a-b)2 
2 a -..:::: 8 b 

it is sufficient to pro ve tha t 

CVa- VW 1 (a-b)2 
2 :::;;;8" b • 

Consequently, it is necessary to prove the following 

(Vli+ Vii)2 ~~ 
8b ::::--- 2 . 

We have 

a 
since Ii" > 1. 

The second inequality is proved in a similar way. 
24. Put a = x3 , b = y3, C = Z3. The only thing to be 

proved is tha t 
x3 + y3 + Z3 - 3xyz ;;;:. 0 

for any non-negative x, y and z. 
But we have (see Problem 20, Sec. 1) 

x1 + y3 + Z3 - 3xyz = (x + y + z) X 

X (X2 + y2 + Z2 - xy - xz - yz). 

And so, it only remains to prove that 

x2 + y2 + Z2 - xy - xz - yz ;;;:. O. 
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But we have (see Problem 10, Sec. 5) 

2x2 + 2y2 + 2Z2 - 2xy - 2xz - 2yz = 
= (x - y)2 + (x - Z)2 + (y - Z)2 ;;::: 0. 

Adding them termwise, we get the required inequality. 
26. We have 

1+at 1,/- 1+a2 ----1/ - 1+an , V-
-2- >- r alt -2-':::;- a2' ... , -2-d:3 an· 

Multiplying these inequalities term by term, we have 

(1.+at) (1+a2}'" U+an)_ V 1 
2n d:3 ata2'" an = . 

And so, indeed, 

(1 + at) (1 + a2) ... (1 + an) ;;::: 2n. 
27. 1° Make use of the following identity 

(a + b) (a + e) (b + e) = 
= (ab + ae + be) (a + b + e ) -abe. 

But 
a+b+c"> 3/-b 

3 ::--V a e, 
Therefore 

(a + b + e) (ab + ae + be) ;;::: 9abe, 
and consequently 

(a + b) (a + e) (b :+- e) ;;::: 8abe. 

2° We have 

_a_+_b_+_c_= a+b+c -1+ b+a+c -1 + 
b+c a+c a+b b+c a+c 

c+a+b (" 1 1 1). 
+ a+b 1=(a+b+e) b+c+a+c+a+b -3 

But 

(b+e) + (a+ e) + (e+ b) ~3 t/(b+ e) (a+e) (a+b), 
i.e. 
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Further 
111 1 

b+c + a+c + a+b =(b+c)(a+c)(a+b){(b+e)(a+e)+ 

+ (b+ e) (a+b) + (a+ b) (a+ e)}~ 

~ (b+c) (a!c) (a+b) :/(b + e)2 (a + e)2 (a + b)2. 

Therefore 

b;c + a~c + a~b ~ ~ y/(b+e) (a+e) (a+b) X 

X (b+c) (a!c) (a+b) y/(b + e)2 (a + e)2 (a + b)2- 3. 

Thus 
a + b + c :>-:3 

b+c a+c a+b ~2' 

28. It is sufficient to prove that 

(a+k) (b+ l) (e+ m)~(y/abe+y/klm)3. 
We have 

(a + k) (b + l) (e + m) = 

But 

= abe+klm+ (ale t- kbe + abm) + (kle+ alm+ kbm) , 

(y/abe+y/klm)3 =abe+klm+ 

+ 3 y/a3b2e2klm + 3 y/k2l2m2abe. 

alc+kbc+abm ........ 3/ 2b22kl klc+alm+kbm:>-:3/k2l2 2 b 
3 """"Y a e m, 3 ~V mac. 

Hence follows the validity of our inequality. 
29. We have 

1 1 i 'Vi t i 3 
a+b+7~3 Ii 'fj'C'= Vabc . 

But 

i.e. 
1 3 

V-~ +b+ • abc a c 
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Therefore 

Solutions 

~+~+~~3_1_> 9 
abc::;;- Viibc P a+b+c 

30. It is necessary to prove that the arithmetic mean 
of n positive numbers is not less (» than the geometric 
mean of these numbers. We are going through several proofs 
of this proposition. Let us begin with the most elegant 
one which belongs to Cauchy. 

Thus, we have to prove that 
XI+X2+···+Xn ____ n/ 

n -?v Xj X2 ••• Xl/' 

At n = 1 the validity of this inequality is obvious. At 
n = 2 and n = 3 the proposition was proved in Problems 23 
and 24. 

Let us first show how to prove the validity of our assertion 
at n = 4. We have 

But 

Let us now prove that, in general, if the theorem holds 
at n=m, then it is valid at n=2m too. 

Indeed, 

XI +X2+Xa+··· +X2m-1 +X2m_ 
2m -

XI+X2 + Xa+X4 + + X2m-I+X2m 
2 2 ... 2 

m 

____ VX1+X2 • X3+ X4 x2m-I+X2m 
-? 2 2'" 2 

(since we assume that the theorem is valid at n = m). 



Solutions to Sec. 8 409 

Further 

XI + X2 + X3 + ... + X2rn '-
2m :::=" 

And so, assuming that the theorem is valid at n = m, 
we have proved that it is true at n = 2m as well. And 
since we proved the validity of the theorem for n = 2, 
it is valid for n = 4,8,16, ... , i.e. for n equal to any 
power of two. However, we have to prove that the theorem 
is true for any whole n. Let us take some value of n. If n 
is a power of two, then for such a value of n the theorem 
is valid, if not, then it is always possible to add a certain 
q to n such that n + q will yield some power of two. 

Put 

We then have 

:I'1+X2+x3+'" +Xn +Xn+l+ .,. +xn +q >-
n+q ~ 

n+q/----------------­> V XjX2 ••• XnXn+l ••• xn+q 

for any positive Xi (i=1, 2, ... , n+q). 
Put 

We get 

or 
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and finally 
XI +X2+· •• +Xn _ n/" 

n .;:. V XIX2 ••• X n • 

And so, the theorem is valid for any whole n. It is obvious 
that if XI = X2 = ... = X n , then the sign of equality 
takes place in our theorem. Let us prove that the sign 0/ 
equality occurs only when all the quantities XI, X2, ••• , Xn 

are equal to one another. Suppose at least two of them, 
say XI and X2, are not equal to each other. Let us prove that 
in this case only the sign of inequality is possible, i.e. it 
will be 

Indeed 

XI+X2 XI+X2 + + + 2 + 2 X3··· Xn 

------------n------------> 

~ V ( x11 X2 ) 2 X3 ••• x n • 

But if XI is not equal to X2, then 

Xt+ X2 V-
2 > I XIX2, 

consequently 

and therefore 

XI+X2+· •• +xn > n/ 
n y XIX2 ••• Xn 

if at least two of the quantities XI, X2, ••• , Xn are not 
equal to one another. 

Given below are some more proofs of this theorem. Let 
us pass over to the second one. Let n be a positive number 
greater than or equal to unity (n ~ 1). We assume here 
that a and b are two real positive numbers. Then the follow­
ing inequality takes place 

(an- 1 _bn- 1) (a-b»O. 
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Hence 
an + bTl :>- an-1b + bn-1a. 

Consider n positive numbers a, b, e, ... , k, l. Let us apply 
this inequality to all possible pairs of numbers made up of 
the given n numbers. Adding the inequalities thus obtained, 
we find 

(a l1 +bTl )+(an+en)+ ... +(an+ll1 )+ 

+ W' + en) + ... + (bn + In) + ... + (kn + In);;;::: 
~ (an-1b + bn-1a) + (an-Ie + en-1a) + ... + 

+ (an-Il + In-1a) + ... + (kn-Il + l"- Ik). 

Hence we 'have 

(n-1)(an+bn+ ... +In);;;::: 

;;;:::a (bn-1 + en-1 + ... + In-l) + b (an- 1 + en-1 + ... + In-l) + 

+ e (an- 1 + bn- 1 + ... + In-l) + ... + 
+ l (an-1 + bn- 1 + ... + kn-1). (.) 

Using this inequality, it is possible to prove our theorem 
on the relation between the arithmetic and geometric means 
of n numbers by the method of induction. We have to prove 
that 

Put 

.. -, 

Then it is sufficient to prove that 

an+bn+ ... +kn+ln:>-, b kl 
n :::-- a ... . 

Let us assume that this inequality is valid at the exponent 
equal to n - 1, i.e.' 

bn-1 + ... +kn- 1 +ln-1 ;;;:::(n_1)b.k ... l, 

an-1 + en-1 + ... +In-l~(n-1)a.e ... l, 
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Using the inequality (*), we find 

(n - 1) (an + bn + ... + kn + In) ~ 

~a(n--1)bk ... l+b(n-1)ac ... l+ ... + 
+ l (n -1) ab ... k. 

Hence 

(n-1)(an +b/+ ... +k"+ln)~(n-1).n.abc ... kl, 

i.e. 

Thus, our theorem is proved for the second time. Let us 
pass over to the third proof of this theorem. It will be carried 
out using the method of mathematical induction once again. 
Let there be n positive numbers a, b, ... , k, l. It is required 
to prove that 

a+b+ ... +k+l~n;;-ab ... kl. 

Assuming that the theorem holds true for n - 1 numbers, 
we have 

a+b+ ... +k+l~(n-1)n-'yab ... k+l. 

And so, the theorem will be proved if we prove the 
inequality 

(n--1) n-yab ... k+ l~nr;/ ab ... k·l. 

Thus, we have to prove the inequality 

( _1)n-V ab ... kl 1"'-- V ab '.' kl 
n In + ~n In' 

Put 
ab ... kl = tnln-ll 

In '" . 

Therefore, it is required to prove that 

(n -1) £" + 1~n£n-l. 
And so, to prove our theorem means to prove the inequa­

lity 
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where ~ is any raal positive number and n is a positive 
integer. Let us prove this inequality. At ~ = 1 we obviously 
have the equality. Suppose now ~ > 1. It is required to 
prove that 

We have 

But 

Therefore 

~n-l +~n-2+ •.• + 6+ 1 < n6n- 1, 

and, consequently, indeed 
tn_1 

"'~-1 < n6n- 1• 

If 6 < 1, we have to prove that 

sn_ 1 > tn-l 
6- 1 n.., . 

This result is obtained as in the previous case, and, thus, 
the theorem is proved. 

All the considered proofs were carried out using the 
method of mathematical induction. Therefore, it is desi­
rable to get such a proof which would establish immediately 
that 

if ai' a2' ... , an are any positive quantities not equal to 
one another simultaneously. Put ai = x? Then we have 
to prove that 

xi' + x~ + ... + x~ > 0 
n -XIX2 '" Xn , 

i.e. the problem is reduced to finding out that a certain 
function (form) of n variables Xl, X2' ••• , xn is positive. 
As is known, n letters Xl, X2 • ••• , Xn can be permutated 
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by nl methods. If f (Xj, X2' .•• , xn) is a function of n 
'variables x;, X2' ... , Xn, then the symbol ~f(xj, X2, ... , xn) 
will denote the sum of n! quantities obtained from 
f (Xj, X2, ... , xn), using, all possible permutations. For 
example, 

~ XjX2 ... Xn = n! XjX2 ••• Xn• 

~ x~ = (n-1)! (x~ + x~ + ' .. +x~). 
Introduce the notation 

It is easily seen, that whatever permutation is used, the 
function C(l (Xh X2' ... , xn) remains unchanged. Therefore 
we have 

n! C(l (Xb X2' ... , xn) = 

= ! ~ (x~+x~+ ••• +x~)- ~ XjX2 ..• Xn 

But 

~ x~ + x~ + ... + x~ = n! (x~ + x~ + ... + x~). 
On the other hand, 

n+ n+ + n 1 ~ xni. Xi X2 . . . Xn = (n-1)! .LJ 

therefore 

Let us consider the following functions 

C(ll'-: ~ (X~-l - X~-l) (Xl- Xz), 

C(l2 = ~ (X~-2 _X~-'2) (Xl- Xz) Xa. 

C(la = ~ (X~-3 - X~-3) (Xl - X2) XaX" 
.................. 
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Wo have 

<pn-l = 2 ~ X~X2X3 ••• Xn -- 2 ~ XIX2X3 ••• X n• 

Adding these expressions termwise, we find 

<PI + <P2 + <P3 + ... + <pn-l = 2 ~ x~ - 2 ~ XIX2 ••• Xn • 

Comparing this with the equality (*), we get 
1 

n! <P (Xl' X2' ••• , Xn) ="2 (<PI + <P2 + <P3 + ... + <pn-l)' 

And so 
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xr + x~ + ... + x~ . _ 1 ( + + + ) 
n -XIX2 ••• Xn - 2.n! <PI <P2 -... <pn-l' 

But it is evident that <PI, <P2' ... , <Pn-l vanish if and only 
if Xl = X2 = ... = Xn • 

If not all of the variables are simultaneously equal to 
one another, then all <Pi > O. Indeed, we have 

<PI = ~ (Xl - X2)2 (X~-l + ... + X~-2) ~O, 
<P2 = ~ (Xl - X2)2 (X~-3 + ... + X~-3) X3~O, 

<Pn-l= ~(Xj-X2)2X3X!o ••• xn~O. 
Therefore 

the equality being possible only if Xl = X2 = ... = Xn• 

And so, the theorem is proved. This proof belongs to A. Gur­
witz. 

31. We have (using the preceding problem) 
n/ ___ al +a2+'" +an al +an al +an 
-V aja 2 ••• an::::::' n = 2n n = 2 

To prove the second inequality consider the product 

(al a 2' •• a n)2 = (alan) (a2an-l) ••• (anal)' 
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But we can prove that 

akan-k+t ~ alan (see Problem 19, Sec. 7) 

Therefore 

and 
ji/ a,a2 ... an~V alan. 

32. Consider a 
1 

quantities equal to Ii' b quantities equal 

to !, and c quantities equal to! The arithmetic mean 

of these quantities will be 
1 1 1 a.-a+ b.1J+c·c 3 

a+b+c 
The geometric mean is equal to 

a+b+V=-1~-.-=--:-1~-. -:1'-
aa bb cC· 

Consequently 

i.e. 

33. Put 

a ex b=~ c=.l, =m' m' m 

where ex, ~, y and m are positive integers. 
Consider the product 

(1 + b--;;c r (1 + c-;:a )b (1 +~ r = 

= V(1+ b--;;c r(1+ c-;:a )tI(1+ a--;b r. 
Since ex, ~ and yare whole positive integers, the radicand 
may be considered as a product of ex factors equal to 

h-c I c-a 1 + -a - each, ~ factors equa to 1 + -b - each, and y 
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a-b 
far tors equal to 1 + -- each. Then we have 

C 

aH +}/- ( 1 + b:- c r ( 1 + c -;; a rl ( 1 + a -:- b r ~ 
_ a(l+b:-c )+~(l+c~a )+t'(l+a-:-b) 

~ a+~+t' = 1. 
Raising both members of this inequality to the power 
a + b + c, we get the required result. 

34. We have 
s s s 

s=a+ s-b + ... + s-l 
-------------------~ n 

V sn s 
? '(s-a) (s--b) ... (s-l) = }I (s-a)(s-b) ... (s-l) 

But 

Y(s-a) (s-b) ... (s-l)~ 
(s-a)+(s--b)+ ... +(s-l) n-1 

~ = ---·s. n n 
Therefore 

1 :>-: n 
lI(s-a) (s-b) ... (s-l) ~ (n-1) s 

The further proof is obvious. 
35. First of all this inequality can be obtained from Lag­

range's identity (see Problem 5, Sec. 1). But we shall pro­
ceed in a somewhat different way. Let us set up the following 
expression 

(ivai + f.tb l)2 + (lva2 + f.tb 2)2 + ... + (Ivan + f.tbn)2 = 
= Alv2 + 2BIvf.t + Cf.t2, 

where 
A=a~+a;+ ... +a~, C=b~+b;-j- ... +b~, 

B = alb! + a2b2 + ... + anbn. 

Since the left member of this inequality represents the sum 
of squares, we have 

Alv2 + 2BIvf.t + Cf.t2 ~ o. 
for all values of Iv and f.t. 
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Consequently, the trinomial 

AX2 + 2Bx + C 

is greater than or equal to zero for all real values of x. The­
refore, the roots of this trinomial are either real and equal 
or imaginary, and its discriminant is less than or equal 
to zero, i.e. 

B2 - AC ~ O. 
Thus 

(alb, + a2b2 + .... + anbn)2-

--(ai+a;+ .:. +a~) (bi+ ... + b~)~O, 
wherefrom also follows that the equality sign is possible 
only if 

at a2 an 
b;=b;= "'=b;;' 

36. Put bi = b2 = ... = bn = 1 in the inequality of 
the preceding problem. We then have 

(at+a2+'" +an)2~n(a~+a;+ ... +a~). 

Hence 

---V' (2 2 2\ . a, + az + ... + an'=::::::: n at + a2 + ... + anI . 

37. The result is obtained from the formula of Problem 35 
if we put 

a~=xl' a; =X2, .. -, a~ =xn, 

b~ =_1_, b;=_1_ , .. -, b~= _1_. 
Xi X2 xn 

But we may also use the theorem on the arithmetic mean. 
Then we ha ve . 

Xi + X2+ ... +Xn~nVXtX2 ... Xn , 

_1_+_1_+ ... +_1 ~n V_1_._1_ •... !... 
Xi x2 Xn Xi x2 Xn 

Multiplying these inequalities, we get the required result. 
38. Let us first prove that 

2 2n ------0 p - n-1 q;;::;; • 
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We have 
q = XI X2 + XIX3 + ... + Xn-IXn' 

o :::;;; (XI - X2)2 + -(XI - X3)2 + ... + (Xn-I - xn)2. 

Consequently 

(n-1)(x~+x~+ ... +x~)--2q~O. 

But 

X~ + x; + ... + x~ = p2 - 2q, 

wherefrom we get 
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Consider now n - 1 quanti ties (instead of n): XI, X2, ••• , 
Xi-I' XHI, ••• , Xn, eliminating Xi from the quantities 
under consideration, and put 

p - Xi = p', 

q - (XiXI + Xi X2 + ... + XiXi _I + XiXHI + ... + 
+ XiXn) = q'. 

Using the deduced inequality, we may assert that 

'2 2(n-1) 
p - n-2 q'~O. 

But 

q' = q - Xi (XI + X2 + ... + Xi_I + Xi+! + ... +xn) = 
= q - Xi (p - Xi). 

:Therefore 

( )2 2(n-1)( 2) 0 P-Xi - n-2 q-PXi+Xi;;:::· 

Consequently 

nXr-2pXi + 2 (n-1) q- (n-2) p2:::;;;O. 

Consider the trinomial of the second degree 

nx2 - 2px + 2 (n - 1) q - (n - 2) p2 

and denote its roots by a and ~ 
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Solving ~he quadratic equation, we find 

p n-1 -. / 2 2n 
a=n--n- V P - n-1 q, 

p n-1 V 2 2n 
~=-+-- p ---q n n n-1 ' (~> a). 

We then have an identity 

nxr - 2PXi + 2 (n - 1) q - (n - 2) p2 

= n (xI - a) (Xi - ~) ~ 0, 
wherefrom follows that Xi lies between a and ~, i.e. 

a < Xi <~. 

39. Let a and b be two real positive numbers. If p > 0, 
then aP - bP > 0 for a > b; and if p < 0, then aP - bP < 
< ° for a > b. Therefore we may assert the following: 
(aP - bP) (aq - bq ) ,? ° if p and q are of the same sign; 
(aP - bP) (aq - bq ) ~ ° if P and q are of different signs 
and for any real a and b. Let us first consider the case when 
p and q are of the same sign. We have 

ap+q +bp+q,?aPbq +aqbP, 

ap+q + cp+q ;;?:aPcq +aqcp, 

ap+q + Zp+q ;;?:aPZq +aqZp, 

bp+q + cp+q > bPcq + bqcp, 

Adding these inequalities term wise , we get 

(n -1) (ap+q + bp+q + ... + IP+'1r:~ 2:. aPbq, 

where a and b (in the last sum) attain all the values from 
the series a, b, c, ... , l. Adding LaP +1 to both members 
of this inequality, we get 

n (ap+q + bp+q + ... + ZWl);;?:(a P + bP + ... + 
+ZP) (aq + bq + ... + zq). 

The second inequality is obtained just in the same way. 
From these inequalities WP. can easily get the results of Prob­
lems 36 and 37. 
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40. 1° Let /.=!!!..., m > Il. We have 
n 

v( 1 +a : ) (1 + a : ) ... (1 +a : ) ·1·1 ... 1 < 
(1+a: )+(1+a: )+ ... +(1+a: )+m-n 

< m 

(the factor 1 -I- a: of the radicand is taken n times. 

the factor 1 is taken In - n times). Hence 
n 

or 
m 

(1 +afl' > 1 +a.!'!:.... n 
m 

2° Put 'A = - and first assume that m> n, i.e. 'A> 1. 
n 

We have 

v ( 1 - a ';; ) ( 1 - a ': ) . . . ( 1 .- a : ). 1· 1 ... 1 < 
(1-a : ) n+m-n 

<---'-----'---­m 

The factor 1- a!!!... of the radicand is taken n times, and 
n 

the factor 1 is taken m - n times. Hence 
n 

( nl ) m 1 1-a- <1-a<--n 1+a' 1-a~<---n m 

m 

(1+a)n <--­
i-a . ...::: . 

n 

Let us assume now that m < n. We have 

(1 +a) n 

y/(1 +a)m =7(1 +a) (1 +a) ... (1 +a).1·1 ... 1 < 
< (1 +a) m+n-m = 1 + am < __ _ 

n n am 
1 - n 
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And so, in this case also 
m 

(1+a)n <---
i- am. 

n 

am. 
Remember that we assumed - < 1. 

n 
41. 10 Put in inequality 10 of the preceding problem 

1 n+1 
a = n+1 ' ')..=-n-· We get 

Hence 

i.e. U n+l > Un. 

n+l 
( 1) n 1 

1 + n+1 >1+n · 

(1 1 )n+l (1 1)n 
+~n+1 > +n ' 

Here is one more proof. Without using the theorem on 
the arithmetic mean, let us prove that 

( 1 +_a_)n+l > (1 --I.-~)n 
n+1 ' n 

if a> ° and n is a positive integer. 

Consider the identity 

1 1+nx 1+(n-t)x 1+3x. 
+nx= 1+(n-1)x· 1+(n-2)x ... 1+2x 

(x> 0). 
But 

1+(k+1)x -1 +_x_ > 1 -t x 
1 + kx -- 1 + kx 1 + nx 

(k=O, 1,2, ... ,n-1). 

horefore 

1+2x 1+x 
1+x ·-1-

1+(n+1)x 
1+nx 

1 + nx > r 1 ~ ~~x1) x r, (1 + nx)n+l > [1 + (n + 1) xt. 

a 
Putting here x = n (n + 1) , we get 

( 1 _a )n+l (1 3:...)n. + n+1 > + n 
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In particular, at a= 1, we find 

( 1 + n ~ 1 r+1 > ( 1 + ~ f· 
2° We have 

n 

Un ~ (11 ~ r ~ [ ( 1+ ~ ) , J' < ( t _ ~ .. r)' ~ (t ~ {r 
Hence 

1 
un < 1 h (i-T ) 

for any whole positive k. 
If k = 6, we find 

(1 + ~ r < ( ~)6 < 3. 
42. We have 

n(n+1l 

_ n(n+ll / ( 1 )n 1 n(n+l~ /3 
- V 1 +--;:;- n < V n 

(see Problem 41). 
But the fraction 

~~1 if n':>-3. n"'" -
Therefore 

n+ 1 r-:::-7A 
--'-1'-"n_I+~1! < 1 if n~3. vn 

43. It is required to prove that 

We have 

'Yn+T1+ 1 < 1 (n = 2, 3, 4, ... ). n-vn 
n(n-ly (n+1)n-t 

nn 
n(n-v ( 1 )n-l 1 _ 1+- --n n 

n(n-V ( 1 )n 1 n(n-l~3 
= 1+- ._-< --<1. 

n n+1 n+1 "'" 
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44. Let us prove that 

log Yi ~ ail log Xl + ai2 log X2 + ... + ain log Xn 

(i= 1,2, ... , n). 

To this end it suffIces to prove that 

log(a:c+by+cz+ ... +lu»alogx+blogy+ ... + 
+llogu. (*) 

if a + b + ... -+ 1 = 1 and a. b, ... , 1 are rational positive 
numbers. 

Put 

Then 

IX + ~+ ... +'A=N. 

To prove the inequality (*), it is l'ufflCient to prove that 

ax -t by + cz -+- . , . + lu??- xal ... u 1• 

Bul we have 
a b I N/ ex i3 1. xy ... u=yxy ... u= 

= iY X ••• xy ... y ... u ... u::::;; 
___ ax+~y+ ... +AU = + b + + l :::::::: N ax y ... u. 

Thus, it is proved that 

Hence 

log Yi ~ ail log Xl + ai2log X2 + ... + ain log Xn 

(i= 1,2, ... , n). 

n n n 

~ log Yi ~(log Xt) L: ail + (log X2) h aid- ... + 
i=1 i=1 i=1 

n 

+ (log Xn) L; ain' 
i=1 

or 
n 

~ logYi~logxI+logx2+ ... +logxn=logXtX2 ",Xn. 
]=1 
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Finally 

Y1Y2 ... Yn~X1X2 ... x n• 

45. Put .!!.l = Xi (i = 1, 2, ... , n). Then we have to prove 
ai 

the inequality 

;.v(1 +Xl) (1 +X2) .. , (1 +xn)~1 +y/ X1 X2 ... Xn . 

The theorem is valid at n = 1, 2, 3 (spe Problems 21 and 
28). Suppose it is true at n = m and let us prove that 
it also holds at n = 2m. 

We have 

2;Y(1 +Xl) (t +X2) ... (1 +X2m-l) (1 +X2m) = 

=;Y V (1 + XI) (1 + X2)' V (1 + X3) (1 + x 4 ) 

... ;V'V(1 +X2m-l) (1+X2m)~ 
~;r (1 +~) (1 +~) ... (1 + V X2m-IX2m) ~ 

>1 + V ~ V X3X4 ••• V X2m-1 X2m = 

= 1 + 2"{Y XjX2 ... X2m. 

Thus, the theorem is valid for all indices equal to any 
power of two. Let us now prove that it is true for any 
whole n. Let n+q=2m • Then 

n+y(1 +xl)(1 + X2)'" (1 + xn) (1 + Yl) (1 + Y2)'" (1 + Yq);;::: 

~ 1 + n-t-y X1X2 ... :CnY1Y2 ... Yq 

Put 

1+Yl=1+Y2='" =1+Yq= 
= ;.v . ..,-,;( 1-"+"-X-l):-:(--:-1 +--;--X-:-2)-' -.. ----;(--:-1 +--;--x----:-n) = Y. 

We have 

n+}Y(1+xl)(1+X2)'" (1+xn)·yq ;;::: 

~ 1 + n+Y-Xl-X-2 -. -. . -x-n--;(c:;;"Y;----;1=)q 

But 
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Therefore 

i.e. 

or 

Hence 

Finally 

Solutions 

n+yyl'lyq >1+n+y Xt ... Xn (Y -1)q, 

(Y --1)n>xJx2 ... Xn, 

Y -1~V'xlx2'" x n . 

y =;Y"(1+Xt) (1+X2) '" (1+xn)~1 +V' Xt X2 ... Xn , 

and the theorem is proved. 
The equality sign is possible only if Xt = X2 = ... = 

= Xn = 1. 
46. This theorem, as the previous one, is proved using 

Cauchy's method. The proposition is valid at n = 1; let 
us first prove that it holds true at n = 2, i.e. prove that 

for any whole positive k. At k = 1 the last inequality really 
takes place. Assuming the validity of this inequality at 
k = l, let us prove its validity at k = l + 1. And so, we 
have (by supposition) 

. (Xt + X2)1 ::;::: xr + x~ 
21 -.;::: 2 

Multiplying both members of this inequality by Xt 1 X2 , 

we find 

But 

Xi+1 +x~+1 +XtX~+X2X~ 
4 



Solutions to Sec. 8 427 

since 

( XI +X2 )1+1 ~ X~+I +x~+1 
2. ~ 2 

and the inequality (*) is proved for any whole k. And so, 
our basic proposition is valid at n = 2. Let us now prove 
that if it is true at n = m, then it is also true at n = 2m. 
Indeed 

( XI+X2+X3+X41~" +X2m-I+X2m )" = 

( 
XI+X2 + X3+ X4 + + X2m-I+X2m )" 

2 2'" 2 
= ~ m 

_ ( XI ~ X2 r -+- ( X3 -~ X4 r -+- ... -+- ( X2m-l/ X2m r 
~ ~ m 

" " "" "+" X1,+X2 + X3 -t X4 .,_ x2m-I' x2m 
2 2 1"'+ 2 

~--------------------------------
In 

" " "" " " xI +x2+ x 3+ x 4 + ... +x2m_1 +x2m 

2m 

Thus, we have established that the theorem is valid 
at n equal to some power of two. It remains to prove its 
validity for any whole n. Put n + p = 2m • 

Then 

Put 

We have 

XI + X2 + ... + Xn + YI + Y2 -+ ... + YP = 
(XI + ... +Xn) (71+ p) 

n 
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Hence 

" "( XI+X2+'" +Xn )"p + + )" XI + ... +Xn + 11 
( XI 'n" .en :::::;; ______ --.:...----,--_____ -..:... __ 

n+p 

Finally 

and the proposition is completely provpd. J t is easy to 
establish that the equality sign is possible only if 

47. This proposition is the generalization of the previous 
theorems (see Problems 30, 45, 46). The proof is carried 
out in the same way as in the mentioned theorems. Namely, 
assuming the vali dity of the theorem at n = m, let us 
prove its validity at n = 2m. We have 

<p (tl) + <p (t2) + ... 4- <p (t 2m-l) + <p (t 2m) 

2m 

(since, by hypothesis, not all of the quantities til t2 , ••• , t 2m 

are equal to one another, they can be grouped so that, for 
instance, tl =1= t2)' Thus, the theorem is valid at n = 2m. 
Let us put now n + p = 2m. Then 

m ( tl +t2+··· +tn + TI+T2+··· +Tp ) 
't' n+p - < 

<P(tI)+· .. +<p(tn)+<P(TI)-t ... +<p(T p) 

< n+p 
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(here t1, t2 , ••• , In are not all equal to one another). Put 

+ tl --j t2 + ... + tn 
LI+L2 ... +Lp= n p. 

Consequen tly 

( tl+t2+···+tn-i'l-1 "'T'p )=rn( 
cp n-l-p T 

On the other hand, 

<p (td+· .. +<p (tnH-cp ('d+· .. +<p ('p) 

) I ( tl + ... + tn ) <p (tl T'" -j- <p (tn) + P<P n 

n -+- P 

From the last inequality we get 

( td '" -',- tn ) < <p (td + ... -+ <p (tn) . 
cp n n 

The above-deduced theorems (see Problems 30, 45, 46) are 
obtained, as we already mentioned, from this more general 
proposition. Let us demonstrate this. 

1° Let 

then 

Further 
<p (tlH- <p (t2) 

2 

But 

cp(t)= -log(1 +t), 

log (1 + t1) + log (1 + t2) 

2 

V(1+t 1)(1+t2)< 1+ t1t 1+t2 =1+ t1-tt2 (t 1*t2). 

Therefore 
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(the base Of the logarithms being greater than llnity) and 

-log -V (1 + t l) (1 + t2) > -log ( 1 + tl t t2 ). 

Thus, the function 

cp (t) = -log (1 + t) 
really possesses the following property 

( tl + t2 ) < 'P (t l) + 'P (t 2) 
cp 2 2' 

and therefore it must be 

cp ( tl+t2+~ .. +tn ) < 'P(tI)+'P(t2),;-'" +'P(tn) 

I.e. 

-log (1 + tl+t2+~" +tn ) < 
< _ log(1+tl)+log(1+t2)+ ... +log(1+tn) 

Fa ' 

log;Y(1+t t )(1+t;) ... (1+t n ) < 
< log ( 1 + tl +.~. + tn ). 

Further 

V (1 + t l ) (1 +- t2 ) ••• (1 + tn) < 
< 1+ td···· +tn = 

n 

= (1+tl)+(1+t2)+··· +(1+tn) 
n 

Putting 1 + t; = Xii we finally get 

n/ < XI+X2+'" +xn -V XI X2 ••• Xn n 

Obviously, if we assume the possibility XI = X2 = ... = X n , 

then it will be 

2° If we put 

cp (t) = t", 
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then 
<p ( tltt2 ) = ( tl1t2 t 

Assuming that the inequality 
h h 

( tltt2 r < tl ~t2 

holds true, we get the result of Problem 46. 

3° Put 
<p (t) = log (1 + et ) 

(the logarithm is taken to the base e> 1). 
Then 

Since 

tl+t2 
<p ( tltt2 ) = log (1 +e-2-), 

cp (tl)~CP (t2) = log V (1 + etl) (1 + et2). 

l1+t2 
V'(1+etl )(1+et2 ) > 1+e-2-, 

fulfilled for the function <p (t) is the inequality 

<p( tt~t2 )<CP(tl)~CP(t2) (tl=l=t2). 

Therefore 

<p( tl+t2+~ .. +tn )< CP(tl)+.~.+cp(tn) , 

i.e. 

Then 

7(1 + etl) ... (1+etn ) = 

= 7 ( 1 + AI) (1 + 1.,2) .•. (1 + An) > 
tog "-1+ ... +Iog "-n 

> 1+e n 

431 
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Finally 

7(1-+-1.,1)(1-+-1.,2) ... (1-+-An» 1+V'A1A2 ... An. 

48. Let t1l t2 , ••• , tn be contained in the interval bet­
ween 0 ·and n. 

(0< ti < n). 
Let us prove that 

-sin t1+t2+ ... + tn, <_ sintl+sint2+.··+sintn 
n n 

For this purpose it suffices to prove that (see Problem 47) 

-sin t1+t2 <_ sintl+sint2 
2 2 

Indeed 

sin t1+sin t2 t1+t2 
2 = sin 2 

-sin t1+t2 cos tl- t2 
2 2 

= sin tl+ t2 .2 sin2 tl- t2 > 0 
2 4 

(in our case cp (t) = - sin t). 
Thus 

(if 0 < ti < n). 
Therefore if al -+- a2 + ... + an = n, then 

sinal + sin a2 + ... -I- sin an < nsin~ 
n 

if ai' a2, ... , an are not equal to one another. 
On the other hand, if 

then the sum 

becomes equal to 
sin al + ... + sin an 

. Jt 
nSlll-. 

n 
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Thus, indeed, the greatest value of the sum 

sin at + sin a2 + . . . + sin an 
will be 

provided 
at + a2 + ... + an = n (ai > 0); 

and this greatest value is attained at 
11 

cq = a2 = ... = an = n . 
49. Let us prove that the differenee 

x P -1 xq - 1 
p q 

433 

(if x =1= 1 and p > q) exceeds zero. To this end it is suflici­
ent to prove that 

('). = q (xP -1) - p (xq -1) > o. 
First let us assume that x > 1. We have 

('). ~~ q (xP - 1) - p (xq - 1) = (x - 1) {q (xP- 1 + xP- 2 + ... + 
+x+1)_p(X'l-1+Xq- 2 + ... +x+1)}=(x-1){q(xP - 1+ 

+ x P - 2 + ... +:x.q)-(p-q) (xq- 1 +xQ- 2 + ... + x+ 1)}. 

If x> 1, then 

x P -It x P - 2 + ... + x q > (p - q) xq • 

Therefore 

('). = q (x P - 1) - p (xq - 1) > (x - 1){ q (p - q) xq -

- (p- q) qxq- 1 } = qxq- 1 (p-q) (X_1)2 > O. 

Thus, if x> 1, the theorem is proved. Now let us assume 
that x < 1. III this case we have 

xP - 1 + x P - 2 + ... + xq < (p-q) xq , 

x q - 1 + x q - 2 + ... + x + 1 > qxq - 1 , 

q(xP - 1 + ... + xq)-(p-q) (xq - 1 + ... +x+1) < 
< (p-q) qxq -q (p-- q) X'l-l = q (p-q) xq- 1 (x -1). 
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Consequently 

/}. > q (p-q) Xq - 1 (x-1)2 > 0. 
However, this proposition can be proved proceerling from 
the theorem on the arithmetic mean. We have the following 
inequality (see Problem 40) 

(1 + a)f.. > 1 + aA 

(A> 1, rational, a> 0, real). 
Likewise we can deduce the following inequality 

(1- a)f.. > 1-aA 

if 0 < a < 1; A> 1, rational. Csing thpse inequalities, 
we shall prove that 

x P -1 
p 

> xq--1 
q 

if p > q (x * 1). 

Put xq = c, .l!-.- == A. Then we have to proye . q 

~ f.. _ 1 > A (s - 1) 
or 

~f.. - 1 - A (~ - 1) > O. 

First suppose x> 1, ~ > 1. Put S = 1 + a. We then have 

~f.. - 1 - A (~ - 1) = (1 + a)f.. - 1 - Aa > o. 
[f x < 1, then ~ < 1. In this case we put 

~ = 1 - a (0 < a < 1). 

We find easily 

~/. - 1 - A (~ - 1) = (1 - a)f.. - 1 - A (-a) > O. 

50. Let us first assume that m> 1. Put m = ~ (p > q, 
q 

positive integer). We then have (see Problem 49) 

~P-1 > £q-1 (~7'= 1). 
p q 

1 

Putting sq=x, ~=xq, we get 

xtn - 1 > m (x - 1). 
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Replacing in this . l' b 1 lIlequa tty x y ~, we fwd 

1 ( 1 ) --1>m --1. 
xm x 

Multiplying both members of this inequality by- ;r"', we get 

x111 -1 < mxm - 1 (.r-i). 

Thus, if m> i, then 

mxm - 1 (x -1) > xm_·i > m (x-1). (i) 

Let us assume now that 0< m < 1. Puttillg sq = x, 

.!L = m, we find 
p 

Replacing here x by xm , we fmd 

xm - 1 < m l x - 1). 

Replacing in the last inequality x by ~, and performing 
x 

all necessary transformations, we find 

mx"'-1(x-1) < xllL-i <m(x--1) (O<m<1). (2) 

Let us now consider negative values of m. Put m = -n, 
where n > 0, rational. Let' us first prove that if m is nega­
tive, then 

xm-1 > m (x·-i). 

Since n > 0, it follows'that n + 1> i and we may make 
use of inequalities (i). Namely, we have 

xn+l_i < (n+i)xn(x-i). 
Hence 

nxn (x - i) > xn - 1. 

Replacing here n by - m, we find 

_mx- m (x-i) > x-m-1. 

Multiplying both members of this inequality by - xm , 

we get 
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1 
And if we replace here x by ~, then we find 

xrll_1 < mxm- I (x--1). 

Thus, indeed 

mxm - t (x-i) < xm -1 < m (x-i), 

if 0 < m < 1, 
m (x - 1) < xm - 1 < m x m-I (x - 1) 

if m is any rational number not lying in the interval between 
o and 1, and x is any real positive number not equal to 
unity. 

51. The inequalities of this problem follow immediately 
from the results of the preceding problem. 

52. Put 

.!L=m. 
p 

Then the inequality is rewritten as follows 

( Yt+Y2+' .. +Yn )m::;:::: yf'+yT+.·.+y;:' 
n -:::: n ' 

where m > 1, rational. Using the results of Problem 47, 
it is sufficient to prove that 

( tl+t2 .)rIl:::;::: tl."+tT 
2 """ 2 

for any rational m > 1 and for any real positive tl and t 2. 
In other words, it is sufficient to prove that 

( 2ft )m ( 2t2 )m 2 
tl+ t2 + tl+ t2 >. 

Let us make use of the results of Problem 51 

(1+x)m~1+mx 

(1) 

if m> 1 is rational and 1 + x > O. We have two inequa­
lities 

r~1+m ( 

r~1+m( 

2tl 
tl +t2 

2t2 
tl +t2 

-1) , 
-1). 
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Adding the¥1, we get inequality (1) which is the required 
result. The solution to our problem can be obtained imme­
diately froID the inequalities of Problem 51. Let us show 
that, using this method, we can deduce even a more general 
inequality. So let us prove that 

( Yl+Y2+'" +Yn )~ /' Y~+Y~+··· +Y~ 
~ 1 2 n 

n n 

if 'A is a rational number not lying in the interval between 
zero and unity and 

( Yt+Y2+···+Yn )~::>-: Y}+Y}+"'+Y~ 
n ~ n 

if 0 < 'A < 1. To prove the first inequality it is sufficient 
to prove that 

But we have (see Problem 51) 

( nYi )~ ::;:;, 1 + 'A ( nYi - 1) . 
Yt+Y2+'" +Yn Yl +Y2+'" +Yn 

Putting here i = 1, 2, ... , n and adding the inequalities 
thus obtained, we actually get inequality (2). We proceed 
quite analogously for the case 0 < 'A < 1. 

53. Put 

Xt + X2 + ... + Xn = p, x~ + x; + ... + x; = p'. 

We have 

(X-Xt)2+(X-X2)2+ ... +(X-Xn)2= 

[ 2p P' ] ==nx2-2px+p'=n _x2-nx+n -= 

=n[(x- ~ r+ ~ - ~:l 
Our expression can attain the least value only simulta-

)
2 ( I 2 

neously with (X- ~ since the quantity : - ~2 is 

independent of x). But (x- ~ r cannot be negative, 
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therefore its least value will be equal to zero. Hence 

p Xl+'" +Xn X=-= . 
n n 

Thus, the sum 

(X-Xj)2+ (X-X2)2+ ••• + (x-xn)2 

attains the least value at 

54. Put 

Then 

Xl+X2+'" +xn x = ---!O.--:..-.::....;._--'-~ 

n 

(Xj-X2)2+(Xj-X3)2+ ••• + (X2- X3)2 + ... + 
+ (xn-j - Xn)2 = (n -1) S2 - 2q, 

where 

q = XjX2 + XjX3 + ... + XjXn + XZX3 + ... + Xn_jX n , 

Further 

And so 

wherefrom we find 

nS2 = C2 + L (Xi _Xj)2. 
j>i 

The last equality shows that S2 takes the least value when 
the least value is attained by L; (Xi - Xj)2. The least value 

j>i 
of this sum is equal to zero and is attained at 

Xj = X2 = ... = Xn • 
But since 

Xl + X2 + . . . + Xn = C, 
it follows that 
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takes on the least value at 
C 

XI = X2 = ... = Xn = n . 
55. First let us assume that 'A does not lie in the interval 

between 0 and 1. Then the following inequali ty takes place 

x~+x~+ ... +x~ ~ ( XI +X2+'" +xn )" 
n ~ n ' 

the equality sign (as it is easy to find out) occurring only if 

If it is given that 

XI + X2 + ... + Xn = C, 

then at all values of XI, X2, •.. , Xn' we have 

""+ " Ie)" Xl + X 2 ••• + Xn ~ n ~ n ' 
wherefrom it is seen that the least value of the expression 

x~+x~+ ... +x~ 
is n ( ~ r which is reached at XI = X 2 = ... = Xn = ~ . But 

if 0 < 'A < 1, then the following inequality takes place 

xt+x~+ ... +x~ ~(XI+ ... +xn)". 
n -..:::: n 

Then at 

XI = ·1:2 = ... = Xn 

we obtain the least value of the quantity 

xt+xH- ... +x~. 
56. We have the inequality (see problem 30) 

n/" ~ XI+X2+ '" +xn C 
y X1 X2'" Xn -..::: n = n . 

Hence 
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Thus, the product XJX2'" Xn does not exceed ( en )n 

and reaches it only at Xj = X2 = ... = Xn =.£ (see Prob­
n 

lem 30). And so the greatest value is attained by the 
product XjX2 .•• Xn when 

e 
XI=X2= .•. =xn=n' 

57. We have 

Consequently 

The equality sign being possible if XI = X2 •• = X n • 

Hence, it is clear that the sum Xj + X2 + ... + Xn attains 
the least value if 

Xj = X 2 = ... = Xn = 7e. 
58. First let us assume that l-1i (i = 1, 2, ... , n) are 

whole numbers. We ha ve 

e 
/tl+'" +/tn . 

Consequently 

J.l.l J.l.2 J.l.n- ( e )J.l.l+J.l.2+ .• '+J.l.n. J.l.l. J.l.2 J.l.n Xl X z ••• Xn::::::::: + 1-11 1-1~ ... I-1n , /tj ... + /tn 

and the equality sign is obtained only if 

XI X2 Xn -=-= ... =-
/tt /tt lJ.n 
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Let now fli be fractions. Reducing them to a common 
denominator, we put 

Ivi 
fli =f:I' 

where Ai and fl are positive integers. 
Since 

X J.lIXJ.l2 xJ.ln -- II/XAIXA2 xAn 
1 2. ••• n -Y 1 2 ••• n' 

the greatest value is reached by the product XrIX~2 .•• x~n 
simultaneously with the product X}IX~2 .•. x~n, where Ai 
are integers. As follows from the above-proved. it hap­
pens if and only if 

Xt Xz Xn 

-r;- = -x;-= T;;' 

Dividing the denominators by ~t, we get 

~=_-.::.~..,..." ... =_x_n . 
/tt f-l2 /tTl 

Thus, if .Ti >0 and Xj + X2 + ... + Xn = C, then the pro­
duct XrIX~2 .•• x~n (fli > 0, rational) attains the greatest 
value if and only if 

Xt X2 Xn 
-=-~ ... -

/tn 

59. We have 

wherefrom it follows that the product 

reaches the greatest value only if 

But since 

atXt ·a2x 2 ••• anxn = (at a 2 ••• an) (Xt X 2 ••• x n ), 

the product XtX2 ••• Xn indeed reaches the greatest value 
if and only if 

c 
-

11 
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60. Put 

aixfi=Yi (i=1, 2, 000, n)o 

Then 

1:':'"' 
( Yi) ! 

Xi = --at 
and 

Further 

The problem is reduced to finding out when the product 

III 112 I1n 

Yi:1. yI2 yt..n 
1 2 0 .. n 

takes on the greatest value if Yt -+ Y2 + 0 0 0 + Yn = Co Refer­
ring to the results of Problem 58, we see that it will take 
place if 

Thus, if 

aIX}la2X~2 + 0 0 0 + an.x~n = C, 

then the product 

reaches the greatest value provided 

61. Put 

... , 
Hence 

_ (Y2 )/.12 
X2- -

a2 ' 
... , ( Yn) I1n 

Xn = an ' 
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and the problem is reduced to the following: under what 
condition does the sum 

YI+Y2+'" +Y, 

attain the least value if 
Ai A2 An 

Yili. yIl2 .. ylln = CI 1 2· n , 

where CI is a new constant? 

S· AI An . I t mce -, ... , - are ratlOna , we pu 
/-tl /-tn 

1..1 al 1..2 a2 ')"n an 
~=N' ~=N' ... , /-tn N 

Then the problem will read as follows: find out when 
YI + Y2 + ... + Yn attains the least value if 

y~iy~2 ... y~n = C2 (ai positive integers). 

Finally, we put 

and obtain the following problem: under what conditions 
does 

ajUI + a2u2 + ... + UnU" 

attain the least value if 

But 

alul +a2u2+'" +anun :>-: 
al +a2+'" +an :::--

_____ at+a2+ ... +an/ at a2 an _ at+a2+ . . +an/C 
~ V U1 U 2 ••• Un - V 3. 

Hence alul + azU2 + ... + anUn attains the least value when 

UI=U2='" =Un · 

Thus, if 

then 
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attains the least value provided 
xllt Xll2 xlln 

~1 = :2 = ... = -t:- . 
a1flol a2/-t2 anflon 

62. Applying the Lagrange formula (see Problem 5, 
Sec. 1), we have 

(x2 + y2 + Z2 + ... + t2) (a2 + b2 + c2 + ... + k2) 

= (ax + by + ... + kt)2 + (xb - ya)2 + 
+ (xc - za)2 + ... 

Since 

is constant and 

ax + by + . . . + kt = A 

(by hypothesis) and, consequently, also constant, it follows 
that the sum 

x2 + y2 + Z2 + . . . + t2 

attains the least value simultaneously with the sum 

(xb - ya)2 + (xc - za)2 + . . . . 
But the least value of the latter sum is zero which is reached 
when 

xb - ya = 0, xc - za = 0, . . "' 
i.e. when 

Let us put this general ratio equal to A so that 

x = aA, y = bA, Z = CA, ... , t = k'A. 

Substituting these values for x, y, z, ... , t into the equality 

ax + by + . . . + kt = A , 
we find 

A 
'A = a2 +b2 + ... +k2 ' 

and, consequently, the required values of x, y, ... , t at 
which the expression x2 + y2 + ... + t2 takes on the least 
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value will be 
aA 

x = --00----,-:-."...-,------,--;-;;-

a2 + b2 + ... + k 2 ' 

bA kA 
Y = a2 + b2 + ... + k2 ' ... , t = a2 + b2 + ... + k 2 

63. We have 

II = AX2+2Bxy+Cy2 + 2Dx+2Ey + F, 

where 

A = a; + a; + ... + a;" B = alul +- a2u2 + ... + ar/}", 

C=b;+b~+ ... +b~, D = alc! + a2c2 + ... + (InC", 

E=b!CI+b2C2+ ... +b11 cn , F=c~+c~+ ... +c~,. 

Put 
x = x' + a, y = y' + ~. 

We then obtain 

u = A (x' + a)2 + 2B (x' + a) (y' + ~l + C (y' + ~)2 + 
+ 2D (x' + a) 2E (y' + ~) + F. 

Expallding this expression in powers of x' and y', we gpt 

u = AX'';! + 2Bx l y' + Cy'2 + 2 (Aa + B~ + D) x' + 

+ 2 (Ba + C~ + E) y' + F'. 

Now let us choose a and ~ so that the coefficients of x' and 
y' in the last expansion equal zpro. To this pnd it is only 
necessary to choose a and ~ as the solutions of the following 
system 

Then we have 

Aa + B~ + D = 0, 

Ba + C~ + E = 0. 

u = AX'2 + 2Bx l y' + Cy'2 + F'. 
Further 

u= + {A2X'2 + 2BAx l y' + ACy'2} + F' = 

= + {(A:r' + By')2 + (AC - B2) y'2} + F'. 
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But 

AC _B2 = (a~+ a;+ ... + a~) (b~ + ... + b~)-< 
- (atbt + a2b2 + ... + anbn )2:> 0, A> 0. 

Therefore, u attains the least value when 

Ax' + By' = ° and Y' = 0. 
Hence 

x' = y' = ° and x = (X, Y = ~. 

And so, the values of x and y at which u attains the least 
value are obtained as the solution of the following system 
of equations 

Ax + By + D = 0, Bx + Cy + E = 0. 

However, this result can be obtained in a somewhat 
different way. 

Put < 

atx+btY+Ct=Xt, a2x + b2Y+C2=X2"", 

anx + bny + Cn = X n • 

Let At, A2, ... , An be some constants satisfying the follow­
ing conditions 

alA, + a2A2 + ... + a"A" = 0, 

blA.I + b2A.2 + ... + bllA" = 0, 

CtA., + C2A.2 + ... + CnA." = k, 
where k is an arbitrary number. 

We then have 

A.jX j + A2X2 + ... + AnXn = k 

and hence, we have to find the least value of the expression 

provided 

AtXt + A2X 2 + ... + AnXn = k (constant). 

From the result of Problem 62 we have that the least value 
is obtained if 
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Or 
At = Xtf.t, 1..2 = X 2f.t, ••• , An = Xnf.t· 

Substituting them into the first two equalities (*), we fihd 

atXt + a2X2 + ... +anXn = 0, 
btXt +·b2X 2 + ... + bnXn = O. 

Hence we get the system obtained by the preceding method 
of solution. 

64. As is known, there exists the following identity 
(see Problem 77, Sec. 6) 

f (x) = f (xo) (x-Xt) (X-X2) ... (x-xn ) + 
(xo--Xt) (XO-X2) ... (XO-xn) 

-t-f (x t ) (x-xo) (X-X2) ... (x-xn ) + + 
(Xt-Xo) (Xt- X2) ... (Xt-xn) .'., 

+ f (xn) (x-xo) (x-xt) ... (x-Xn-t) , 
(Xn - xo) (xn - Xt) ... (Xn - Xn-t) 

where f (x) is any polynomial of degree n. 
Equating the coefficients at xn in both members of this 

equali ty, we find 

1 = ! (xo) + 
(xo-Xt) (XO-X2) ... (XO-xn) 

+ !(Xt) + + 
(Xt-Xo) (Xt- X2) ... (Xt-xn) ... 

+ ! (xn) 
(xn -xo) (xn -Xt) ... (Xn -Xn-t) 

Let M denote the greatest one of the quantities 

If(xo)l, If(xt)l, ... , If(xn)l. 

Then 

1~M { t + I (xo-Xt) (XO-X2) ... (XO-xn) I 

t t} + I ( + ... + I I (Xt - xo) . .. Xt - Xn) I (Xn - xo) ... (xn - Xn-t) . 

As is easily seen, by virtue of our conditions we have 

I (Xk - xo) (Xk - Xt) ... (Xk - Xk_t) (Xk - Xk+t) ... (Xk - Xn) I ~ 
>k! (n-k)!. 
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Therefore 
1 t 

I (Xk -xo) (Xh -XI) ... (Xk -In) I ~ k! (n-k)! 

Consequently 
n n 

1 ~ M " 1 = ~ " Ck = M ~ ---= ' L..J k! (n-k)! n! L..J n n! . 
h=O h=O 

Finally 
n' 

M?>-in . 

65. Since sin2 x + cos2 X = 1, Le. the sum of the two 
quantities sin2 x and cos2 x is constant, their product 
sin2 x· cos2 x reaches the greatest value when these quan-

tities are equal to each other. It happens at x =-~ ~ • However, 

the same is easily seen from the identity 

. 1 . ? 
8lTl x·cos X = 2"" sm ~x. 

66. It is known that if 

then 

'+ 11: x+y z=T' 

tan x tan y + tan x tan Z + tan y tan z = 1 

(see Problem 40, 4°, Sec. 2). Thus, the sum of the three 
quantities 

tan x tan y, tan x tan z, tan y tan Z 

is constant. Therefore, the product of these quantities 

tan2 x tan2 y tan2 Z 

reaches the greatest value if 

tan x tan y = tan x tan z = tan y tan z, 
L e. if 

tan x = tan y = tan z 

and consequently at 
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67. We have 

68. Put 

It is required to prove that 
a 2n _1 ~n (an+1_ a n-l). 

Or, which is the same, 

But 
a2n -1 --::_:- = a 2<n-ll -t- ",2<n-2> + + 2 + 1 ~ a2-1 Vv. • • a ::=-

449 

> n ;Y-a-=-2.-a"""""4-.-.-.-a-=2'-:-n---::2 

(using the theorem on the arithmetic and the geometric 
mean of several numbers). 

Since 
2 + 4 + ... + (2n - 2) = n (n - 1), 

\\'e have indeed 

69. Rewrite the sum in the following way 

1 + ~ + ( {-+ i2 ) + ( {-+ i-+ + + ~3 ) + ... + 
( 1 1) 1 1 + 2n-2+1 + ... + 2n- 1 + 2n- 1+ 1 + ... + 2n-1 . 

Each of the bracketed expressions exceeds ~ and, consequent­

ly, the total sum is more than ; . On the other hand, the 
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sum may be rewritten as 

1 +(-}+i-)+(! +i-+i-++)+ ... + 
( 1 1 1 ) 

+ 2n-1 + 2n-1+1 + ... + 2n-1 . 

But each of the bracketed expressions is less than unity, 
and, consequently, the total sum is less than n. 

70. On transformation we get the inequality 

(a + c) (a + b) (b + d) (c + rI) -

- (a + b + c + rI) (c + rI) ab -

- (a + b + c + d) cd (a + b) ~ 0, 

or the following one 
(ad - bC)2 ~ O. 

SOLUTIONS TO SECTION 9 
1. Putting in the basic formula n = 1, we find 

V2 = 3Vt - 2vo = 3·3 - 2·2 = 5 = 22 + 1. 

Suppose that 

Vk = 2k + 1 (k = 1, 2, ... , n), 

and let us prove that 

Indeed 

V n +-! = 3vn - 2vn-t = 3 (2n + 1) - 2 (2n - 1 + 1) = 

= 3·2n+3-2n-2= 2n (3-1) + 1 = 2n+1 + 1. 

2. Solved as the preceding problem. 
3. As is easily seen, the required relation is indeed valid 

at n = 1. 
Assuming its validity at the subscript equal to n, let us 

prove that it is also valid at the subscript equal to n + 1. 
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Indeed 

But by supposition 

Therefore 

IZ n+{-VA 
an+l+ V A 

4. We have 

Hence 

Consequently 

an - VA 
an+ V A 

45f 

=( 

It is easy to see that there E'xists the following general 
formula 
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Adding term by term all the last formulas, we have 

_ = _at-ao+at-ao_at-ao+ +(_1)n-lat- aO = 
an at 2 22 23 . . . 2n-t 

__ at-ao (1-'!'-t- _1 + + (_1)n-2_1_) _ 
- 2 2 22 . . • 2n - 2 -

_at-ao {(_1)n-1 _ 1 __ 1} 
- 3 2~t' 

Henee, fmally, 

_ 2at + ao + ( 1)n-l at -ao 
an --3- - 3·2n- t 

5. Consider the relationship 

ak = 3ak-t + 1. 

Putting here k equal to 2, 3, 4, ... , n, we get 

n n 

~ ak=3 ~ ak_t+n-1. 
11=2 k=2 

Put 

We then have 

S - at = 3 (S - an) + n - 1. 

Consequently 
1 

S =""2 {3an - at- n + 1}. 

It remains to express an in terms of at. We have 

Hence 

Therefore 

an - an-t = 3 (an-t - an-2) = 32 (an-2 - an-3) 

= 33 (an-3 - an-i) = ... = 3n- 2 (a2 - at) 
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But 

And so 
an - an-t = 5 ·3n-2. 

Putting here n equal to 2, 3, 4, ... , n, we have 

a2 - at = 5 ·1, 

aa - a2 = 5 ·3, 

a, - aa = 5.32 , 

an - an-t = 5 ·3n - 2 • 

Adding these equalities termwise, we find 

an - at = 5 (1 + 3 + 32 + ... + 3n - 2) 

453 

= ~ (3n - 1 _ 1). 

Rewrite the expression for S in the following way 
1 

S =T{3 (an-at) +2at -n+ 1}= 

=i- {1: (3n - 1 -1)+4-n+1} ={-{5(3r1 -1)-2n}. 

6. We have 

Consequently 

an = kan-t + l, 
an-t = kan-2 + l. 

an - an-t = k (an-t - an-2) = k2 (an-2 - an-a) = ... = 

Hence 
lh- at = (lh - at), 

aa- a2 = k (lh -at), 

a, - aa = k2 (a2- at), 

an - an-t = k n - 2 (a2 - at). 

Adding these equalities, we find 
1 kn-t-1 

an = kn- at + k-1 l. 

= kn- 2 (a2 - at). 
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7. Rewrite the given relationship in the following manner 

anH - an - (an - an-i) = 1. 
Put 

an - an-l = xn (n = 2, 3, 4, ... ). 

We then have 

Putting here n equal to 2, 3, ... , n - 1 and adding, we find 

Xn - X2 = n - 2. 

Putting then in the equality 

n = 3, 4, ... , n and adding, we get 

an - a2 = Xa + x, + ... + Xn· 
And so 

But 
n n 

~ Xk= ~ (x2+k-2)=(n--2)x2+(n-2)+ 

(n-1) (n-2) + (n-3) + ... + 1 = (n-2) X2+ 2 • 

Hence 
_ + ( 2) + (n-1) (n-2)_ an-iZz n- X2 2 -

+ ( 2) ( )+ (n-1) (n-2) =az n- az-al 2 = 

(n-1) (n-2) 1 2 = 2 +(n-)a2-(n-)al' 

8. Put 

Then the following relationship will take place 

XnH - 2xn + Xn -l = 1. 
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Using the result of the preceding problem we have 
(n-1) (n-2) 

Xn = 2 + (n-1) X2- (n-2) Xl' 

But it is obvious that 
n-2 

an-~=XI+X2+'" +Xn-2= ~ Xk' 
k=l 

Consequently 
n-2 

an -a2={ ~ (k - 1) (k - 2) + 
k=l 

n-2 n-2 
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+ X2 ~ (k - 1) - XI ~ (k - 2). 
k=l 

Finally 
(n-1) (n-2) 3 

an= 2 a3-(n- )(n-1)a2+ 

+ (n-2) (n-3) + (n-1) (n-2) (n-3) 
2 al 6 

9. The required formulas can be deduced by the method 
of mathematical induction. It is evident that they take 
place at n = 1. Since 

assuming that the formulas are valid at n-1, let us 
prove their validity at n. By supposition, we have 

an-l = a + ~ (b - a) ( 1 - 4;-1 ), 
bn_,=a+; (b-a)(1+ 2.4n t ). 

Then 

an= an-11bn-1 =a+; (b-a)(1-4~) 

and, consequently, this formula takes place for any whole 
positive n. It only remains to prove that the formula for 
bn is true for any whole posi ti ve n as well. 
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We have 

b an+bn-t 
n= 2 

and the proof is completed. 
However, this problem can be solved in quite a different 

way. It is obvious that 
an-t + bn-t b _ an-f + 3bn_t 

an = 2 I n-- 4 • 

Multiplying both members of these equalities by some 
factor A, we get 

an+J...bn = (-} +{ A) an-t+ (-}+ ! A) bn- 1• 

Let us choose A so that 

-}+! A= (-}+{A) A. 
There will be two required values of A, and they will be 
the roots of the equation 

A2 - A - 2 = 0, 

i.e. will be equal to At = 2 and A2 = -1. 
And so, at these values of A there exists the equality 

an -+- J...bn = (-} ++ A) (an-t + J...bn- t), 

which holds true for all whole positive values of n. Put­
ting here n consecutively equal to 1, 2, 3, ... , n, we get 

at+Abt= (; +{-A) (a+Ab), 

~ + J...b2 = (i-+{ A) (at + J...b t ), 

an + J...bn = ( ; + {- A) (an-t + J...bn- t ). 

Multiplying these equalities termwise, we find 
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for any whole positive n and at A = 2 and -1. Substitut­
ing these values of A, we find 

an+2bn = a+2b, 
1 

an - bn =Tn(a-b), 

wherefrom we have indeed 

an = a + ~ (b - a) ( 1 - In ) , 
bn=a+ ; (b-aH 1+ /4n ) . 

10. We have 
Xn = Xn-l + 2 sin2 a Yn-it 

Yn = 2 cos2 a Xn-l + Yn-l. 

Multiplying the second equality by A and adding the first 
one, we get 

Xn + AYn = (1 + 2A ("OS2 a) Xn-l + (2 sin2 a -t- A) Yn-l' 

Let us choose A so that the following equality takes place 

(2 sin2 a+A) = A (1 + 2A cos2 a). 
Hence 

A= ± tana. 
We then obtain 

(xn + AYn) = (1 + 2A cos2 a) (xn-t + AYn-l) 
or 

(Xn + AYn) = (1 + 2A cos2 a)n (xo + AyO). 

Substituting the values of Xo and Yo and putting in succes­
sion A = tan a and A = -tan a, we find the following 
two equalities 

Hence 

Xn + Yn ·tan u = (1 + sin 2a)n sin a, 

xn - Yn ·tan a = - (1 - sin 2a)n sin a. 

Xn = -} sin a {(1 -I- sin 2a)n - (1- sin 2a)n}, 

Yn = -} cos a {(1 + sin 2a}n+(1- sin 2at}. 
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11. As in the two previous problems, we get 

xn + AtYn = J.t~ (Xo+AtYo), 

Xn + ~Yn = J.t~ (Xo + ~Yo), 
where J.tl = a + A1Y, J.t2 = a + A2Y, Al and A2 being the 
roots of the quadratic equation 

(~ + M) = A (a + Ay). 

If At =F Az, then we have two equations for determining 
two unknowns Xn and Yn' and the problem is solved. 

Let us now assume that At = A2• Then J.tt = J.t2 and the 
two equations coincide. To determine Xn and Yn proceed 
as follows. 

We have 

Substituting the value of Xn into the second of the original 
equalities, we find 

Yn = l' ( - A1Yn-t + J.t~-1 (xo + AtYo)] + 6Yn-t. 
Hence 

Yn + (1'At -- 6) Yn-l = 1'J.t~-l (xo + AtYo). 

Put Yn = J.t~zn. Then for Zn we obtain the following relation 

J.tlZn + (1'At - 6) Zn-t = l' (xo + AtYo) 
or 

Zn= c5-YAt Zn_t+...l.(Xo+AtYo), 
I't 1'1 

wherefrom we find Zn (see Problem 6) and then Yn; Xn is 
found by the formula (.). 

12. Rewrite the given relationship in the following way 

Xn - aXn-t - ~Xn-2 = O. 
Put 

a= a+b, ~= -ab 
(Le. a and b are the roots of the quadratic equation as -
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- as - ~ = 0). Then we have 

Put 

Xn - axn-l - bXn_l + abxn_z = 0, 
Xn - aXn-t - b (xn-t - axn -2) = O. 

Xn - axn -l = Yn' 

The given relationship takes the form 

Hence 

Consequently 

Yn - bYn-l = O. 

Yn = bYn-l, 

Yn -1 = bYn -2' 

Yn = b7l - 1Yl' 

For finding Xn we now have 

Xn - aXn-l = bn- 1Yl' 

bz,. - aZn - 1 = Yl 

or 
a Yl 

Zn=T Zn-l +T' 

Using the result of Problem 6, we find 

_( a )n-l +(: r-1
- t Yl 

Zn- - Zl -. 
. b ~-t b 

b 

Performing simple transformations, we finally obtain 
an _ bn an-1_ bn-1 

Xn = b Xl - ab b xo· a- a-
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However, this problem can be solved by the method used 
in the previous problem, if we consider two sequences X~ 
and Yn defined by the relationships 

Xn = CUn -l + ~Yn'-l' Yn = 1'Xn _l + O'Yn-l' 
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13. Solved as the preceding problem. In this case 

a=1, b=--q-p+q • 

14. Considering the two variables Yn and Zn' determined 
by the relationships 

Yn = rxYn-l + ~Zn-l' Zn = YYn-l + <')Zn-l, 

we put 
Yn 
-=Xn• 
Zn 

Then the variable Xn will satisfy the given relationship 

aXn _l +~ 
Xn= " , '\'Xn-l+ U 

and the solution of our problem will be reduced to that of 
Problem 11. For instance, in the given particular case 

X n_l+ 1 
Xn = --:':'~:-n-

X n-l+ 3 
we have 

Yn = Yn-l + Zn-l, Zn = Yn-l + 3zn - 1 

and so on. 
The second particular case 

Xn-l 
Xn= 2Xn-l+ 1 

is readily considered in the following way. 
Rewrite this relationship as follows 

1 
:Xn 

2Xn-l + 1 = 2 + _1_ • 
Xn-l Xn-l 

Then 
1 1 ---=2. 

Xn Xn-l 

Putting here n= 1, 2, 3, ... , n and adding, we get 

_1 ___ 1_=2n, Xn= Xo 
Xn Xo 2nxo+1 

15. It is easily seen that 

an+tbn+l . anbn , 
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and, conseql!ently, 

at any whole n. 
But 

y~-y~ 
Yan+Ybn 

an - y~ _ an - Ya n-lbn-l _ 

an + Yanbn - an + Ya n-lbn-l -

a n-l + bn- 1 , / b 
2 - Va n-l n-l ,/--_ '/b- 2 

( V an-l V n-l) 
an_l+ bn 1 +-Va b = Yan-l+ Ybn- 1 • 

2 n-l n-l 

2 
U n-l= Un-2, 

2 
U n-2= Un -3, 

2 
Ul= Uo· 

Raising consecutively these equalities to the powers 1, 2, 
22 , ••• , 2n- 2 , we find 

But 

Therefore we have 

2n- 1 
U n-l = Uo 

an-l-Y~ 
an-l + Yaobo ' 
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16. We have 

1 1 1 1 [1 1 ] 
(2k)3_2k =2k". (2k)Z-1 ="4k 2k-1 -2k+1 = 

_..!.. {2k-(2k-1) _ (2k+1)-2k}_ 
- 2 2k (2k-1) 2k (2k+1) -

1{ 1 1 1 1} 
="2 2k-1 -2k"-2k"+2k+1 . 

Therefore 
n 

~ (2k/-2k =-} {( 1 +i-+ .. ·+2n~1) + 
k=1 

(1 1 1) 1 (1 1 1)} + 3+5+··· +2n-1 +2n+1- 2 2+4+··· +2n = 

= ~ {2 ( 1 + ! + ... + 2n1 1) - 1 + 2n 1+ 1 -
- 2 ( ~ + ! + ... + ;" ) } = ( 1 + ! + ! + ... + 2n 1 1) -

(1 1 1) n - 2+4+··· +rn - 2n+1· 

Hence 
n 
~ 1 n 111 1 
LJ (2k)3-2k+2n+1=1- 2 + a- 4 + ···+2n-1-
k=1 

(see Problem 33, Sec. 1). 
17. Let us denote our expression by <Pn (x). We have 

<PI (x) = (1 - x) + x = 1, 
<pz (x) = (1 - x)(1 - x2) + x (1 - x2) + x2 = 1, 

wherefrom we can assume that <Pn (x) = 1 for any n. It is 
easily seen that the following relation takes place 

<Pn+1 (x) = (1- xn+l) <Pn (x) + xn+1. 

Assuming <Pn (x) = 1, from the last relation we obtain 
<Pn+l (x) = 1. But since <Pi (x) = 1, it follows that <pn, (x) 
= 1 for any whole positive n. 



18. Put 

Then 
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x X2 x 2n- 1 

1--2 +-t-x4 + ... + =q>n(X). -x 1_x2n 

X2n 

q>nH (x) = q>n (x) + 2n+1 
1-x 
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Now it is easy to prove the required formula using the 
induction method. 

19. Put 

(1+x)(1+X2)(1+X22) .•. (1+X2n- 1)=X. 

Multiplying both members by 1-x, we find 

Hence 

2n 
X - 1-x -1 2-L_1 2n-l - i-x - +x+x I;J;- + ... +x . 

20. We have 

Let us assume that 

1+..!..+a+b1+ ... + (a+1)(b+1) ... (s+1)_ 
a a abc ... sk -

_ (a+1) (b+1) ... (s+1) (k+1) 
- abc ... sk 

Adding (a+1)(b+1) ... (s+1) (k+1) to both members, we 
abc . .. skl 
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get 
(a+1)(b+1) ... (s+1)(k--l-1)+(a--l-1)(b+l) ... (s+1)(k+1)= 

abc ... sk abc ... slcl 

(a+1) (b+1) ... (k+1) (l+1) 
abc . .. skl 

and the formula is proved by the induction method. 
21. We have 

b (a+b)-a 1 1 
a (a+b) a (a+b) -a- a+b ' 

c (a+b+c)-(a+b) 1 
(a+b) (a+b+c) (a+b) (a+b+c) = a+b - a--l-b+c ' 

1 
(a+b+ ... +k)(a+b+ ... +k+l) 

a+b+ •.. +k+l 

Adding these equalities term by term, we find 
b c 

a (a+b) + (a+b) (a+b+c) + ... + 
+ I 

(a+b+ ... +k) (a+b--l- ... --I-k+l) 

1 b+c+ ... --I-k+1 
a a--l-b+ ... +k--l- 1 a (a+b+c--l- ... +k--l-l) 

and the identity is proved. 
22. We have 

Hence 

Fdz) =-1 q (1-z), -q 

F t (qz) =-1 q (1-qz). 
-q 

1+Ft (z)-F t (qz)=1+-1 q (1-z)--1 q (1-qz) = 1-qz, -q -q 

i.e. the identity is true at n = 1. 
But 

F n (z) = F n-t (z) + 1 ~:n (1-z) (1-qz) ... (1_ qn-1z), 

F n (qz) = F n- t (qz) + -1 qn (1-qz) (1- q2Z ) ••• (1- qnz). _qn 
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Let us assume that the identity is true at n-1, i.e. 
that there exists the following equality 

1 +Fn-dz)-Fn-dqz)=(1-qz)(1- q2Z) ••• (1_ qn-lz). 

We then have 

1 + Fn (z) -F n (qz) = (1-qz) (1- q2Z) ••• (1_ qn-lz) + 

+-1qn l1-z)(1-qz) ... (1_qn-lz) _ _ qn 

-1~:n (1-qz) (1- q2Z) ••• (1- qnz)= 

=(1-qz) (1- q2Z) ••• (1_ qn-1z) {1+1~:n (1-z)­

-1 q:n (1_qnz) } = (1-qz) (1- q2Z) ... (1_ qn-lz) (1-qnz), 

which proves the identity for any n. 
23. Put, as in the preceding problem, 

q q2 
Fn (z)=-1 - (1-z) +-1 2 (1-z) (1-qz)+ ... + -q -q 

qn 1 1 1 n-l + 1-qn ( -z) ( -qz) ... (-q z). 

Hence 
n 

F n (q-n) = ~ -1-=-qhq-h (1- :n) ( 1- qqn) ... (1- q::l) . 
h=1 

Let us prove that 
Fn (q_n) = -no 

We have (see the identity of the preceding problem) 

1 +Fn (q-l)-Fn (1) =0. 

But 

Consequently 

Suppose 
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We have 

Bence 

Fn(q-n)=Fn (q-n+l)-1= -(n-1)-1= -no 

And so indeed 

~ 1 ~hqh (1- q1n) ( 1- :n ) ( 1 - q;:l) = - n; 
h=1 

Putting here q-l = a, we get the required identity. 
24. Put 

a(a-1) ... (a-k+1) 
Uk = b (b-1) ... (b-k+ t) , 

a(a-1) ... (a-k+1) (a-k) 
UkH = b (b-1) ... (b-k+1) (b-k) • 

Hence 

uh+1 a-k (b-k)UhH=(a-k)Uk' 
U;;-=b-k' 

Consequently 
n n 

~ uk(a-k)= ~ UkH(b+1-k-1). 
h=1 h=1 

But 
n 

~Uk,-=Sn. 
h=1 

Therefore 
n n n 

aSn - ~ kUk=(b+1) ~ UkH- ~ (k+1)Uk+h 
h=1 h=1 h=1 

n n+l 

aSn- ~ kUk=(b+1)(Sn+UnH-Ut)- ~ kUk. 
h=1 h=2 

Hence 

(a - b - 1) Sn = (b + 1) (un+! - Ut) + 
+ Ut - (n + 1) Un+t = (b - n) Un+t - bUt. 

Now Sn is readily found. 
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25. Proved easily by the induction method. 
26. Both identities are easily proved by the induction 

method. 
27. The left member is equal to 

n n 

~(1 1 1) ~(1 1 1 1) 
~ 2k-1 - 4k-2 - 4k = ~ 2k-1-2"· 2k-1 - 4k = 
k=l k=l 

n n 

~, (1 1 1 1) 1 ~ (1 1 ) 
= ~ 2"·2k-1-2""2'k =2" ~ 2k-1-"2k =: 

k=l k=l 

1( 1 1 1 1 1) 
="2 1-"2+3-4"+··· +2n-1- 2n . 

28" If a sequence of numbers Xn is determined by the 
relationship 

Xn = aXn-i + ~Xn-2 
at the given initial values Xo and Xi, then there exists the 
following general expression for Xn 

an-bn an-1-bn-1 
Xn = b Xi - ab b xo, a- a-

where a and b are the roots of the quadratic equation 

s2-as-~ =0 
(see Problem 12). 

In our case we have the following relationship 

Un = Un-i + Un -2, 

i.e. a = ~ = 1 and Uo = 0, Ui = 1. Therefore 

where a and b are the roots of the equation s2-8-1 = 0, 
so that we may put 

_1+115 b_1-1I5 
a- 2 ' - 2 • 

Finally, 

=_1 {(1+V5)n_(1- V 5)n} 
un V5 2 2" 
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Using this expression for Uno we can easily check·the vaiidity 
of all the proposed relations (see Problem 6, Sec. 3). However 
the last expression for Un can be obtained in a different way. 

We shall consider t·he quantities uo, Uto ~, U3, 

as coefftcients of some inftnite series 

cp (x) = Ut + U2X + U3X2 + U4X3 + ... + Un_tXn-2 + unxn- 1 + 
or 

00 

Further 
00 00 

xcp (x) = ~ Uk+tXh+1 = ~ UkXh, 
R=O R=1 

00 00 

X2cp (x) = ~ Uk+!Xh+2 = ~ Uk_tXh. 
R=O R=2 

Therefore 

cp (x) -xcp (x) _X21jl (x) = 
00 

Hence (since Uk+! - Uk - Uk-t = 0) 

and 

cp (x) (1-x-x2 ) = 1 

1 
CP(x)=1_x_x2 • 

But the expression 1-:-x2 can be represented in the fol­
lowing form (expanded into partial fractions) 

1 1{ ex. ~} 
1-x-x2=ex.-~ 1+ex.x -1+~x 

where 

115-1 
Ct= 2 ' 
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On the other hand, 

1;ax = 1-CXX+CX2X 2 + ... , 

1 : ~x = 1-~x + ~2X2 + . .. . 
Substituting these expressions into the equality (*), we find 

1 = ~ ~ {( 1 + vg )It+l _ ( 1-vg )It+l} xlt. 
1-x-x2 L.J V5 2 2 

It=o 

Therefore, indeed 

= _1 {( 1 + V5 )It+l _ (1-vg )It+l} 
Uk+! vg 2 2 

By the way, all the ten identities of the present problem 
can be proved using the method of mathematical induction 
as well. Let us prove, for example, identities 7° and 10°. 
At n = 1 we have 

which is really true. 
Let us assume that 

U1 U 2 + U2U 3 + ... + U2n-3U 2n-2 = U:n -2, 

and prove that 

U1 U 2 + U2U 3 + ... + U2n-3U 2n-2 + U2n-2U 2n-1 + 
+ U2n-1 U 2n = u:n • 

Indeed, by assumption we have 

(U1 U 2 + ... + U2n-3U 2n-2) + U2n-2U 2n-1 + U2n-1 U 2n 

= U:n -2 + U2'n -2U 2n -1 + U2n -1 U2n = 

= U2n-2 (U2n-2 + U2n-1) + U2n-1U2n = 
= U2n-2U 2n + U2n-1 U 2n = 

= U2n (U2n-2 + U2n-1) = U:n • 

Now, as far as identity 10° is concerned, it is readily checked 
at n = 1. 
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Let us assume that 

U~-i - Un-3Un-2UnUn+1 = 1, 
and prove that 

U~ - Un-2Un-tUn+1Un+2 = 1. 

To this end it is sufficient to prove that 
440 

Un - Un-i + U n_3U n_2U nU n+1 - U n-2Un-t U n+1 U n+2 = . 

But we have 
4 4 

Un - Un-i + Un-3Un-2UnUn+1- U n-2Un-tU n+1U n+2 = 

since 

2 2 
= (Un + Un-i) (Un + Un-t) (Un - Un-t) + 

-I- U n-2U n+t (Un-3U n - U n-tU n+2) = 

= Un+1Un-2 {U~ + U;-i + U n-3U n - Un-tUn+2} = 

= Un+1U n-2 {U~-t- Un-tUn+2 + Un (Un + Un-3)} = 
= Un+1Un-2 {u;-t- Un-tUn+2 + 2unU n-t} = 

= Un+1Un-2Un-t {Un-t - U n+2 + 2un } = 0 

Un-t - U n+2 + 2un = O. 
29. We have 

n 

n n 
_)1 UIH3 - Uk+t ~ (1 1) _ 
-...:.J Uk+tUk+3 = L.J Uk+t - Uk+3 -

k=O k=O 

=(_1 +...!..+ ... +_1 )_(_1 +_1 + ... +_1 )= 
Ut U2 Un+t U3 U, Un+3 

= _1_+_1 ___ 1 ___ 1_= Ut+U2 Un+2+ Un+3_ 

Ut U2 Un +2 U n+3 Ut U2 Un +2Un+3 

= _U_3 _ _ __ u n::..+:..;:'=---

30. Consider the sequence of numbers 
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determined by the following relationship 

Vn+l = Vn + V n-l· 

We then have 
V2 = Vo + Vt. 

Va = V2 + VI = Vo + 2Vl, 

VI, = Va + V2 = 2vo + 3Vl, 

Vs = VI, + Va = 3vo + 5Vl, 

t.71 

Using the method of induction, it is easy to get that in 
general 

Vn = U n -l ·Vo + U n Vl· 

Consider the following sequence 

Vo = Up_I, VI = uP' ••• , Vn = U p+n -l' 

Then we have 

Vn = U p+n -l = Un-IUp-l + unup , 

and formula 10 is proved. 
Formula 2° follows from 1° at p = n. The proof of formu­

la 3° is reduced to the proof of the following equality 

2 2 
Un + Un-l = UnUn+l - Un-2Un-l. 

31. On the basis of formula 1° of the preceding problem 
we have 

Thus, it is required to prove that 
3 3 3 

Un-I' U2n + Un' U2n+l = Un + U n+l - Un -l • 

The proof is rather simple if only the following relations 
are taken into account 

32. Put 

2 2 
U2n+l = Un+l + Un, 

U2n = U n-IU n + UnUn+l. 

[n; 1] 

~ C~-I1-t = V n• 
11=0 
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We have to prove that Vn = Un (where Un is the nth term of 
the Fibonacci series). Let us prove that for any n there 
will be 

Let uS first assume that n is even and put n = 2l. We have 

[~] [n;l] [n;2] 

Vn+! = ~ C!-k, Vn = ~ C!-k-I, Vn-I = ~ C!-k-2. 
k=O k=O k=O 

Since n= 2l, 

[;]=l, rn-;1]=l-1, [n 22J=l-1. 
Therefore we have 

/-1 /-1 

Vn + Vn-I = ~ C!-k_1 + ~ C!-k-2. 
k=O k=O 

Pu t in the second sum k = k' - 1, then 
/-1 / 
~ 11. ~ k'-1 

v n +vn_ I =1+ Li Cn -,,--I+ Li Cn - k'-I= 
k=1 k'=1 

/-1 

= 1+ ~ (C!-k-l +C~=Ll)+C~-=-LI' 
k=1 

But, as is known, 
Ck Ck-l Ck 

n-k-l + n-k-I = n-k' 
Therefore 

/-1 / 

Vn +Vn-I = 1 + ~ C!-k + cl=: = ~ C!-k = Vn+1! 
k=1 k=O 

since 

cl=1 = 1 =cL 
Likewise we prove that Vn+1 = Vn + Vn-I for odd n's 

as well. But it is easy to check that 

VI = UI, V2 = U2' 

Therefore it is obvious that 

for any n, 
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33. Let us denote the number of whole positive solutions 
of our equation by N n (m). As is easily seen, NI (m) = 1. 
Compute N2 (m), Le. the number of solutions to the equation 

Xl + X2 = m. 

In this equation Xl can attain the following values: 1,2,3, ... , 
m - 1 and, consequently, the equation has the following 
system of solutions 

(1,m-1), (2,m-2), ... , (m-1,1), 
Le. 

N2 (m) = m - 1. 

Let us now pass over to computing Ns (m), Le. to determin­
ing the number of solutions of the equation 

Xl + X2 + Xs = m. 

Let Xs attain the values 1, 2, 3, ... , m - 2. It is clear 
that 

Ns (m) =N2 (m-1) +N2 (m-2) + ... +N2 (2) = 

=(m-2)+(m-3)+ . .. +1 =(m-'11.~m-2)=C;'_1:· 

Using the induction method, we prove that 

N ()=Cn_1 =(m-1)(m-2) ... (m-n+1) 
n m m-1 1.2.3 ... (n-1) . 

I t is obvious tha t 

N n (m) =Nn-dm-1) +Nn-dm-2)+ ... +Nn_dn-1). 

Assuming tha t 

N n-l (m) = C::.:~, 

we have 

N (m) = Cn - 2 +C"-2 + + C"- 2 = Cn-1 
n m-2 m-3 • • • 11-2 m-1 

(see Problem 70, Sec. 6). 
34. The general form of the equations under considera­

tion will be 

k;r; + (k + 1) Y = n - k + 1 (k = 1, 2, ... , n + 1). (*) 
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Let us rewrite this equation as follows 

k (x + y + 1) + y = n + 1 
and put 

Then 
x + y + 1 = z. 

y = n + 1 - kz, 
x = (k + 1) z - (n + 2). 

Whatever z may be these expressions yield solutions to the 
equation (*). Let us see what values must be attained by z 
for x and y to be whole and non-negative. And so, the follow­
ing inequalities must take place 

(n + 1) - kz ~ 0, (k + 1) z - (n + 2) ~ O. 
Hence 

n+2./ n+1 
k+1 "",-z:::;;;-k-' 

and z must be a whole number. If n+ 2 is not divisible 
by k+1, then z takes on the following values 

[n+2] 
k+1 + 1, [ n+2] 

k+1 +2, ... , [nt1]. 
Let us denote the number of solutions of the equation (.) 
by N k. In this case we have 

Nk=[nt1]_[:t;] . 
If n+2 is divisible exactly by k+1, then 

N =[n+1]_n+2+1 
k k k+ 1 . 

But if n + 2 is not divisible by k + 1, then 

[n+2] [n+1] 
_ k+1 = k+1 ; 

and if n+2 is divisible by k+1, then 

~!; -1 =[:!~]. 
Thus in all the cases 

Nk=[nt1J_[~!:J . 
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And so, the total number of solutions is equal to 

N 1+ N 2 + ... + N n+l = [ n t 1 ] - [ n! 1 ] + 

+ [nt1 J - r nt 1 ] + ... + [n~1 ] - [:!~ ] + 

+ [n+1 J_[!±!"] = [~J- [n+1 ] =n+ 1. 
_n+1 _n+2 1 _n+2 

However, this result can be obtained in a different way. 
We have 

00 00 

1 ~ kx 1 
~ q(k+l)l/ . 

1- qh 
q , 

1_ qh+l 
x=o y=O 

Therefore 
00 00 

qk-l 
~ ~ qhx+(h< llY+k-l. 

(1- qk) (1- qk+l) 
x=O y=o 

If we expand the right member of this equality in powers 
of q, then it is easily seen that the· coeffIcient of qn in this 
expansion will be equal to N k, Le. to the number of solu­
tions of the equation 

kx + (k + 1) y = n - k + 1. 

Thus, the quantity 

NI + N2 + ... + Nn+t 

will be the coefficient of qn in the following expansion 
1 q ~ 

(1-q)(1- q2)+ (1_q2) (1-q3) + (1-q3) (1- q4) + ... + 
qn qn+1 

+ (1-qn+I)(1_qn+2) + (1_qn+2) (1_qn+3) + ... 
But it is easily seen, that this expansion is equal to 

00 

1 (1 1) 
q(1-q) ~ 1_ qk+1 -1_qk+2 = 

k=O 
00 

=q(/_q)(1~q-1)= ~(n+1)qn. 
n=O 
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Hence 
Nt + N2 + ... + Nn+t = n + 1. 

35. The general form of the equations will be 

k2x + (k + 1)2 y = I(k + 1)2 - k2] n - k2 

(k = 1, 2, 3, ... , n). 

A direct substitution shows that one of the solutions will be 

x = - (n + 1), y = n. 

Then, as is known, all the solutions will be obtained from 
the expressions 

x = - (n + 1) + (p + 1)2 t, Y = n - p2t, 

where p is one of the values attained by k. 
For x and y to be non-negative it is necessary and suffi­

cient that t attains whole values satisfying the inequalities 

n+1 n 
(p+1)2 ~t~p2 . 

Considering then separately two cases (n + 1 is divisible 
by (p + 1)2 and n + 1 is not divisible by (p + 1)2), we 

..come to the desired result. 
36. By hypothesis the black balls alternate with the 

white ones. Therefore, two suppositions are possible: 
(1) the white balls occupy odd positions, i.e. the first, 

third, ... , and the black balls even positions; 
(2) the white balls occupy even positions, and the black 

balls odd positions. 
It is easily seen that the white balls numbered 1,2, ... , n 

can occupy odd positions in n! ways, likewise the black 
balls can occupy even positions also in n! ways. And so, 
according to the first assumption, we have (n!)2 ways of 
arrangement of all the balls. 

The second assumption yields the same number of arrange­
ments. Hence, the total number of arrangements of the balls 
is 2 (n!)2. 

37. Let L~k denote the number of ways in which kn di­
stinct objects can be distributed into k groups of n objects 
in each group. 
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In how many ways is it possible to make up the fust 
group of n objects? It is clear that the total number of the 
distinct combinations is equal to e~k' and it is obvious 
that 

L k en Lk-J 
nk= nk nk-n' 

Hence 
L~k = e~kcrk-l)n ... e~n. 

38. Let us consider the number of permutations of n 
elements in which two definite elements a and b are found 
side by side. The following cases are possible: (1) a occu­
pies the first place, a occupies the second place, ... , 
finally, a occupies (n - 1)th place, and b is always on its 
right, i.e. in the second, third, ... , nth place, respectively; 
(2) b occupies the first place, ... , finally b occupies (n-1)th 
place, in all cases followed by a. Thus, the total number of 
cases amounts to 2 (n -1), each case corresponding to 
(n - 2)1 permutations. Therefore the total number of the 
permutations in which two definite elements a and b occur 
side by side will amount to 

(n - 2)! 2 (n - 1) = 2 (n - 1)!. 

Consequently, the number of permutations of n elements 
in which two elements a and b are not found side by side 
will amount to 

nl - 2 (n - 1)! = (n - 1)! (n - 2). 

39. Let us denote the number of the required permuta­
tions by Qn and put nl = Pn· Consider the whole totality 
of the permutations Pn. Among them there exist Qn permu­
tations in which none of the elements occupies its original 
position. Let us find the number of the permutations in 
which only one element retains its original position. U ndoub­
tedly, this number will amount to nQn-t. Likewise, the 
number of permutations with only two definite elements 

retaining their original position will amount to n (~.-;-1) Qn-2, 

and so on. Finally, the number of permutations \\There all 
the elements retain the original position is Qo = 1. Thus, 
we have 

P n (n-1) 
n=Qn+nQn-l+ 1.2 Qn-2+ .•. +nQI+QO· 



478 Solutions 

This equality can be written symbolically as 

P" = (Q + 1)n. 

Here after involution all the exponents (superscripts) 
should be replaced by subscripts, so that Q/l turns into 
Q/l. Consequently, we can write the following symbolic 
identity valid for all values of x 

(p+xt= (Q+ 1 + x)n 

(since symbolically the power of P can be replaced every­
where by the same power of Q + 1). 

Putting here x = -1, we find 
Qn= (p_1)n. 

Passing over from the symbolic equality to an ordinary one, 
we have 

n n(n-1) 
Qn=Pn-TPn-t + 1.2 Pn-2 +···+ 

+ (_1)n-l nPt + (-it, 
( 1 1 1 (_1)n-l (-1)n) 

Q-n=n! 21-31+41-'" + (n-1)1 +-nl- . 

40. Consider all such permutations of n letters in which 
vacant squares may oCCur along with occupied ones. If 
n = 1, then the number of ways in which one letter can be 
placed in r squares is equal to r (the first square is occupied 
by one letter, the rest of the squares being vacant; the second 
square is occupied by one letter, the rest of the squares 
being vacant, and so on). All permutations of two letters 
in r squares are obtained from just considered r permutations 
by placing the second letter in succession in the first, second, 
... , rth square. Thus, the number of permutations of two 
letters in r squares will amount to r2, and, as is easily seen, 
the total number of permutations of n letters in r squares 
will be equal to rn. Let us denote by Ar the number of 
ways in which n distinct letters can be distributed in r 
squares so that each square contains at least one letter. 
The number of such permutations amounts to A r • Then 
we shall consider all those permutations in which one and 
only one square is vacant. Their number is equal to rA r _ t • 

Further, the number of permutations where two and only 
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"two squares are vacant is equal to 
r (r-1) 

1.2 Ar- 2 , 

and so on. 
Therefore we have 

Ar+ rAr_ t + r (~~1) Ar-2+ ... +rAt + 1 = rn+ 1. 

479 

This equality can be written symbolically in the follow­
ing way 

(Le. after expanding the left member All should be through­
out replaced by All). 

Further, we have 
r 

(A+1+xY = ~ C~XIl (A+1r- lI • 
1&=0 

This equality yields the following symbolic one which 
holds true for all values of x 

r 

(A+l+xr = ~ C~XIl [(r-kt+n 
11=0 

Put here x = -1. Then 
r 

Ar = ~ C~ (_1)II[(r_k)n+ 1) = 
"=0 

r r 

= ~ (-1)"(r-ktC~+ ~ (-1)"C~. 
11=0 11=0 

But 
r 

~ (-1)" C~= (1-1r =0. 
11=0 

Therefore 
r 

Ar = ~ (-1)" (r-ktC~. 
11=0 
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Passing over from the s~mbolic equality to an ordinary 
one, we get 

r 

Ar= ~(-f)lI(r-ktC~= 
1=0 

=rn_ ~ (r-f}"+ r(~~1) (r-2)"- ... +(-1Y-1 r 

(see Problem 55, Sec. 6). 

SOLUTIONS TO SECTION 10 
1 

1. Put a = b' so that I b I > 1. Let us prove that 

Ibln > f+n(lbl-1) (n> 1). 
Indeed 

Ibln={f +(1 b 1-1)}n= 1 +n(1 b 1-1) + 
+ n <;:;1) (I b 1_ 1)2+ . .. , 

wherefrom it follows that 

1 b In > 1 -I- n (I b I-f) (n> 1). 
Then 

IXnl=laln= l:ln <1+n<:bl-1) 

and indeed 
lim xn=O. 
n-+oo 

2. It is easily seen, that we may assume a> O. Then 
Xi> 0 (i = 1, 2, 3, ... ). Let k be a whole number satis-

fying the condition k~a < k+1, so that k~1 < 1. 
Put n > k. Then 

~ ~ a a a 
nr= 1·2·3 ... k· k+1 • k+2 "'n' 

But 
a a a a a a 

k+2 < k+1' k+3 < k+1' ... , n < k+1 • 
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Therefore 
~ ~ (_a_)n-k 
n! < k! k+1 . 

But since k-~ 1 < 1, it follows that (k~ 1 r-h 
-- 0, if 

n -+ 00, and therefore at any real a we have 
an 

lim -, =0, 
n_oo Il. 

i.e. the factorial n! increases faster than the nth power of 
any real number. 

3. Both the numerator and denominator of this fraction 
increase without bound along with an increase in n. Consider 
separately three cases: k = h, k < hand k > h. 

10 k = h. Divide the numerator and denominator by 
nl< = nIt. We get 

ao ak --+ ... +" nh-k n 
bl bh =0. 

bO+-+···+-h n n 

3;) k > h. Analogously w~ get in this case 
aonk+atnk- 1+ ... +ak 
bonh+btnh-l+ ... +bh -+ 00. 

4. We have 

But 
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Therefore 
1. P __ 2]. n2 + n + 1 _ 2 
1m n-T 1m 2+ -3 n_oo 1l n . 

5. Put 

1"+2"+3"+ ... +n" " 
nl&+1 = P n · 

1 n-' 1 At k = 1 we have Pn = ---;J:n and consequently 

1· pl 1 1m n=2". 
n-+oo 

Likewise we easily find lim P~ = !. Let us assume that 
n_oo 

lim P~ = i +1 1 for all the values of i less than k, and 
n_oo 

h 1· p" 1 P t 1i 2i i W prove t at 1m n = k+ l' u Si = + + ... + n . e 
then have the following formula (see Problem 26, Sec. 7). 

• (k+1)k (k+1)k(k-1) 
(k+1)s,,+ 1.2 S"_I+ 1.2.3 sk-d-··· + 

+ (k+ 1) SJ +so=' (n+ 1)"+1_1. 

But P~ = ~, therefore we have 
n"+1 

p" _ 1 (1 1 )"+1 1 
n - k+1 +n- - (k+1) n"+1 

pO 
n 

k p~-1 
-n-n-- - k+1 -;;k' 

wherefrom it follows that 
1. p" 1 
1m n = k+1 . 

n .... oo 

This proposition can be proved directly. Let us make use 
of the inequality (see' Problem 50, Sec. 8) 

m:rm- 1 (x-1) > xm-1 > m (x-1) 

(x> 0, not equal to 1, m is rational and does not lie 
between ° and 1). 

Put here m = k + 1 and replace x by ~. We get 
y 

(k+1)x"(x-y) > x"+I_y"+1 > (k+1)y"(x-y). 



Solutions to Sec. 10 483 

Put here fIrst x=p. y=p-1 and then x=p+1, y=p. 
We then fmd 

(p + 1)"~1- ph+1 > (k + 1) p" > pk+1_ (p_1)"+l. 

Putting in t.his inequality p = 1. 2, ... , n and adding, 
we obtain 

(n+ 1)"+1_1 > (k+ 1) (1"+2"+ ... +n") > n"+l. 

Dividing all members of t.he inequality by (k+ 1) n"+l, 
we find 

_1_{(1--:-~)"+1 __ 1_} ..... 1"+2"+ ... +n" > 1 
k+1 ' n n"+l";> n"+l k+1 . 

Hence it follows that 

1. 1"+2"+ ... +n" 1 1m ---
n-oo n"+1 - k+ 1 . 

6. Using the notation of the preceding problem, we get 

1"+2"+ ... +n" __ n_= (p" __ 1_) 
n" k + 1 n n k + 1 . 

Making use of the expression for p~ obtained in the pre­
ceding problem, we have 

n (p~ - k~1 ) = 
(n+ 1)"+I-n"+l 

(k+ 1) nil 

Hence 

1· (p" __ 1_) -1' {(n+ 1)h+l_ n"+l _.!!.. p"-l} -i. 
1m n n k + 1 - 1m 2 n - 2 ' . (k+1)n" 

since 
) . (n+ 1)k+1_ n"+l 1 d l' p"-l 1 
1m = an 1m n = - . 

rHOO (k+1)n" n_oo k 

7. Froln Problem 4, Sec. 9 we have 

_ 2x1 +xo + (_1)n-1 (X1- XO) 
x n - 3 3·2nl ' 

wherefrom follows 
1. XO+2x1 
Inl Xn = --3- . 

n_oo 
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8. We have the following relationship (see Problem 3, 
Sec. 9) 

Since I 

Hence 

X,,- y:N = (XO- YN)2n. 
xn+ YN xo+ VN 

Xo-- ViV 1<1, we have 
xo+YN 

1· ( xo- V:N )2n - 0 Inl , -. 
n .... oo xo+ V N 

lim x n - YN 0 and lim Xn= VN . 
n_oo x n + YN n .... oo 

And so, we get a method for finding the square root of 
a number. It consists in the following: designate any positive 
number (say, the approximate value of a root accurate to 
unity) by Xo' We represent N in the form of a product of 
two factors, one of which is equal to Xo so that 

N 
N=xo·- . Xo 

We take the arithmetic mean of these factors and de­
note it by XI> so that 

Then we put 

Xt= ~ (xo+ ~). 

N 
N=xt·- , 

Xt 

and take the arithmetic mean once again 

X2= ; (Xl + ~ ) 
and so on. 

The error, which we introduce when taking Xn for an 
approximate value of V N , can be determined from the for­
mula 
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9. Let us first of all prove that 

x,!»N. 
Indeed 

m m (1 + N-x;"-I )m. 
Xp = X p-l m mXp _ 1 

But 

( 1 + N -:;"-1 )m> 1 + N -X'!)-1 
mXp _ 1 xP'-1 

(see Problem 51, Sec. 8). 
Therefore 

x'f; > N 

for any whole positive p. 
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N 

X'f;-1 

Let us now prove that xp is a decreasing variable, i.e. 
prove that 

Xp - X p -l < O. 
Indeed 

And so, the variable Xn decreases but remains positive. 
Therefore it has a limit. Designate this limit by A. From 
the relation 

m-l N 
Xn = -- X n-l + ---m=l • 

m mX"_l 

as n--+ 00, we get 

A= m-l 'A+~ 
m mj.m-l' 'Am =N and A= V'N. 

I t is obvious that 
m/- N 

Xn > y N > Xm-l ' 
n 

which enables us to find the upper limit of the error intro­
duced as a result of taking Xn for an approximate value of 
,;/rN. 

10. We have 

~1 1 0< -'<-,r n. v n 

(see Problem 4, Sec. 8). 
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Hence follows the required result. 
11. It is easy to prove the following inequality 

x V-- x -< 1+x-1 <-2+x ' 2 (1+x> 0). 

k 
Putting here x = -;:;:2' we find 

k -. / k k 
2n2 + k < V 1 + -;2 - 1 < 2n2 • 

Hence 
n n 

"k 1 " L.J 2n2+k < sn < 2n2 L.J k. 
k=1 k=1 

The right member is equal to 
n 

_1_ "k- n(n+1) 
2n2 L.J - 4n2 

k=1 

1 Therefore the limit of the right member is equal to 4" 
as n --+ 00. On the other hand, 

n n n 

lim (~~ k- ~ ~k __ ) -lim ~ k2 

n ... oo 2n 2n2+k - -+ 2n2 (2n 2 +k) 
1<=1 k=1 n 00 1<=1 

But 
n n 

" k2 < ~ k 2 12 --22 + ... +n2 

L.J 2n2 (2n2+k) -..! 4n4 = 4n4 

k=1 k=1 

Consequently 
n n 

lim {_1 ~k- ~ 
n ... oo 2n2 

k=1 k=1 

n 

and lim ~ k __ ~ 
"'-J 2n2 +k - 4 

n ... oo 1<=1 

Thus, both variables, between which Sn is contained, 
1 tend to 4" . Therefore 

limSn =! . 
n-+oo 
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12. We have 
X;= a+xn_l. 

It is easy to see that the variable Xn increases. Let us show 
that all its values remain less than some constant number. 
We have 

X~_1 - Xn-l - a < 0, 
since Xn-l < x n . 

Hence 

( V4a+1+1 ) ( 
Xn-l- 2 Xn-l+ V~-1) <0. 

But since the second bracketed expression exceeds zero, 

·t b V4a+1+1. h· . . bl I must e X n -l < 2 ' I.e. t e mcreasmg varIa e 

x n - 1 is bounded, and consequently has a limit. Put 
lim Xn -l = lim Xn = cx. From the original relation between 
n_oo n-+oo 

Xn and Xn -I we get 
cx2 - cx - a = 0, 

and since cx > 0, we have 

V4a+1+1 
cx= 2 • 

13. Let us prove that Xn is a decreasing variable. We have 

XnH-Xn = Vi -2 (V n+ 1-Vn). 
n+1 

But 
V--;- 1 _=1 =­

n-+1-1 n= Vn+1+Vn > 2Vn+1 
and consequently 

X n+1 < X n • 

But it is possible to prove (see Problem 6, Sec. 8) that 

1 1 1 V--
1 -+ Vz + V3 -+ ... -+ Vn > 2 n -+ 1-2. 

Therefore 

x n >2(V n-+1-Vn)-2>-2. 
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Thus, the decreasing variable Xn remains constantly 
greater than-2, hence, it has a limit. 

14. Let us first show that x n > Yn' Indeed 

Xn_1 + Yn-I V 1 (lr=-- lr-::--)2 > ° xn-Yn= 2 - Xn-,Yn-I=T r Xn_I-Y Yn-I . 

But 
Xn_1 + Yn-I Yn-I- Xn-I < ° 

Xn-Xn-I = 2 - xn-I= 2 ; 

Xn_1 > X n , 

i.e. the variable Xn is a decreasing one. On the other hand, 

Yn - Yn-I = V Yn-I· Xn_1 - Yn-I = V Yn-I (V Xn-I - V Yn-I) > 0, 
i.e. Yn> Yn-I and Yn is an increasing yariable, wherefrom 
follows that each of the variables Xn and Yn has a limit. 
Put lim Xn=X, lim Yn=Y' We haye 

Hence 

Xn-1 + Yn-I .1:,,= 2 . 

X+y 
X= ----z-

and consequently 
X=y. 

1 1 1 
15. We have 1_q=SI, 'l_Q=s, hence q=1-s;-' 

Q=1-.!... But 
s 

1 + qQ + q2Q2 + ... = 1 ~ qQ = 

1 

16. We have 

s= UI +ulq+ U1q2+ ... = UI (1 +q+q2+ .. . ). 

0 2 = u; (1 + q2+ q4+ ••. ). 
Further 

unq-ul 1-qn (1 n) 
sn= 1 = UI -1--=8. -q, q- -q 

2 ui 
o = 1-q2 ' 

2 ur 
S = (1-q)2 • 
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We have 

S2 + (J2 = (1-q~~t1 + q) , 

Hence 

and 

11 { [s2_o2]n} 
S n = S (1 - q ) = S 1 - s2 + 0'2 • 

1 
17.1° Put :r=~-. Then /yl>1, and we may put IYI= 

y 
= 1 + p, where p> O. 

We have 

k n nh 

In:.t 1= (1+p)n = 

= n(n-1) 2' n(n-1) ... {n-k) Itl • 
1+ np+ 1.2 .p -r-'" + 1.2.3 ... (k+ 1) .p + + ... +pn 

Assuming that n > k, we find 

Inkxnl- nk < n lt (k+1)! 
- (1+p)n n (n-1) (n-2) .. , (n-k+1) (n-k) phi 

(k+1)! 1 

pl.+ I (1 _ ! ) ( 1 _ ! ) ... ( 1 _ k -;: 1 ) (n _ If) . 

But the expression 

(k+1)! 1 -+0 
pitH (1_!)(1_!) ... (1_k-;:1)(n_k) 

if n-+ 00 (k constant). 
Therefore, indeed 

lim nkxn = 0 if n -+ 00. 

2° Put ;yn-1=rJ., (rJ.,>0). We then have n=(1+rJ.,r 
Hence 

1 n(n-1) 2 n n= +nrJ.,+ 1.2 rJ., + ... +rJ., . 
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Consequently 

>n(n-1) 2 
n 1.2 (x, 

2 4 
(X2 < --1 < - (n> 2). n- n 

And so 
2 n/- 2 

(X < Vn- ann 0 < y n -1 < Vi) 

Now it is obvious that 

18. We have 

. n/­
hmy n=1. 

(n> 2). 

1 1 1 1 
1.2+2.3+ ... + n(n+1) = 1--;:;-T , 

_1_ 1 i. 1 _..!.(..!._ 1 ) 
1.2.3+2-3-"4+ ... I n(n+1)(n+2)-- 2 2 (n+1)(/I' 2) 

(see Problem 40, Sec. 7). 
But 

1 1 1 
1.2+2.3+ ... + n (n-t-1) + ... = 

= !~~ {/2 + 2\ + ... + n (n
1
+1) } = !~~ { 1- n~-1 } = 1. 

Thus 
1 1 t 

1=1.2+2.3+ ... + n(n 11) + ... 
Analogously 

1 1 1 1 
"4= 1.2.3+ 2·3·4 + ... + n (n+1) (n+2) + ... 

We can prove a more general formula 
1 1 

1·2·3 ... (q+ 1) + 2·3·4 ... (q-t 2) + ... + 
1 t 

+ n (n+1) ... (q+n) + ... = q.qJ 

(sre Problem 26, Sec. 9). 
19. Suppose the series is a convergent one, i.e. suppose 

Sn=1+ ~ + ... +! has a limit which is equal to S as 
n-+ 00. 
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Then lim S2n = S. llul on the other hand, 
n->"" 

1 1 1 1 
S2n- S n = n+1 + n+2 + .. , +2"n > 2" 

(see Problem 1, Sec. 8) which is impossible. Thus, the series 
cannot be a convergent one. However, the divergence of 
this series can be proved in a different way. Let 211 < n < 
< 211+1. We then have 

Sn = 1 + ~ + ( ~ + { ) + (~+ ! + ~ + ! ) + .,. + 
( 1 1),1 1 + 211- L t- 1 + ... + 2h -j- 211 + 1 + ... + n . 

But 
1121111,141 
~+T>T~2"'~+~+TT~>~=2"' 

Therefore 
k 

Sn>1+2"' 

But as n -+ 00, also k -+ 00, and consequently Sn -+ 00, 

hence, the series is a divergent one (see also Problem 22). 
111 

20. Put Sn = 1 + -+-+ ... +-. To prove that 
2a 3a na 

the series is a convergent one it is necessary to prove that 
lim Sn exists. But it is easily seen that Sn increases along 
n .... oo 
with an increase in n. It remains to prove that Sn is boun­
ded. Let 211 - 1 < n ::;;;; 2k. We have 

( 1 1) (1 1 1 1) S,,::;;;; 1 + 2a + 3ri" + !{L + sa + 6a + -;;a + ... -+-

( 1 1 1 ) + (211-I)a + (2k-I+1)a + .,. + (211_1)a • 

But 
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And so 

or 
~ 1 1 

Sn~1 + tl.- 1 + (22)a-l + ... + (2k - 1)a-l + ... , 
1 

Sn~ 1 
1---

2a - 1 

Thus, Sn is really bounded, lim Sn exists and the series 
n ..... oo 

converges. 
21. 1° We have (see Problem 22, Sec. 7) 

1x+ 2x2+ ... + nxn = (x~1)2 {nxMl_ (n + 1) xn + 1}, 

1+2x+3x2 + ... + nxn-1 + ... = 
= lim {1+2x+3x2 + ... +nxn-1 } = 

n-+oo 

-1· 1 {n+l (+ 1) n 1} _ 1 - n:~ (x-l)2 nx - n x + - (x-l)2 ' 

since 

n-+oo 

(see Problem 17, 1°). 
2°, 3° From the results of Problem 33, Sec. 7 we get 

1 + 4 + 9 2 + + 2 n-l ' 1 + x x x . . . n x T· .. = (1-x)3 , 

1-1 23 332+ + 3 n-l 1+4x+x2 - x+ x ... nx + ... = (l-x)~ 

22. 1° Follows immediately from Problem 41, Sec. 8. 
Hence, we can obtain one more proof of divergence of the 
series 

Put 

lim ( 1 + 1. r = e. 
n-+oo n 
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Since the variable (1 + ! ) n tends to e in an increasing 

manner, we have 

for any whole positive n. 
Hence 

n log ( 1 + ! ) < 1 

if the logarithm is taken to the base e. Or 

! > log ( 1 + ! ) , 
1 1 1 (1) 1 +2+"3+ '" +-; > log 2+log 1 +2 -\-

-\- log ( 1 -\- ; ) + ... -+- log ( 1 -\- ! ) = 

-1 2·3·4 ... (n+1)_1 (+1) 
- og 1.2.3 ... n - og n . 

Hence 

and we get a divergent series. 
2° Using the binomial formula, we obtain 

(1+!)n =1-\-n!-\- n(n-1) _1 + 
n n 1.2 n2 

I n(n-1)(n-2) ._1 -\- -\-
-;- 1.2.3 n3 '" 

-\-n(n-1) (n-2) ... [n-(n-1)]._1_= 
1·2·3 ... n nn 

=2+~(1-!)+_1_(1-!) (1-~)+ ... -\-
1·2 n 1·2·3 n n 

-\- 1.2.31 ... n (1-!) ( 1 - !) ... (1 - n n 1 ) . 

Put for brevity 

1.2.t .. k (1-!)(1-!) ... (1_k-:1)=u~. 
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Then 

( 1 + ~ ) n = 2 + U2 + Ua + '" + Uk + Uk+! + Uk+2 + ... + Un. 

We have 
k 

1--
1 

Uk < 1.2.3 ... k ' 
Uk+! n 1 
-lik= k+1 < k+1 . 

Hence 

And so 

Uk+! + Uk+2+ ... + Un < 
< Uk [1 ,_1_+ + 1 ] <!:!. 

k+1 _ I" k+1 .,. (k+1),,-k-l Ir • 

Consequently. 
1 1 

Uk+! +Uk+2+ ... +Un < 1.2.3 ... k 'k' 

Hence 

0< ( 1 + ! r -(2 + U2 + ... + Uk) < 1.2 ~ .. k • ~ • 

Let n --+ 00. Then 
1. 1 
1m Uk= 1.2 k 

n-+oo ••• 

and, consequently, 

0<e-(2+/2+1.~.3+···+ 1.2.; ... k)< 1.2~ .. k·!· 

wherefrom follows 
1 1 1 e 

e=2+r:2+ 1.2.3+'" + 1.2.3 ... k + 1·2·3 ... k.k 

(0 < 8 < 1). 
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Thus, we may write 

e=2--t:-/2+1.;.3+ ... + 1.2.31 ... k + ... 
23. We have 

2 . 1 . 2' 1 (1 1) 4' 1 . 21 slll2 x - slJl .r = SlIl"2..r - cos 2:r = s1ll2 xsm "4 x. 

Hence 

2 . 1 . < 4 .r ( x )2 slIl 2 x-sm..r 2 '4 ' 

since sin a < a for a > O. 
Differently 

2 . 1 . 1 _1 
SUI "2 x- Slll x< 8';1;-. 

1 1 1 
Replacing here x by 2 x, 7; x, "', 2n- 1 x, we find 

2 . 1 . 1 1 (X)3 
sm "4 x - sm "2 x < 8' 2 ' 

? Slll - X - sm - x < - -. 1 . 1 1 ( x )3 
~ 8 4 8 4 ' 

(1) 

(2) 

(3) 

(n) 

Multiplying inequalities (1), (2), ... , (n) successively by 
1, 2, ... , 2n - 1 and adding them, we get 

Passing to the limit as n --+ 00, we find 

{
. x } . Sill 2n 

hm x x -- sin x ~ 

2ft 

____ 1 ,3 J' {1 1 1 1 } ::::::::: "8 :r 1111 -+- 4f -~ 42 + ... + 4n-1 
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But 

Consequen tly 

24. 10 Put 

Solutions 

. X 
Slll-

2n 
lim---=1. 

x 

. ...... 1 3 
x-smx~6x . 

S a, a2 an 
n == 10 + 102 + ... + 10n . 

I t is required to prove that Sn has a limit as n --+ 00. 

As is easily seen, Sn increases along with an increase in n 
so that Sn+' ~ Sn. Let us prove that Sn is bounded. We 
have 

S at a2 an 9 (1 1 1 ) 
n = 10 + 102 + ... + 10n ~ 10 + 102 + ... + 10n < 

< 9 ( 1~ + 1~2 + ... + 1~n + ... ) . 
And so, Sn < 1 and the series converges. 
2° Since (j) lies in the interval between 0 and 1, let us 

divide this interval into ten equal parts. In this event the 
number (j) will be found either inside one of the subintervals 
or at its boundary. Consequently, we can find a whole num­
ber a, (0 ~ a, ~ 9), such that 

a, a, + 1 
1O~(j)<-10-' 

i.e. 

O a, 1 
~(j)-1O<1O' 

Thus, the number (j) - :h lies in the interval between 0 
1 

and 10' Let us divide this interval into ten equal parts. 
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Then we shall have 

Hence 

This operation can be continued in a similar way. Let us 
prove that 

1. (a, + a2 an ) 
1m 10 102 + ... +- 10n = ro. 

n~oo 

Here the variable increases but remains all the time less 

than a'tt i , consequently, it has a limit. Consider the 

variable 

It is easily seen that this variable decreases but remains 

grea ter than ~~ and, consequently, also has a limit. Since 

the difference 

tends to zero as n _ 00, both of these variables tend to 
one and the same limit, which, by virtue of the inequalities 

will be equal to ro. 
3° If the fraction is fmite, then, there is no doubt, it is 

equal to a rational number. Let us pass over to the case 
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of periodicity. In this case we have 

i.e. (i) is a rational number. 
Likewise we make sure that a mixed periodic fraction 

(Le. such a fraction whose period begins not with ai' but 
later) will also be rational. 

Making use of some arithmetic reasons, we can prove the 
converse; namely, if a number is rational, then its expansion 
into a decimal fraction will necessarily be either finite, or 
periodic (purely periodie, or m!xed periodic). 

Thus, every non-periodic infinite fraction necessarily 
yields an irrational number. 

Z 25. Suppose (i) is rational, Le. (i) =]V' where Z and N 

are whole ,numbers. 
We have 

Z 111 1 1 1 
lV=T+V+V+'" + ln2 + l(n+1)2 +[(n+2)2 + ... 

Let us multiply both members of the equality by [n2N 
and transpose the first n terms from the right to the left. 

We get 

Zln2 -N (ln 2_ 1 + [n2 -4 + ... + Zn2-(n-I)2 + 1) = 

{ 1 1 1 } 
=-]V /2,\+1 + l~"-H + 1611+9 + . .. . 
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Hence 

I Zzn2 -N (ln2-1 + ln2- 4 + ... + 1) 1< 
1 

{ 1 1 1 } t2n+1 
<N Z2n+l -+ Z2(2n+1) + Z3(2n+l) +... =N 1 __ 1_' 

/2n+l 

And so 

I Zln2 -N (ln2 -1 + ln2 -4 + ... + 1) 1< N Z2n+11_1 . 

If n is taken sufficiently large, then the right member can 
be made infinitely small, whereas the left member is an 
integer not equal to zero. 

2° Proved as 1°. 
26. We have 

1 1 1 1 
e=2+ 2f +3f + ... +nr+ (n+1)! + ... 

Put 
z 

e=F 
(where Z and N are positive integers). 

Then 
Z 1 1 1 1 
F=2+2f+3f-+'" +Nf+ (N+1)! + ... 

or 

Z (N -i)! - (2 + i, + ;! + ... + ~! ) N! = 

Hence 

__ 1_--1- 1 + 
- N+1 I (N+1)(N+2) '" 

IZ(N-1)!-(2+ i, + ;! + ... + ~! )N!I< 
1 1 1 1 

< N+1 + (N+1)2 + (N+1P + ... =F' 
which is impossible, since on the right we have a regular 
fraction, and on the left a whole number not equal to zero. 
Thus, e is an irrational number. If e is represented as a deci­
mal fraction, then it will be an infinite non-periodic frae­
tion. Given below is a value of e accurate to 2 500 decimal 
places. 
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e==2.71828 18284 59045 23536 02874 71352 66249 77572 47093 69995 
95749 66967 62772 40766 30353 54759 45713 82178 52516 64274 
27466 39193 20030 59921 81741 35966 29043 57290 03342 95260 
59563 07381 32328 62794 34907 63233 82988 07531 95251 01901 
15738 34187 93070 21540 89149 93488 41675 09244 76146 06680 
82264 80016 84774 11853 74234 54424 37107 53907 77449 92069 
55170 27618 38606 26133 13845 83000 75204 49338 26560 29760 
67371 13200 70932 87091 27443 74704 72306 96977 20931 01416 
92836 81902 55151 08657 46377 21112 52389 78442 50569 53696 
77078 54499 69967 94686 44549 05987 93163 68892 30098 79312 
77361 78215 42499 92295 76351 48220 82698 95193 66803 31825 
28869 39849 64651 05820 93923 98294 88793 32036 25094 43117 
30123 81970 68416 14039 70198 37679 32068 32823 76464 80429 
53118 02328 78250 98194 55815 30175 67173 61332 06981 12509 
96181 88159 30416 90351 59888 85193 45807 27386 67385 89422 
87922 84998 92086 80582 57492 79610 48419 84443 63463 24496 
84875 60233 62482 70419 78623 20900 21609 90235 30436 99418 
49146 31409 34317 38143 64054 62531 52096 18369 08887 07016 
76839 64243 78140 59271 45635 49061 30310 72085 10383 75051 
01157 47704 17189 86106 87396 96552 12671 54688 95703 50354 
02123 40784 98193 34321 06817 01210 15627 88023 51930 33224 
74501 58539 04730 41995 77770 93503 66041 69973 29725 08868 
76966 40355 57071 62268 44716 25607 98826 51787 13419 51246 
65201 03059 21236 67719 43252 78675 39855 89448 96970 96409 
75459 18569 56380 23637 01621 12047 74272 28364 89613 42251 
64450 78182 44235 29486 36372 14174 02388 93441 24796 35743 
70263 75529 44483 37998 01612 54922 78509 25778 25620 92622 
64832 62779 33386 56648 16277 25164 01910 59004 91644 99828 
93150 56604 72580 27786 31864 15519 56532 44258 69829 46959 
30801 91529 87211 72556 34754 63964 47910 14590 40905 86298 
49679 12874 06870 50489 58586 71747 98546 67757 57320 56812 
88459 20541 33405 39220 00113 78630 09455 60688 16674 00169 
84205 58040 33637 9537{j 45203 04024 32256 61352 78369 51117 
88386 38744 39662 53224 98506 54995 88623 42818 99707 73327 
61717 83928 03494 65014 34558 89707 19425 86398 77275 47109 
62953 74152 11151 36835 06275 26023 26484 72870 39207 64310 
05958 41166 12054 52970 30236 47254 92966 69381 15137 32275 
36450 98889 03136 02057 24817 65851 18063 03644 28123 14965 
50704 75102 54465 01172 72115 55194 86685 08003 68532 28183 
15219 60037 35625 27944 95158 28418 82947 87610 85263 98139 
55990 06737 64829 22443 75287 18462 45780 36192 98197 13991 
47564 48826 26039 03381 44182 32625 15097 48279 87779 96437 
30899 70388 86778 22713 83605 77297 88241 25611 90717 66394 
65070 63304 52795 46618 55096 66618 56647 09711 34447 40160 
70462 62156 80717 48187 78443 71436 98821 85596 70959 10259 
68620 02353 71858 87485 69652 20005 03117 34392 07321 13908 
03293 63447 97273 55955 27734 90717 83793 42163 70120 50054 
51326 38354 40001 86323 99149 07054 79778 05669 78533 58048 
96690 62951 19432 47309 95876 55236 81285 90413 83241 16072 
26029 98330 53537 08761 38939 63917 79574 54016 13722 36133 
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Let us also give the logarithm of this number to base 10 
accurate to 282 decimal places. 

loglo e=0.43429 44819 03251 82765 11289 
18916 60508 22943 97005 80366 
65661 14453 78316 58646 49208 
87077 47292 24949 33843 17483 
18706 1067447663 03733 64167 
92871 58963 90656 92210 64662 
81226 58521 27086 56867 03295 
93370 86965 88266 88331 16360 
77384 90514 28443 48666 76864 
65860 85135 56148 21234 87653 
43543 43573 17247 48049 05993 
55353 05 

27. It is easily seen, that if lk (beginning with some k) 
are all equal to one another, then we deal with an infinitely 
decreasing geometric progression, and w is rational indeed. 
It remains to prove that if such circumstance (equality of 
all lk beginning with some k) does not take place, -then (0 

is irrational. It can be proved in the same way as in Prob­
lem 25. 

28. Let us prove that the variable Un decreases, i.e. that 
Un+1 < Un' We have 

1 1 1 1 
un+!= 1 + "2+3"+ '" + 71+ n+ 1 -log (n+ 1). 

Renee 

Un+l - Un = n ~ 1 -log (n + 1) + log n = n ~-1 -log ( 1 + ! ) . 
Consider the variable 

_ (1 1 )n+1 un - +­n 

and prove that it decreases, i.e. that Un+! < Un or that 

( 1 + n!l r+ 2 < ( 1 + ! r+ 1 
, 

i.e. show that 
n+1 

( 1 )n+2 1 1+- > 1+-. n n+1 
m 

We have (1 +afn > 1 +a : (see Problem 40, 1°, Sec. 8). 
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. f m b n+f ReplaclDg here (X by n' and n y n+2 ' we find 

n+l 

( 1 + .!.)n+2 > 1 +.!. (n+f). 
n n (n+2) 

But 
n+f f 

1+ n(n+2) > 1 + n+f . 

And so, the variable Vn = (1 +~ r+1 decreases. Let us 
show that 

. ( f)n+l lIm 1+- =e. 
n ... oo n 

We have 

.( , f)n _ (1+! r+ 1 

1 T - - --'-----':--

n (f+ ! ) 
But lim (1 +.!)n = e, lim (1 + .!.) = 1. Thus, indeed 

n ... oo n n ..... oo n 

lim (1 +.!)n+l = e and consequently 
n ... co n 

(1+! )'Hl >e. 
Therefore (n+1)log(1+!»1, 10g(1+!»n!f' 

and 
Un+1- Un<O, 

and f,he variable· Un is a ,decreasing one. 
On the other hand, 

f f 1 
ua =1+ 2 + g + ... +-;;-logn> 10g(n+1)-

-log n > log ( 1 + ! ) > 0. 

Since the variable Un decreases but remains greater -than 
zero, it has a limit. Let us denote this limit by C. 

C = lim { 1 + ! +} + ... + ! - log n } . 
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C is called Euler's constant. Let us give the value of this 
constant accurate to 263 decimal places. 

C = 0.57721 56649 01532 86060 65120 
90082 40243 10421 59335 93992 
35988 05767 23488 48677 26777 
66467 09369 47063 29174 67495 
14631 44724 98070 82480 96050 
40144 86542 83622 41739 97644 
92353 62535 00333 74293 73377 
37673 94279 25952 58247 09491 
60087 35203 94816 56708 53233 
15177 66115 28621 19950 15079 
84793 74508 569 

29. We have 
. 2' x x 

SIll X= SIll "'2 cos "2 ' 
I 

. x 2' x x 
SIll 2"= sm 22 COS 2"2 ' 

. x 2' x x sm 22= SIll Ys cos 23 , 

. x 2' x x 
SIll 2n- 1 = SIll 211 cos 211· 

Multiplying these equalities, we find 
. 2n ' x x x x x 

sm.x = SIll 211 cos "2 cos 22 cos 23 ... cos rn' 
Then 

2 . x n SJll rn 1 
sin x x x x x 

cos 2" cos 22 cos Ys ... cos rn 
We have 

. x 
sm 211 

lim 2n sin 2xn = lim x = X. 
n~oo X 

rn 
Put 

1. ( x x x x ) 
lID COS 2' CO~ 22 COS 23 ... COS 2n = 

n~oo 

x x x = COS "2 cos 22 COS 23 
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Then we have 
x x x x 

sin x = cos 2" cos 22 cos 23 ... 

Putting here x = -i ' we find the required formula. The 

number n, like e, is irrational and, consequently, cannot be 
expressed by a finite or periodic decimal fraction. Given 
below is the value of n accurate to 2035 decimal places. 
n==3.14159 26535 89793 23846 26433 83279 50288 41971 69399 37510 

58209 74944 59230 78164 06286 20899 86280 34825 34211 70679 
82148 08651 32823 06647 09384 46095 50582 23172 53594 08128 
48111 74502 84102 70193 85211 05559 64462 29489 54930 38196 
44288 10975 66593 34461 28475 64823 37867 83165 27120 19091 
45648 56692 34603 48610 45432 66482 13393 60726 02491 41273 
72458 70066 06315 58817 48815 20920 96282 92540 91715 36436 
78925 90360 01133 05305 48820 46652 13841 46951 94151 16094 
33057 27036 57595 91953 09218 61173 81932 61179 31051 18548 
07446 23799 62749 56735 18857 52724 89122 79381 83011 94912 
98336 73362 44065 66430 86021 39494 63952 24737 19070 21798 
60943 70277 05392 17176 29317 67523 84674 81846 76694 05132 
0005681271 45263 56082 77857 71342 75778 96091 73637 17872 
14684 40901 22495 34301 46549 58537 10507 92279 68925 89235 
42019 95611 21290 21960 86403 44181 59813 62977 47713 09960 
51870 72113 49999 99837 29780 49951 05973 17328 16096 31859 
50244 59455 34690 83026 42522 30825 33446 85035 26193 11881 
7101000313 78387 52886 58753 32083 81420 61717 76691 47303 
59825 34904 28755 46873 11595 62863 88235 37875 93751 95778 
18577 80532 17122 68066 13001 92787 66111 95909 21642 01989 
38095 25720 10654 85863 27886 59361 53381 82796 82303 01952 
03530 18529 68995 77362 25994 13891 24972 17752 83479 13151 
55478 57242 45415 06959 50829 53311 68617 27855 88907 50983 
81754 63746 49393 19255 06040 09277 01671 13900 98488 24012 
85836 1603v 63707 66010 47101 81942 95559 61989 46767 83744 
94482 55379-77472 68471 04047 53464 62080 46684 25906 94912 
93313 67702 89891 52104 75216 20569 66024 05803 81501 93511 
25338 24300 35587 64024 74694 73263 91419 92726 04269 92279 
67823 54781 63600 93417 21641 21992 45863 15030 28618 2n745 
55706 74983 85054 94588 58692 69956 90927 21079 75093 02955 
32116 53449 87202 7559'6 02364 80665 49911 98818 34797 75356 
63698 07426 54252 78625 51818 41757 46728 90977 77279 38000 
81647 06001 61452 49192 17321 72147 72350 14144 19735 68548 
16136 11573 52552 13347 57418 49648 43852 33239 07394 14333 
45477 62416 86251 89835 69485 56209 92192 22184 27255 02542 
56887 67179 04946 01653 46680 49886 27232 79178 60857 84383 
82796 7976681454 10095 38837 86360 95068 00642 25125 20511 
73929 84896 08412 84886 26945 60424 19652 85022 21066 11863 
06744 27862 20391 94945 04712 37137 86960 95636 43719 17287 
46776 46575 73962 41389 08658 32645 99581 33904 78027 59009 
94657 64078 95126 94683 98352 59570 98258 


